
MPE Pinc PowerForth

User Manual

MPE Pinc PowerForth
Version 1.00Beta

User Manual
January 1990

Rod Crawford
Andrew Waters

Stephen Pelc

MPE Pinc PowerForth
Copyright ©
MicroProcessor Engineering Limited
1986,1987,1988,1989,1990

MicroProcessor Engineering Limited
133 Hill Lane
Southampton
U.K.
SO1 5AF

Tel: +44 (0)23 8063 1441
Fax: +44 (0)23 8033 9691

.

Introduction

1.0 How To Use This Documentation

READ THIS SECTION,
EVEN IF YOU DON’T READ ANYTHING ELSE.

Many people read the user manual only ‘when all else fails’. If you are one of these
people, at least read this section, it will tell you where to find the information when
you need it.

1.1 Organization of the manual
Each chapter of the manual covers a separate subject. These are detailed below:

Installation To learn how to install Pinc PowerForth, read the “Installation
And Backup” chapter. This details the contents of the disk,
backup procedures, how to compile and run Pinc PowerForth,
setting up of screen drivers, and error messages.

Tutorial Although not a complete course on how to program in Forth
(see bibliography for a list of recommended books), this
chapter is intended to get you started using Pinc PowerForth.

Editing Read the chapter “Source Code And Editing” to find out how to
use disk files for source code storage.

Operating System This chapter deals with file i/o, and memory allocation, using
the features provided by the operation system.

Vectoring This chapter describes vectored execution using deferred
words.

Applications The chapter on application programming describes how to go
about creating auto-starting turnkey systems.

Useful information about the workings of Pinc PowerForth is
contained in the chapter on internals.

Bibliography A list of books we at MPE have read and recommend to other
Forth programmers.

MPE Pinc PowerForth Page 1

Introduction How To Use This Documentation

Errors If Pinc PowerForth responds with an error number/message,
you should consult the chapter on “Error Messages”, for a more
detailed explanation.

Glossary When you come across a word name you do not know, or have
forgotten, you should look up its definition in a glossary.
A glossary is a Forth term for an alphabetically sorted list of
words, with a description of the action of each one.

Licence Information regarding the distribution of application programs
& source code, warranty, copyright, support, and the Software
Registration Form.

Page 2 MPE Pinc PowerForth

Organization of the manual Introduction

1.2 Nomenclature
Forth words in the text appear in upper case bold, e.g. the word SWAP is the Forth
word to swap two items on the stack.

Program code examples are shown in courier font, thus:

: test (—) \ test word
." Hi There"

;

Throughout this manual, when you see <cr> you should press the ENTER key
(sometimes labeled the RETURN key). It stands for Carriage Return - another name
for the key.

When describing text that you must type in for various commands, this manual uses
the convention that the name of the type of information needed is surrounded by angle
brackets. For example, if you were required to type the command INCLUDE-FILE
followed by the pathname of the file to be included, it would be written thus:

INCLUDE-FILE <pathname>

i.e. this does not mean that you type the character “<”, followed by the character “p”,
followed by the character “a”,etc.

1.3 MPE Pinc PowerForth
MicroProcessor Engineering’s Pinc PowerForth is an interactive programming
environment for Workstations. It can be used standalone to build complete
applications or be integrated into existing applications to provide interactive test and
debug facilities. This product forms the basis of MPE Workstation Cross Compiler
Range. It is a Forth implementation based upon the Forth-83 Standard, with many
extensions.

1.4 Background
Forth was originally developed by Charles Moore as a computer language that
amplified his own productivity as a programmer. Its first incarnations were used to
control astronomical telescopes. What has emerged after a number of years is a
language that shares the expressiveness of other high level languages, with the speed
of machine code. Furthermore, Forth is extensible and interactive - allowing you to
develop programs in easy stages at the keyboard. As you compile new words into the
system, these are tested and integrated, adding to the general vocabulary of the Forth
language. User defined words are available to you just like the predefined ones. Forth
is a language of great richness and power, that enables a programmer to produce
sophisticated programs quickly.

MPE Pinc PowerForth Page 3

Introduction Nomenclature

1.5 Features Of Pinc PowerForth
Pinc PowerForth is designed to operate within a workstation environment e.g. running
under Unix or VMS. It is supplied in source form and can be compiled on
workstations which have a C compiler conforming to either the K&R or proposed
ANSI standards. Additional features of this product are:

• Source code can be edited using a standard text editor.

• Pinc PowerForth has been implemented in such a way that the operation of some i/o
(input/output) dependent words can be controlled by the user. This enables additional
devices to be used through the Forth i/o structure as well as through the operating
system. The user can also by pass commands to the operating system or create an
operating system shell.

• All disc input and output is performed through standard system calls.

• Vectored execution using deferred words - most i/o words supplied are deferred.

1.6 The Manual
This manual does not pretend to be a ‘teach yourself’ Forth or C text. It is a reference
for this implementation. The “Tutorial” chapter for the newcomer to Forth is only
intended to keep you going until you have been to a bookshop. The newcomer is
strongly recommended to buy one of the books in the bibliography. These and many
other Forth books are also available from MicroProcessor Engineering in Europe, or
from Mountain View Press or the Forth Interest Group in the USA.

Page 4 MPE Pinc PowerForth

Features Of Pinc PowerForth Introduction

Installation And Backup

2.0 Introduction
Pinc PowerForth is normally supplied on an IBM/PC compatible 360k floppy disc
containing several files. You should copy the files contained on this disk onto your
workstations file system. (If you are unable to perform this task MPE can recommend
disk copying services.) Beware of differences between line terminating characters
(DOS uses <CR><LF> whereas UNIX uses <LF>. Before you do anything else,
backup the contents of the supplied disc with your standard operating system file
backup procedure. The master (supplied) disc is then only used in dire emergency,
and NOT to make the software. If the issue disc is not write protected, please write
protect it now before anything ‘embarrassing’ can happen.

2.1 Contents Of The Supplied Disc
The supplied disc will contain at least the following files:

release.doc Updates produced between revisions of the manual will be
noted in this file.

*.c C Source Code for Pinc PowerForth.

*.h Header Files for Pinc PowerForth.

cscape Pinc PowerForth Secondary Code and Programming
Environment.

*.mk Makefile for different workstation. e.g. sun.mk for the a sun
workstation.

The names and contents of the .C files and .H files are detailed in the C Source Code
Manual.

2.2 Installing Pinc PowerForth on a Supported Workstation.
This section describes how to install Pinc PowerForth on workstations that is
supported by MPE. If you wish to install Pinc PowerForth on a workstation which not
supported we recommend that you read this section and the section entitled
“Installing Pinc PowerForth on Unsupported Workstation”.

2.2.1 Selecting The Makefile.
Pinc PowerForth is generated via a makefile. Several of these are supplied, one for
each workstation that MPE supports. Each file is terminated with the suffix .mk.
Choose the one you require for you workstation and name it appropriately (some

MPE Pinc PowerForth Page 5

Installation And Backup Introduction

make utilities require the makefile to be physically called makefile). E.g. If you are
working with a Sun you should rename the file sun.mk to be makefile:

mv sun.mk makefile

2.2.2 Changing The Header Files.
Before making Pinc PowerForth it will be necessary to specify which implementation
you intend to create. This should be done by editing the file cmodel.h. E.g. If you are
implementing on a Sun workstation you would uncomment the line:

#define IMPLEMENTATION SUN

and comment out all other definitions of IMPLEMENTATION.

2.2.3 Making Pinc PowerForth.
To generate a Pinc PowerForth system you should run systems Make utility with the
makefile that you chose in the above section. The complete make will take several
minutes and will generate an executable version of Pinc PowerForth. That file is
called: pinc.

You can execute Pinc PowerForth by typing in that name at the terminal.

2.3 Installing Pinc PowerForth on an Unsupported Workstation.
If you are installing Pinc PowerForth on a workstation that is not currently supported
by MPE you should read this section (having read the previous one).

2.3.1 Selecting a Makefile Model.
Generating a Pinc PowerForth system on an unsupported workstation will involve you
in the creation of a new makefile specifically for that workstation. We recommend
that rather than starting from scratch, you choose one of the makefiles supplied and
tailor it to your requirements. E.g. If you implementing Pinc PowerForth on a
VAXStation running ULTRIX you would copy the sun.mk file a modify the copy of
that file to suit the VAX.

The creation of the makefile from an existing one involves three distinct stages. These
are outlined below:

2.3.2 Changing the Compiler Directives.
Edit your makefile, correctly naming the C compiler. Most systems call the compiler
cc. Check how switches are passed to the compiler and how macros are declared from
the command line. You are required to be able to specify the following to the
compiler:

1) Compilation to object only. This is often specified by a -c switch or a /c switch
in the case of MicrosoftC.

Page 6 MPE Pinc PowerForth

Installing Pinc PowerForth on an Unsupported Workstation.
Installation And Backup

2) The name of the object file. This is often specified by a -o switch followed by
the name of the object file or /Fo switch in the case of MicrosoftC.

3) The following macro is declared. This is often specified by a -D switch
followed by the name of the macro or /D switch in the case of MicrosoftC.

4) The name of the executable file. This is often specified with the -o switch
again, but in the case of MicrosoftC it is achieved via the /Fe switch.

5) Link the following objects. This is often specified by simply listing all of the
files ending in their object suffixes. E.g. .o for most Unix Compilers and .OBJ
for MicrosoftC.

2.3.3 Checking the Make Order.
Some make utilities are order dependent and require items which are prerequisite to
the construction of the final goal software to be precede the final goal rule or
vica-versa. It therefore advisable to specify exactly which goals must be achieved by a
make. This is specified in the following ways on the Sun implementation:

all: fidl pinc cweed boot.dic

You may find it necessary to reverse the order of the makefile which you are editing.

2.3.4 Choosing a CModel Implementation.
You should choose a C Model which is appropriate both to the environment in which
you wish to run Pinc PowerForth and the size of specific data items in bytes generated
by your C compiler.

We recommend that you examine the header file cmodel.h. and choose an
implementation which is closest to the one you wish.

You can then base your implementation upon this. E.g. If you are implementing Pinc
PowerForth on an unsupported Unix workstation you should choose the Sun
implementation.

Having chosen an implementation which is close the one you wish, #define an
implementation number which is unique. E.g.

#define HP9000 9

This identifies your implementation. You should then state that you wish to perform
this implementation by changing the existing #define IMPLEMENTATION to:

#define IMPLEMENTATION HP9000

This states that you wish to generate an HP9000 implementation of Pinc PowerForth.

Now grep each of the C source and header files and the file fidl.src for the string
“IMPLEMENTATION ==”. This will produce a list of where all the implementation
specific parts of Pinc PowerForth are.

MPE Pinc PowerForth Page 7

Installation And Backup Installing Pinc PowerForth on an Unsupported
Workstation.

2.3.5 Editing the Source Code for Your Implementation.
Having produced the list of implementation specific areas, you should now use these
to edit the source code, header files and fidl.src files and produce implementation
specific code for your implementation. This code will be encapsulated in the macro
processor statements:

#if IMPLEMENTATION == y implementation

: : :
: : :
#else

We recommend that at first this code be copies of the code of the implementation
closest to yours that you chose above. You should change this code incrementally,
performing makes at each increment to verify your progress.

2.3.6 Choosing The Cell Size.
You will note that the for each implementation type there is set of declarations
concerning the size of CELLs in Pinc PowerForth. This can be found in the header
file cmodel.h. A Cell is the unit size of data stack items and addresses in Pinc
PowerForth. If you are working on a system that supports 32bit integers you would
define a CELL_SIZE for your implementation of 4 (four bytes per cell). However, if
you are working with a system of where 16bit integers are standard, you would
declare a CELL_SIZE of 2. We advise you choose one of the chunks of
implementation code regarding Cells and encapsulate it in the appropriate:

#if IMPLEMENTATION == y implementation
: : :
: : :

#else

2.3.7 Choosing The Memory Size.
The choice of Cell Size described above has repercussions upon the amount memory
that Pinc PowerForth can address. The size of Ram and the two stacks is defined in
the header file vmsize.h. You should modify the values according to you
requirements.

2.3.8 Changing OS Specifics.
Different operating systems have different file naming conventions. Many of the
filenames used by Pinc PowerForth are parameterised and defined in the file fname.h.
In addition, the file os.h contains some of the os specific commands which Pinc
PowerForth uses. You should set these accordingly.

Page 8 MPE Pinc PowerForth

Installing Pinc PowerForth on an Unsupported Workstation.
Installation And Backup

2.3.9 Making Pinc PowerForth on a New OS.
Creating a new implementation of Pinc PowerForth is an incremental process. You
should run a make after each incremental change to the software. In addition, if the
software compiles but fails to perform correctly we recommend that you recompile
the software with the CHECK_STACKS and CHECK_INNER macros defined.
Edit the file misc.h to achieve this.

MPE Pinc PowerForth Page 9

Installation And Backup Installing Pinc PowerForth on an Unsupported
Workstation.

Blank Page

Page 10 MPE Pinc PowerForth

Installing Pinc PowerForth on an Unsupported Workstation.
Installation And Backup

Tutorial

3.0 A quick introduction to Forth
The Pinc PowerForth manual does not pretend to be a complete teach yourself Forth
book. There are many books on Forth, and in our experience, most programmers buy
more than one of them. The bibliography at the end of the manual lists some of these
books with our comments about them.

3.1 Writing programs in Forth
Forth is a different sort of computer language. Forth is easy to use because it is
interactive, fast because it is compiled, and not as fast as it might be because it is
interpreted. Forth is a language with a definite style.

Forth often takes a little longer to learn than other languages. Just like spoken
languages, there are many words to learn in Forth before you can use it well. Forth is
a language in which very little is hidden from you. Nearly every word that we used
along the way to some other function has a name, and is documented in a glossary. As
a result of this openness there are many words in the dictionary (type WORDS to see
them). Predefined functions in Forth are in fact called words in Forth jargon. These
words are stored as a dictionary, and the group of words forming your area of interest
- the context in which you work - is known as a vocabulary. For example, words used
to define the assembler are kept in a vocabulary called ASSEMBLER. As in all
computer languages, there is a jargon to Forth. In this instance the jargon is a
technical language, and serves as a set of communication tools so that we can explain
our ideas to each other without being bogged down in the minutiae. Persevere, Forth
is not only well worth the effort, but is a tool of spectacular productivity in the right
hands.

The Forth run-time package is actually a compact combination of interpreter,
compiler, and tools. A command or sequence of commands (words) may be executed
directly from the keyboard, or loaded from mass storage as if from the keyboard. In
this version of Forth, you can also take input from a normal operating system text file,
created by a normal (non-Forth editor). Programs in Forth are compiled from
combinations of existing words (already in the dictionary), new words as defined by
the user, and control structures such as IF ... ELSE ... ENDIF or DO ... LOOP. New
words can be developed interactively using the keyboard/monitor as well using the
editor. If you are teaching yourself Forth, get all your books ready in front of the
terminal, and try things out as you go along.

The beauty and power of Forth lies in its extendibility and flexibility. New words can
be added either at high or low (assembler) level. Forth is one of the very few
languages which can define a data structure and how it is used inside a single
definition. This ability to create new words known as defining words, which can add
new classes of operators to the language, is one of the keys to the extraordinary power
of Forth in the hands of an experienced programmer. A bad Forth programmer is just
as much a disaster as in any other language.

MPE Pinc PowerForth Page 11

Tutorial A quick introduction to Forth

If your experience of programming has been in traditionally organised languages such
as Pascal, BASIC, or C, you will find reading and writing programs in Forth
somewhat bizarre at first. Patience brings rich rewards. Forth becomes much easier to
understand once you have mastered a few ideas and played with the language. Among
the most important aids in using Forth is the choice of word names. Think about the
name of a word in advance. Verbs, nouns, and adjectives all have their place in good
Forth programming style. Good choice of word names leads to very readable code, as
does the use of white space in source Blocks. You can use any character within a
word name - the use of printable ones is sensible. Word names can be up to 31
characters long, and all the characters are significant. This version of Forth does not
care about the case of characters in Forth word names. “CAT” is the same as “cat” is
the same as “Cat”. Embedded comments may be as long as you wish without a space
or speed penalty in the compiled code.

Forth programs keep most of their working variables on the stack, rather than in
named variables, so reading some sections of code can be a little mind-boggling -
even for the experienced. The secret is to keep definitions short and simple. Part of
making life easy is making sure that you can work out what the code is doing a year
from now.

The language lends itself well to bottom-up design and coding. Like the choice of
word names, this can be a double-edged sword. There is no substitute for good overall
program design, which can only be done properly from the top down. Bottom-up
design and coding is excellent, however, for exploring the nuts and bolts of
techniques, algorithms, and low level interfaces. The ability to interactively create,
test, and produce working code early in the development cycle is invaluable. Early
working code also helps to keep your boss off your back, and it enables customers to
make sensible reactions and discover specification errors before it is too late.
Carefully used this feature can save you a great deal of time.

3.2 Stacks and postfix notation
Forth contains two stacks, one for storing “subroutine” return addresses, and one for
storing data. The first stack is called the return stack, and the second is called the data
or parameter stack.

The data stack is an efficient method of passing data between the words that make up
a Forth program. Any word that needs data takes it from the top of the stack, and puts
any results back on top of the stack. The word .S can be used to display the contents
of the stack without destroying them. It is a useful debugging tool. Nearly all modern
processors provide for the use of stacks, so stack operations are very fast.

The return stack holds the return addresses of all the words that have been called, but
have not yet been left. The return stack is also used for storing temporary data that
would only get in the way if kept on the data stack. This sort of data includes loop
limits and indices, and data taken off the data stack to reduce the amount of stack
manipulation that would otherwise occur. There is a set of words used for transferring
data between the stacks.

Because stacks are used for data handling, the use of post-fix, or Reverse Polish
Notation (RPN), is very suitable. In this form of writing arithmetic expressions,

Page 12 MPE Pinc PowerForth

Stacks and postfix notation Tutorial

operands (the data used) come before the operators (how you use the data), for
example:

The normal algebraic notation:

at^2 + bt + c

is better expressed for computer evaluation as:

(at + b)t + c

or using normal computer symbols:

(a * t + b) * t + c

which is then expressed in Reverse Polish Notation (RPN) as:

a t * b + t * c +

Notice that the use of brackets becomes unnecessary. This is because of the use of the
stack to hold intermediate results. Although the use of a stack is bewildering to begin
with, it soon becomes natural, and eventually it is only noticeable on rare occasions.
The word “.” (pronounced “dot” or “print”) is used to print what is on the top of the
stack. You can try a few bits of arithmetic. Type in the following words, pressing the
“Enter” or “Return” key at the end of each line:

1 2 + .
4 5 * .
9 3 / .
1 2 + 3 * .
1 2 3 + * .
1 2 3 * + .

Nearly all Forth words remove their data from the top of the stack, and leave the
result behind. Words like + (add) and * (multiply) remove two items, and leave one
behind. There is a Forth word .S (pronounced “dot-S” or “print-S”) which prints out
the contents of the stack without destroying the contents. Use it whenever you want to
see what is on the stack. E.G.:

1 2 3
.s

Forth shows 1, 2, and 3 on the stack. Type:

.s

and forth will show them again - they are still on the stack.

So far, we have executed words by typing their names at the keyboard. The next stage
is to create new words, but first we must describe how Forth is documented.

3.3 How Forth is documented
Words in Power Forth are documented in a style popular with many Forth
programmers. It shows what is on the stack before the word executes (the input), and

MPE Pinc PowerForth Page 13

Tutorial How Forth is documented

what is on the stack after the word has executed (the output). The top of the stack is to
the right of the data, and the execution point is marked by two dashes.

The multiply operator, “*” (an asterisk) takes two parameters on input, and leaves one
on output. It is thus shown :-

(n1 n2 — n3)

The parentheses "(“ and ”)“ are Forth’s way of marking a comment. ”n1" and “n2"
represent two numbers on the stack before the word executes, ”n2" being the topmost,
and “n3" represents a number left after execution. In the manual Forth words are
written in bold capital letters to distinguish them from the lower case letters of the rest
of the text. It does not matter which you use in your programs.

Operands are described using the following notation. The notation is described more
thoroughly in the section on notation before the glossaries.

OPERAND DESCRIPTION

n1 n2 16 bit signed numbers
d1 d2 32 bit signed numbers
u1 u2 16 bit unsigned numbers
ud1 ud2 32 bit unsigned numbers
addr1 16 bit address
d-addr 32 bit address
b1 b2 bytes
c1 c2 ASCII characters
f boolean flag
tf true flag
ff false flag

3.4 First words in Forth
The only sure way to learn Forth is to use it. Forth programmers spend more time at
the keyboard/monitor, because the interactive nature of the language means that
words can be tested as soon as they are entered. A result of this feature is that
succeeding words, which use previous ones, use tested code. Adherence to the
procedure of ‘top down design’, followed by ‘bottom up’ coding and interactive
testing, leads to very rapid debugging, and successful program generation. Audits of
large software projects reveal that over half the time may be spent on debugging. As
this is the largest single activity, it is the one to reduce.

To write new words you can either just type them in at the keyboard, or you can use
the editor to put source code in a Block file. If you are interested in software
management, do read Fred Brook’s book, “The Mythical Man-Month”.

To use the editor, type EDIT, wait for the editor to load, and select a blank Block to
play with. The index command in the editor (usually <escape>-V) lists the top line (a
comment line by convention) of every Block in the file. This will allow you see where
any blank Blocks are. If you cannot see any blank Blocks just edit the next Block off
the end of the file (or start “USING” a new Block file). The editor is documented in
chapter 4, which includes a description of all its available commands.

Page 14 MPE Pinc PowerForth

First words in Forth Tutorial

If you decide just to enter the examples directly, you do not need to enter the
comments preceded by a backslash:

\ this is a single line comment

or enclosed by parentheses:

(this is a
 multi-line
 comment
)

Nor do you need to use the same layout. In fact Forth is completely free-form. This
means that the position of the words is unimportant, only their order. Power Forth also
does not care whether a word is in ‘UPPER CASE’ or in ‘lower case’ or in ‘MiXeD
CasE’.

Forth word names can contain any characters except spaces or nulls (ASCII character
0). It is sensible to use printable characters, but Forth does not actually enforce this.

New Forth words are defined by the word ":“ (colon) whose first action is to pick up
the name that follows and use it to make a new entry in the dictionary. Then,
everything that follows up to the next ”;“ (semicolon) defines the action of the word.

By comparison with extended BASICs, “:” is equivalent to DEFine PROCedure or
DEFine FuNction and “;” is equivalent to END PROCedure or END DEFine. For
example:

: NEW-WORD (—)
CR ." This is a new word" CR

;

The example word above is called NEW-WORD - when you type:

NEW-WORD

it will print a new line, print the text:

This is a new word

and then print another new line. The word ." (pronounced “dot-quote” or
“print-quote”) prints out all the characters except the space after ." up to but not
including the next double quotation mark (“). The word CR is a predefined word
that generates a new line - CR stands for Carriage-Return.

A new Forth word can contain any words that exist in the dictionary. The new Forth
word can be executed by typing its name, or by including it in the definition of
another word.

: TIMES (n1 n2 —)
* .

;
2 4 TIMES

MPE Pinc PowerForth Page 15

Tutorial First words in Forth

This example will multiply two numbers together and print the result. The word * (an
asterisk) is Forth’s multiply word, and . (dot) is the word to print a number. TIMES
can be used as part of a word that presents information more prettily to the user. First
we print a new line using CR, then we duplicate the two numbers using 2DUP and
print them out together with the result. Why is the word SWAP used? Try it without
SWAP.

(n1 n2 —)
: MULTIPLY

CR \ new line
 2DUP \ n1 & n2 for printing
SWAP \ n1 to top of stack
. ." multiplied by “ . .” equals “

 \ print ”n1 x n2 = “
TIMES \ calculate and print result
 CR \ new line

;

4 3 MULTIPLY

We have shown the definition entered on several lines. When you type it in there will
be no “ok” prompt after the first line, this is to remind you that you have not finished
the definition. The Forth system has converted the list of word names into a dictionary
entry called MULTIPLY and a list of a addresses. These addresses point to the words
whose names you entered (ie CR, 2DUP, SWAP, .", ., and TIMES). This process is
called compilation.

Source text entered from the keyboard is discarded. If you want to keep source code
available for re-use, you will need to learn to use the Block editor. This is loaded and
run by the word EDIT. Use the index command from the editor to see what is in the
file. The index command displays the top line of each Block, which, by convention, is
a comment line describing the contents of the Block. The next section shows how
Forth is documented, and then we show how to create new words.

Suppose we had a section of a program that had to greet people. First, we could define
a word to say “hello”. We use a dot (“.”) at the beginning of the name because it is a
Forth convention that words which print start with a dot. We use “:” (colon) to start a
definition (followed by its name) and “;” (semicolon) to end it.

: .HELLO (—) \ has no effect on the stack
." Hello “

;

If you now type .HELLO <ENTER>, Forth will respond, followed by “ok” to show
that there were no errors in the last entry. We now need some words to print out the
names of the people we want to greet.

Page 16 MPE Pinc PowerForth

First words in Forth Tutorial

(—)
: .FREDA

." Freda “
;
: .MARY

.” Mary “
;
: .NEIL

.” Neil “
;
: .LINDA

.” Linda “
;

We will also need a word to link these together.

: .AND
." and “

;

We can now define a word to greet all these people. Forth words can occupy as many
lines as are needed. You can use line breaks and additional spaces to emphasize the
phrasing of the word.

(—)
: .GREET

.HELLO

.MARY .AND .FREDA .AND .LINDA .AND .NEIL
CR

;

When you type .GREET <ENTER>, Forth will respond -

Hello Mary and Freda and Linda and Neil
 ok

At some stage you will want to see what words are in the dictionary, to do this enter:

WORDS

You will see a long list of words roll past. You can stop the listing by pressing the
space bar. Press it again and the listing will continue. Press any other key, and the
listing will finish. All the names you see are the names of predefined words in Power
Forth, plus any that you have created. All these words are available for you to use,
and the predefined ones are documented later in this manual. The words that you
write will use these words as their basis.

The secret of writing programs in Forth is to keep everything simple. Remember the
KISS method (Keep It Simple, Stupid). Simple things work, and complicated things
can be built out of simple things. A programmer’s job is to decide what those simple
things should be, and then to design and code them. If the names of the words reflect
what they are to do, then the code will be readable and easy to follow. The next
sections give an introduction to the components of Forth, and a description of the
program control structures available.

MPE Pinc PowerForth Page 17

Tutorial First words in Forth

3.5 An Introduction To Compiling And Interpreting
The action of compiling involves taking the input text and converting all of it into a
machine executable form. The input text is discarded. The executable form is then
run. This can produce a program that runs very fast. To change the action of the
program, you have to re-type the source text, (or re-edit the file,) then repeat the
above process. Although programs run quickly, they take a long while to change. This
‘batch’ process is used by languages such as C and Pascal.

Interpreting envolves taking the input text, converting some of it into a form the
machine can execute, executing it, discarding the executable form, then so on for the
rest of the input text. To change the action of the program, you just alter the part of
the source text that needs changing, then repeat the above process. This results in
programs that are easy to change but slow to run. Early BASIC systems did just this.

Most BASIC systems perform a hybrid of these two, in that they read in all of the text
and convert the pre-defined keywords into “tokens”; which is a sort of compilation.
Then they interpret the tokens. While this runs faster than pure interpreted code, it is
still a lot slower than a compiled code.

Forth also performs a hybrid of compilation and interpretation, but instead of
compiling tokens, it compiles the addresses of the words, so that the interpreter has a
lot less work to do and consequently is a lot faster. Indeed this method approaches the
speed of the more traditional compiler, yet keeps the interactivity (the ability to edit
only a part of the program) of the interpreter.

One reason for Forth’s speed is that the interpreter is actually very short, only two or
three machine instructions on some processors. The relatively slow job of compiling
is performed as the text is entered - after you type carriage return. The time taken to
do this compilation is very short as far as you are concerned (as it is only one line),
but it allows subsequent execution of the code to be very fast.

This interpreter is actually called the Inner Interpreter or Address Interpreter, to
differentiate it from the other Forth interpreter, the Outer Interpreter. The outer
interpreter is the Forth word that gets your input from the keyboard or from disk,
parses out the words and executes them.

So if you enter the words:

1 2 + .

the Outer Interpreter finds and executes the words “1”," 2“, ”+“, and ”.“, which do the
following:- put a one on the stack, put a two on the stack, add the top two items on the
stack leaving one item (the number three), and finally print the top number from the
stack.

If the outer interpreter executes a compiler word, such as “:”, the compiler takes over
and instead of executing the words as they are parsed, it compiles them. So that the
following sequence:

Page 18 MPE Pinc PowerForth

An Introduction To Compiling And Interpreting
Tutorial

: TEST (—)
1 2 + .

;

would cause a word called “TEST” to be entered into the dictionary and the words
“1”," 2“, ”+“, and ”.“, to be compiled as the action of ”TEST“. So that when ”TEST“
itself is executed it will do the same as our previous example. (i.e. add one and two
and print three.)

3.6 Defining Words and Immediate words
Remember, all commands to Forth are pre-defined “words” in a “vocabulary” in the
“dictionary”, consequently Forth can look up the address of a given word for later
execution. Some words in Forth change the way the compiler deals with text.

For instance we could define a word that doubles the value given to it.

(n1 — n1*2)
: 2*

2 *
;

The address of the word “:” is found and executed by the outer interpreter; the action
of “:” is to start the compiler (and stop the outer interpreter). The compiler defines a
new word whose name comes next (“2*”), and then compiles into the new word the
addresses of the words that follow. This would carry on for ever unless we had a way
of stopping it, and this is provided by words such as “;” which are “immediate”, that
is, always executed regardless of what the compiler would otherwise be doing. The
action of “;” is to stop the compiler and start the interpreter.

There are other types of word (defining words) which are used to create words such as
“:” - these are one of the keys to advanced use of Forth. To gain a better
understanding of compiling/interpreting, defining/immediate words, you should read a
good Forth book (see bibliography). All we have attempted to do here is give an
introduction. If this seems a little complicated to begin with remember that the basis
of Forth is always very simple. Forth is a language built from a number of very simple
ideas, rather than one founded on a few complex systems.

3.7 Constants and variables
Many times in a program we need to use a value to represent something, e.g. a type of
flower or a bus route number. On other occasions the value corresponds to an actual
value rather than an association, the price of roses today, the ASCII code for a special
key. Some of this data never changes, it is constant. Other data changes from day to
day or minute to minute. These two types of data are represented in Forth by
CONSTANT and VARIABLE. Naming data makes programs easier to write and
read, as people remember names more easily than numbers.

Constants are used when the data will not change, or will only be changed when the
programmer edits the program (for instance, to change a control key). Constants
return their value to the stack.

MPE Pinc PowerForth Page 19

Tutorial Defining Words and Immediate words

DECIMAL
(— n)
13 CONSTANT ENTER-KEY
1 CONSTANT DAFFODIL
2 CONSTANT TULIP
3 CONSTANT ROSE
4 CONSTANT SNOWDROP

In Forth a variable is named and set up by the word VARIABLE.

(— addr)
VARIABLE FLOWER

At this stage a variable called FLOWER has been declared with an initial value of 0.
When you use FLOWER the address of the data is given. Forth uses @ (“fetch”) to
fetch the data from the address, and ! (“store”) to store data into an address. When the
variable was created it was given the value 0. If another value is needed we can
change it.

DAFFODIL FLOWER !

Later on in a program we can use the value of FLOWER to change the way the
program acts. Part of the program might be about to draw the flower, and we need to
set the colour properly.

(—)
: DAFF
 FLOWER @ DAFFODIL =
 IF YELLOW INK ENDIF ;

To make a program wait until the ENTER key is pressed, you can try the code below.

(—)
: WAIT-ENTER
 BEGIN KEY ENTER-KEY = UNTIL ;

In most words data is passed from word to word using the stack. If you find the stack
usage getting too complex, try splitting the word into other words which only use one
or two items on the stack. On other occasions you will find that all the words need to
refer to the same value which controls what happens on this run of the program (say,
the type of flower). In these cases the use of a variable is appropriate. As your Forth
skills improve, you will find that you use fewer variables.

3.8 Control structures
The flow of control in a program is nominally sequential; a control structure is a
construct that allows you to alter the control flow to include a branch or a loop. This
change is often dependant upon the value of some piece of (runtime) data. This gives
a program the power of choosing to do this if one thing happens, or that if another
thing happens. Control structures in Forth allow execution and looping determined by
values on the stack. Although the user is not necessarily aware of it, control structures
are usually implemented by means of words that execute at compile time (immediate
words), and compile other words that actually execute at run time. Techniques like
these allow error checking to be implemented as well. Control structures must be used

Page 20 MPE Pinc PowerForth

Control structures Tutorial

inside a colon definition; they cannot be directly executed from the keyboard. Any
one structure must be written entirely within one definition; you cannot put the IF in
one word and the ENDIF in another. Control structures can be nested inside one
another, but they must not overlap.

3.8.1 IF ... ENDIF

flag IF <true words> ENDIF

The flag on the top of the stack controls execution. If the flag is non-zero (true), the
words between IF and ENDIF are executed, otherwise they are not.

Like most Forth words IF consumes the flag used as input to it. If the value of the flag
must be used again it can be duplicated by DUP. In the case of IF ... ENDIF, where
the value may only be needed between IF and ENDIF, the use of ?DUP, which only
duplicates a number if it is non-zero, may be more appropriate.

: TEST (f —)
 IF ." top of stack was non-zero “ ENDIF

;
1 TEST top of stack was non-zero ok
0 TEST ok

3.8.2 IF ... ELSE ... ENDIF

flag IF <true words> ELSE <false words> ENDIF

This structure behaves just like IF ... ENDIF above except that an alternate set of
words will execute when the flag is false (zero). E.G.:

: TEST (w —)
IF

." top of stack was non-zero “
 ELSE

.” top of stack was zero “
ENDIF

;
1 TEST top of stack was non-zero ok
0 TEST top of stack was zero ok

3.8.3 DO ... LOOP and DO ... n +LOOP

limit index DO <loop words> LOOP
limit index DO <loop words> increment +LOOP

This structure is similar to BASIC’s:

FOR X = n1 TO n2
...

NEXT

MPE Pinc PowerForth Page 21

Tutorial Control structures

To use this structure, place the limit value and the starting value of the loop index on
the stack. DO will consume this data and transfer it to the return stack for use during
execution of the loop. LOOP will add one to the index and compare it to the limit. If
the index is still less than the limit the loop will be executed again. +LOOP behaves
similarly except that the increment on the stack is added to the index each time round
the loop.

You can get out of the loop early with the words LEAVE or ?LEAVE.

LEAVE cleans up the return stack, and execution then resumes after the LOOP or
+LOOP. Note that words between LEAVE and LOOP or +LOOP are not executed.

?LEAVE behaves like LEAVE except that the loop is left only if the top of the stack
is non-zero. This is a useful word when checking for errors.

DO ... LOOP structures may be nested to any level up to the capacity of the return
stack. The index of the current loop is inspected using “I” . The index of the next
outer loop is inspected using “J”.

WATCH IT -

If you use the return stack for temporary storage after DO, you must remove it before
LOOP or +LOOP.

If there is data on the return stack I and J will return incorrect values..

The loop will always be executed at least once. If you do not want this to happen you
must add extra code around the loop or use ?DO, which only executes if the limit is
not the same as the index.

Example:

: TEST (—)
10 1 DO I . LOOP

;
TEST 1 2 3 4 5 6 7 8 9 ok
: TEST2 (—)

10 1 DO I . 3 +LOOP
;
TEST2 1 4 7 ok

3.8.4 ?DO ... LOOP and ?DO ... n +LOOP

limit index DO <loop words> LOOP
limit index DO <loop words> increment +LOOP

These structures behave in the same way as DO ... LOOP and DO ... n +LOOP
except the loop is not executed at all if the index and the limit are equal on entry. For
example if the word SPACES which prints n spaces is defined as:

Page 22 MPE Pinc PowerForth

Control structures Tutorial

: SPACES \ n —
0 DO SPACE LOOP

;

the phrase 0 SPACES causes 65536 spaces to be displayed, whereas the definition
below displays no spaces.

: SPACES \ n —
0 ?DO SPACE LOOP

;

3.8.5 BEGIN ... AGAIN

BEGIN <words> AGAIN

This structure forms a loop that only finishes if an error condition occurs, or a word
such as ABORT or QUIT is executed. The first example will read and echo
characters from the keyboard forever, the second will exit when the ENTER key is
pressed. Example:

DECIMAL
: TEST

BEGIN KEY EMIT AGAIN
;
: TEST2

BEGIN KEY DUP 13 =
IF ABORT ENDIF
EMIT

AGAIN
;

3.8.6 BEGIN ... UNTIL

BEGIN <words> flag UNTIL

This structure forms a loop which is always executed at least once, and exits when the
word UNTIL is executed and the flag (on the data stack) is true (non-zero). If you
need to use the terminating condition after the loop has finished use ?DUP to
duplicate the top item of the stack if it is non-zero.

BEGIN ... UNTIL loops may be nested to any level. Example:

: TEST
BEGIN KEY DUP EMIT 13 = UNTIL

;

3.8.7 BEGIN ... WHILE ... REPEAT

BEGIN <test words> flag WHILE <more words> REPEAT

MPE Pinc PowerForth Page 23

Tutorial Control structures

This is the most powerful and perhaps the most elegant (though certainly not some
purists choice) of the Forth control structures. The loop starts at BEGIN and all the
words are executed as far as WHILE. If the flag on the data stack is non-zero the
words between WHILE and REPEAT are executed, and the cycle repeats again with
the words after BEGIN.

This structure allows for extremely flexible loops, and perhaps because it is somewhat
different from the structures of BASIC or PASCAL, this structure is often somewhat
neglected. It does however, repay examination. Like all the structures it can be nested
to any depth, limited only by stack depth considerations. In the example below, the
console is polled until a key is pressed, and a counter is incremented while waiting.
Example:

VARIABLE COUNTER
: TEST

0 COUNTER !
 BEGIN

?TERMINAL 0=
WHILE

1 COUNTER +!
REPEAT

;

3.8.8 CASE ... OF ... ENDOF ... ENDCASE

CASE key
value1 OF <words> ENDOF
value2 OF <words> ENDOF
...
 <default words> (otherwise clause)

ENDCASE

The CASE statement in Power Forth is the result of a competition for the best CASE
statement. The competition was run by Forth Dimensions, the journal of the Forth
Interest Group (FIG) in the USA. A large number of CASE statements were
proposed, but this one has stood the test of time as it is secure, easy to use and
understand, and easy to read. It was invented by Dr. Charles E. Eaker, and first
published in Forth Dimensions, Vol. II number 3, page 37.

CASE statements exist to replace a large chain of nested IFs, ELSEs, and ENDIFs.
Such chains are unwieldy to write, prone to error, and lead to severe brain-strain.

The function of a CASE statement is to perform one action dependent on the value of
the key passed to it. If none of the conditions is met, a default action (the otherwise
clause) should be available. Note that a value to select against must be available
before each OF against which the entered parameter may be tested. The select value
is top of stack, the parameter is next on stack (by requirement); OF then compares the
two values, and if they are equal, the words between OF and ENDOF are executed,
and the program continues immediately after ENDCASE. If the test fails, the code
between OF and ENDOF is skipped, so that the select value before the next OF may
be tested. If all the tests fail the parameter is still on the data stack for the default

Page 24 MPE Pinc PowerForth

Control structures Tutorial

action, and is then consumed by ENDCASE. Additional control structures can be
used inside OF ENDOF clauses. Example:

: STYLE? (n —)
CASE

1 OF ." Mummy, I like you" ENDOF
2 OF ." Pleased to meet you" ENDOF
3 OF ." Hi!" ENDOF
4 OF ." Hello" ENDOF
5 OF ." Where’s the coffee" ENDOF
6 OF ." Yes?" ENDOF
 ." And who are you?"

ENDCASE
;

The phrase

n STYLE?

will select an opening phrase according to the value of n. If n is in the range 1..6 a
predefined string is output, for any other number the default phrase “And who are
you?” is output. Case statements are often used to select actions based on ASCII
characters. In an editor sections of code like the one below are often found.

CASE
KEY
ASCII I OF INDEX ENDOF
ASCII M OF MOVE-SCREENS ENDOF
ASCII D OF DIRECTORY ENDOF
..................

ENDCASE

In order to extend the usefulness of the basic CASE structure we have added three
extensions to the standard Eaker CASE.

The first ?OF allows the use of a logical test rather than equality. If you need to test
whether or not a character is in the right range the following replaces a large number
of OF ... ENDOF sets. The word WITHIN? returns a true value if the value is
between (or equal to) the lower and upper limits. ?OF consumes the flag given to it.

DUP 32 127 WITHIN? ?OF ... ENDOF

The second extension END-CASE behaves just like ENDCASE, except that it does
not DROP anything from the stack, so allowing a default clause to consume the select
value without having to DUPlicate it.

The third extension NEXT-CASE compiles a branch back to the CASE, so producing
a loop that exits via one the OF ... ENDOF or ?OF ... ENDOF phrases. Such a loop
performs a different exit action for each condition. The intention of this structure is to
allow a formal method of constructing loops with more than one exit and exit action.
Such loops are often necessary when dealing with text entry. NEXT-CASE consumes
no data. Example:

MPE Pinc PowerForth Page 25

Tutorial Control structures

CASE KEY
13 OF <carriage return action> ENDOF
10 OF <linefeed action> ENDOF
DUP 32 127 WITHIN?

?OF <normal action> ENDOF
CR ." Character code “ . .” is invalid" CR

NEXT-CASE

3.9 Text and Strings
A string is a sequence of characters. A Forth string is stored as a count byte followed
by that many characters. There are not many words in a standard Forth that deal with
strings, but they do allow the user to build words that will perform any required
function. To put a string into a word use “” (double-quote double-quote) which
compiles a string into the dictionary, and returns its address when the word executes.

(— addr)
: HELLO$

“” Hello there “
;

The string will start with the “H” and end with the space before the quotation mark.
The address returned by HELLO$ points to the count byte. To convert this address to
the address of the first character and the number of characters, the word COUNT is
used.

When a string is to be printed, it is usually done by the word TYPE, which needs the
address of the text to be printed and the number of characters to be printed. To print
the string above we would use:

HELLO$ COUNT TYPE

To pick individual characters out of a string you simply add the number of the
required character to the start address and fetch it. For the first ‘l’:

HELLO$ 3 + C@ EMIT

To print the sequence ‘lo t’:

HELLO$ 4 + 4 TYPE

Using this type of string extraction you can generate words which perform the
equivalent of the usual BASIC string handling words. The principal word to fetch
strings from the keyboard is EXPECT which requires the address of a buffer in which
to put the string, and the maximum number of characters to read. To create an 80 byte
buffer, read a string into it, and inspect the contents of the buffer, we create a buffer
called BUFFER$ and then reserve another 78 bytes (the variable reserves two), read
80 bytes into it, and then display the contents of BUFFER$.

CREATE BUFFER$ 80 ALLOT
BUFFER$ 80 EXPECT
(now enter a string at the keyboard)
BUFFER$ 80 DUMP

Page 26 MPE Pinc PowerForth

Text and Strings Tutorial

You will see that BUFFER$ contains the text you entered without a count byte.
Inside Forth there is an area called the terminal input buffer (its address is returned by
the word TIB). The word QUERY reads a line of text into TIB. The word WORD
then extracts a sub-string bounded by a specified character, and copies the string to
the end of the dictionary as a counted string (count byte + characters), returning the
address at which it left the string. Try entering the word below:

: T \ just another test word
BL WORD 40 DUMP

;
T xxxx yyyy zzzz

3.10 Print Formatting
Forth has a very powerful number string formatting system. It is quite different from
that supplied with BASICs. To print a number as pounds and pence (or dollars and
cents, or francs and centimes), try the following:

HEX
: .POUNDS

060 EMIT
S>D <# # # ASCII . HOLD #S #> TYPE

;
DECIMAL
5050 .POUNDS

The phrase 060 EMIT prints the pound sign. Number conversion is started by <# and
finished by #>. The word <# needs a double number (S->D converts single numbers
to double). Numeric conversion then proceeds LEAST SIGNIFICANT DIGIT first.
For each # a digit is converted. The word HOLD takes a character and inserts it into
the character string being generated. So the phrase

ASCII . HOLD

produces the two least significant digits and a decimal point (the pence portion). The
word #S converts the rest of the number, producing at least one digit. Numeric
conversion is finished by #> which leaves the address of the generated string, and the
number of bytes in the string. TYPE then prints the string.

You can easily produce your own number conversion formats. Suppose we wanted to
print numbers as pounds and pence, with six figures before the decimal point, two
after it, and leading zeros suppressed except in the character before the decimal point.
The format we want is ‘’xxxxy.yy’ where x is a digit or a blank and y is a digit.

We need to generate a word #B which produces a digit if possible or a blank, if
number conversion has finished.

In between <# and #> the number being converted is in double number form. When a
digit is converted by # it is divided by the current base, the remainder is converted to a
character to be output, and the quotient is returned. Thus the function of #B is to allow
numeric conversion if the number is non-zero, otherwise to insert a blank into the
output.

MPE Pinc PowerForth Page 27

Tutorial Print Formatting

(d — t/f)
: D0=

OR 0=
;
(d1 — d2)
: #B

 2DUP D0=
IF BL HOLD
ELSE #
ENDIF

;

The word BL returns the character code for a space. Now we can generate .P which
will print a double number as eight characters with a decimal point.

(d1 —)
: .P

<# # # ASCII . HOLD # #B #B #B #B #B #>
TYPE

;
500,00 .P

When you enter a number that includes a comma, it is treated as double number. The
position of the comma has no significance, except that the number of digits after it is
held in the variable DPL. Try:

5,0000 .P DPL @ .
500,00 .P DPL @ .

Both numbers are converted to the same value, but the system variable DPL tells you
how many digits were entered after the comma. If no comma had been entered, the
number would have been treated as a single number, and the value of DPL would
have been -1.

If you want to explore print formatting more fully, and gain yourself fame for the
more exotic style of programming, try formatting time and date from a 32 bit number
of seconds. Changing the number conversion base in the middle of print formatting
words can be very useful.

3.11 Vocabularies
In constructing an application written in Forth a large number of new words are
generated. With the already large number provided in the nucleus, problems can arise
in simply remembering what the words mean. Other problems can arise because in
one part of an application, ATTACH may refer to attaching an interrupt to a piece of
code (as it does in the interrupt code), and in another section, it may refer to an
operation on a file, and again may refer elsewhere to the application performed by the
robot under control.

A method is needed to control the environment in which we are working. In the
examples above the word ATTACH has different meanings in different contexts.
The context in which a word exists is its vocabulary. Vocabularies are created by the
phrase:

Page 28 MPE Pinc PowerForth

Vocabularies Tutorial

VOCABULARY <vocabulary-name>

For example the vocabulary of words dealing with the robot might well be called
ROBOTICS, and would be defined by:

VOCABULARY ROBOTICS

The Forth system is told which vocabulary words are defined into by the word
DEFINITIONS, which sets the vocabulary that words are currently to be defined in.
After the phrase:

ROBOTICS DEFINITIONS

all new words will be part of the ROBOTICS vocabulary, and you could list all the
words in that vocabulary by typing:

ROBOTICS WORDS

Having defined which vocabulary new words are built into, we must now define
which contexts are relevant when searching for word names. For example, moving a
robot arm might need access to floating point words in vocabulary F-PACK, the
graphics words in GRAPHICS for console displays, and on-line manual words in
MANUAL. To cope with all this we also need a way to start at the beginning again.

The word that means ‘search the minimum’ is ONLY which sets Power Forth to
search only a tiny vocabulary called ROOT. Most of the common words are in
FORTH which is the main vocabulary. Thus the phrase:

ONLY FORTH

resets the system to only use FORTH (and the little ROOT). We can add another
vocabulary to be searched with the word ALSO which adds the new vocabulary so
that its searched first. After executing:

ALSO F-PACK

the F-PACK vocabulary will be searched first, then FORTH, and finally ROOT. To
provide the complex order described earlier, the following phrase can be used:

ONLY FORTH
ALSO F-PACK ALSO GRAPHICS ALSO MANUAL
ALSO ROBOTICS DEFINITIONS

It is usual for the vocabulary into which words are defined to be the first in the search
order, and so the last one specified. There are two reasons for this.

Firstly, the Forth-83 specification states that “:” (colon) used to start a high level
definition, makes the defining vocabulary the one that is searched first. The
consequence of this is that if we had specified:

ONLY FORTH
ALSO ROBOTICS DEFINITIONS
ALSO F-PACK ALSO GRAPHICS ALSO MANUAL

the initial search order would have been:

MPE Pinc PowerForth Page 29

Tutorial Vocabularies

MANUAL GRAPHICS F-PACK ROBOTICS FORTH ROOT

but after the first colon, the order would be:

ROBOTICS GRAPHICS F-PACK ROBOTICS FORTH ROOT

If you must define fancy search orders that need the defining vocabulary searched
late, you will have to define immediate words so that the search order can be changed
inside a colon definition.

Secondly, when the ROBOTICS vocabulary is being defined into, it is most likely
that other words in the same ROBOTICS context will be required, and if duplicate
names exist, it is the ones in the ROBOTICS context that are most likely to be
needed.

You can get a list of all the vocabularies that have been defined by typing:

VOCS

and you can see the search order used by typing:

ORDER

The following Forth words are involved in vocabulary control, and they are all
documented in the main glossary:

CONTEXT CURRENT \ pointers
FORTH ROOT \ vocabularies
VOCS ORDER WORDS \ display words
ONLY ALSO DEFINITIONS PREVIOUS SEAL UNSEAL

Page 30 MPE Pinc PowerForth

Vocabularies Tutorial

Blank Page

MPE Pinc PowerForth Page 31

Tutorial Vocabularies

.

Source Code And Editing

4.0 Introduction
Pinc PowerForth can compile source code from any standard ASCII file generated by
a standard program/text editor. Word processors that leave control codes or use the
top bit for control purposes should be avoided, since eight-bit characters are used (i.e.
not seven-bit) to allow for Continental European characters.

4.0.1 Configuration
Within Pinc PowerForth the editor to be used and the current text file can be defined
like so:

EDITOR-IS <pathname> \ define full path to editor
USE <pathname> \ define full path to text file

The editor is then called by:

ED [<pathname>]

If the pathname is not supplied, the current text file will be used, otherwise the given
file will be edited.

4.0.2 Compiling from Text files
From within Pinc PowerForth, a text file can be loaded by using either of these two
phrases:

ALL FROM-FILE <path-name> \ include named file
ALL FROM \ include current file

Thus to load from the file DRIVERS.FTH use the phrase:

ALL FROM-FILE DRIVERS.FTH

MPE Pinc PowerForth Page 33

Source Code And Editing Introduction

4.0.3 Examples Of Text File Usage
Here follows examples of text file usage, showing the text typed in, the computers
responce, and a commentary:

To set the default editor to a program called “ ” type:

EDITOR-IS VI

To check this, type:

.ED

Forth responds with

Current editor: vi ok

To set the default file to “ . ”, type:

USE MAIN.FTH

To check this, type:

.FTH

Forth prints:

Default source file: MAIN.FTH ok

To edit the file using the “ ” editor, type:

ED

Edit “ . ” using the “ ” editor, then exit the editor.

Page 34 MPE Pinc PowerForth

Introduction Source Code And Editing

To load the file, type:

ALL FROM

The file “ . ” is loaded.

4.0.4 Text File words Glossary
Listed next are a number of words to enable text file input. Along with their names is
shown, pronunciation, stack effect, input stream effect, a description, and any
similarity to the Forth block loading words.

.ED —
“dot-ed” or “print-editor”

Print the path & name of the current text editor.

.FTH —
“dot-fth” or “print-fth”

Print the default text file (like .SCR).

;P —
“semi-P”

End Page. (For file compatibility with the Modular Forth paged text file loader)
Causes FROM and FROM-FILE to stop using the current page. Has a similar effect
as ;S in screen files.

(—
“open-paren” or “paren”

Comment. The comment (may be freely used while interpreting or compiling. The
number of characters in the comment may be from zero to the number of characters
remaining in the input stream up to the closing parenthesis. The parenthesis comment
works over multiple lines. This version of the (comment differs from the normal
Forth (comment because its end is marked by a white-space-delimited closing
parenthesis. E.G.

...
2DUP (

save adr & # for later
NB: see modification notes
)

 INIT
...

ED <text-file-name> ; —
“ed”

Call the EDitor, using either the default file or a file-name typed after ED.

MPE Pinc PowerForth Page 35

Source Code And Editing Introduction

EDITOR-IS <editor-file-name> ; —
“editor-is”

Set the file-name of the editor you wish to use.

FROM n1 n2 —
“from”

Get text input from the current file. Files can be nested to any depth; that is files can
include input from other files.

FROM-FILE <text-file-name> ; —
“from-file”

Get text input from the file <text-file-name> typed after FROM-FILE. Files can be
nested; that is files can include input from other files.

USE <text-file-name> ; —
“use”

Set the default text file you wish to USE.

Page 36 MPE Pinc PowerForth

Introduction Source Code And Editing

The Operating System

5.0 Operating System and File Interface
Forth users are split into two camps on the subject of disc usage.

 There are those who insist on writing their own device drivers, and use no file
structure at all. The reasoning behind this approach is to extract the maximum
performance from the system. Such a technique is particularly appropriate for
small dedicated machines where performance must be at its highest on nearly
inadequate hardware.

 The other camp performs all input and output through calls to a host operating
system. The reason for implementing Forth this way is ease of implementation
and, more importantly, software portability. The operating systems implementors
have gone to some effort (mostly) to make their systems efficient and reliable, so
why re-invent the wheel?

Pinc PowerForth is firmly in the second camp. We want you to be able to use all the
devices the operating system makes available to you, whether we know about them or
not. You can copy Pinc PowerForth to hard discs, or in fact to any mass storage
device fitted to your computer. If you are using an operating system with device
independent i/o (input/output) you can take full advantage of it. We get another
advantage as software vendors in that we can cope with any disc format produced by
the hardware vendors, the hardware vendor did all the work when writing the device
driver for the operating system.

Pinc PowerForth supports the stream interface method used by C The wordsets
provided are the same for whatever Operating System your are running Pinc
PowerForth on. We will therefore refer to your operating system by the generic
acronym OS throughout the rest of this chapter.

5.1 File handles
In order to use a file (called a path when used with its directory as well) your OS is
given the full path name of the file so that the file can be opened, and then the OS
returns a magic number called the file handle which is used from then on to refer to
the file.

This approach only requires the user to store one number in order to refer to the file,
and it is additionally sanctified because this is the approach used by UNIX.

This restriction forces us to save the path name if we need it again after opening the
path. To do this Pinc PowerForth allows the use of PCBs, or Path Control Blocks. A
path control block consists of a cell sized handle (-1 indicates not opened), followed
by a name field. Consequently the words to open and create files (paths) have two
forms, one for taking the file name from a string, the other for taking it from a PCB.

MPE Pinc PowerForth Page 37

The Operating System Operating System and File Interface

Another, and perhaps the major benefit of using the handle approach, is that with it,
an OS implements device independent i/o. This means that all devices and files are
treated in the same consistent way. Thus EMIT can easily be directed to write to a
file.

5.2 Simple file handling
In these examples both the direct handle and the PCB approach will be used.

5.2.1 Using path control blocks
First of all we must create a path control block for the file handle and name data.

PCB TEST-FILE

The word PCB creates the path control block. Then the path name must be inserted
into the path control block:

TEST-FILE PATHNAME TEST.COM

And before reading from, or writing to, the file TEST.COM, you must open it:

TEST-FILE OPEN-PATH-PCB .

The word OPEN-PATH-PCB returns an error code (0=success, other=failure code).
Inside a colon definition, you must use a different tactic, especially if the file name
used by TEST-FILE is likely to change, say if the same operation is to be performed
on a number of files. In this case, you can use the word SET-PATHNAME to copy a
path name from a counted string to a PCB. For example:

: USE-F1
“” TEST1.COM" TEST-FILE SET-PATHNAME

;

: OPEN-TEST
TEST-FILE OPEN-PATH-PCB ?DUP
IF ." Error “ DECIMAL .

.” on opening file “ TEST-FILE .PCB
CR
 ABORT

 ENDIF
;

USE-F1 will copy the file name TEST1.COM into path control block TEST-FILE.
The file can now be opened by OPEN-TEST. The data in the file can now be read.

Sequential operation is very straight-forward, each operation reads or writes data
immediately after the previous operation. If you need to hop around the file, you need
to use random access, in which you specify the record number you want, where the
record length is as discussed above. To use random access let us assume a record size
of 64 bytes. We can now write a word to position the file to record n and then read the
record to a buffer at the given address.

Page 38 MPE Pinc PowerForth

Simple file handling The Operating System

DECIMAL
(address n)
: READ-TEST

64 UM* TEST-FILE HANDLE SEEK-PATH
ABORT" Can’t seek that record"
64 TEST-FILE HANDLE READ-PATH
ABORT" Can’t read that record"
DROP

;

When you have finished with the file, it must be closed. Under your OS, data written
to files is buffered, and so issuing a write command to OS does not guarantee that the
data is actually written to disc. This can only be enforced by actually closing the file.

TEST-FILE HANDLE CLOSE-PATH DROP

MPE Pinc PowerForth Page 39

The Operating System Simple file handling

5.2.2 Using pure handles
To open the file is very simple:

VARIABLE TEST

: OPEN-TEST (—)
“” TEST.COM" OPEN-PATH
 ABORT" Can’t open file"
TEST !

;
OPEN-TEST

Because we are prepared to dispose of the file name we do not have to establish the
structure in which to preserve it. What we do have to do is to preserve the handle
throughout the life of the open file. This is done by the variable TEST.

The function that reads the random records is very similar to the previous one.

DECIMAL
(address n —)
: READ-TEST

64 UM* TEST HANDLE SEEK-PATH
ABORT" Can’t seek that record"
64 TEST HANDLE READ-PATH
ABORT" Can’t read that record"
DROP

;

And the file is finally closed in the same way as before.

TEST HANDLE CLOSE-PATH DROP

5.3 Using Files For Text Input/Output
The Forth words EMIT KEY KEY? CR TYPE and EXPECT are deferred. This
means that the address of a Forth word actually executed is held and executed by the
deferred word. CR is normally defined in terms of EMIT, but can be altered for
specific requirements. The ability to change the device used for a function is known
as ‘re-directable i/o’ and is a valuable feature of modern systems.

If you write a word to perform byte by byte i/o to another device, assign that word to
perform the action of EMIT or KEY, you will have changed the device used for that
function. This idea can be extended to using operating system files for text input and
output.

Under Pinc PowerForth it is not necessary to re-assign EMIT for output, as it uses an
internal variable OP-HANDLE to contain the handle of the path used for output. You
can store and access handles into this varaible using the words OP-HANDLE@ and
OP-HANDLE!. If the handle of a file is stored into OP-HANDLE, output will be to
that file instead of the screen.

Page 40 MPE Pinc PowerForth

Using Files For Text Input/Output The Operating System

5.3.1 OS interface glossary
This glossary details the words used to interface to OS and the words needed in turn
to use these functions.

.PCB pcb-addr —
“dot-p-c-b”

Prints out the path name in the given path control block

BYE —
“bye”

If Pinc PowerForth is running stand-alone this word will close all open files, via an
exit(0) and return to the OS or program that invoked it. If Pinc PowerForth is
intergrated into an application and has been called as a standard C function, BYE will
return control to the part of the application that called Forth.

CLOSE-PATH handle — status-code
“close-path”

Close a file, updating the directory if necessary. Note in particular that under some
operating system implementations, data is buffered, and may only be completely
written to the disc when the file is closed.

CONSOLE —
“console”

Sets the words EMIT and TYPE to use the system keyboard and display. Useful after
redirecting output to (say) a printer, and the default output is needed again. Often used
in the form:

PRINTER <words> CONSOLE

so that the output of the words between printer and console are sent to the standard
printer.

COOKED handle —
“cooked”

Input and output to the path is processed by the operating system. This function is
meaningless for files on some operating systems but is essential on systems such as
MSDOS where <CR><LF> pairs are converted into <LF> during reading and
vice-versa during writing. See RAW for a fuller explanation.

CREATE-PATH string — handle 0 | error-status
“create-path”

Given the address of a string containing a path name, the path create OS call is made.
On success, the handle and 0 are returned, otherwise the error status is returned.

CREATE-PATH-PCB addr — status
“create-path-p-c-b”

Given the address of a PCB, the path is opened, and the OS status is returned.

MPE Pinc PowerForth Page 41

The Operating System Using Files For Text Input/Output

EMIT b —
“emit”

The ASCII character in the low byte is displayed. EMIT is a deferred word, and the
default action is to send the character to the output whose handle is held in the
OP-HANDLE internal variable.

HANDLE pcb-addr — handle
“handle”

Returns the handle allocated to a path control block. Unopened PCBs will return a
handle of -1.

IP-HANDLE@ — handle U
“i-p-handle fetch”

Returns the handle of the current input stream. path. Used by EXPECT, KEY and
KEY?

IP-HANDLE! handle — U
“i-p-handle store”

Makes the given handle the current input stream. path. Used by EXPECT, KEY and
KEY?

OP-HANDLE@ — handled U
“o-p-handle fetch”

Returns the handle of the current output stream. Used by EMIT and TYPE for
output.

OP-HANDLE! handle — U
“o-p-handle”

Makes the given handle the current output stream. Used by EMIT and TYPE for
output.

OPEN-PATH addr-z — handle 0 | error-code
“open-path”

Find and open the path named in the indicated ASCIIZ string, and return either the
handle & 0 if successful, or the OS error code if unsuccessful.

OPEN-PATH-PCB pcb-addr — status
“open-path-p-c-b”

Given the address of a PCB, the PCB’s stored pathname is opened and the OS error
code returned.

P-NAME pcb-addr — name-address
“p-name”

Given a path control block, the address of the path name is returned.

PATHNAME pcb-address —
“path-name”

Used in the form:

Page 42 MPE Pinc PowerForth

Using Files For Text Input/Output The Operating System

<pcb-address> PATHNAME <file-spec>

Format a OS path specification into the path control block.

PCB — (defining)
“p-c-b” — pcb-address (child)

Used in the form:

PCB pcb-name

A path control block is named and space for it allocated. When pcb-name is executed,
the address of the PCB is returned. The PCB consists of a cell sized area containing
the file handle, plus a field for the path name.

PREV-PCB — fcb-addr
“prev-pcb”

A file control block used to store the name of the previous file used as the screen file.

RAW handle —
“raw”

Turns off character processing by OS of file input and output. The OS standard input
and output are set to COOKED by Pinc PowerForth on entry, and are returned to
COOKED on exit.

READ-PATH addr len handle — # 0 | error-No error-No
“read-path”

Attempts to read ‘len’ bytes from the path whose ‘handle’ is given into a buffer at
‘addr’. The actual number of bytes read, and the OS status code are returned. If an
error occurs (status non-zero) two error-codes are returned.

SAVE —
“save”

use in the form:

SAVE <path-name>

Saves an executable image of Pinc PowerForth’s dictionary up to HERE (i.e. all the
words added since the last initialisation or COLD) to the specified file. The image
may then be executed from the operating system prompt by typing its filename as the
first argument to Pinc PowerForth. The saved file is a complete executable image.
Any start-up vectors modified will be preserved so that turnkey operation is possible.

SEEK-PATH d handle — status
“seek-path”

The current position within the file whose handle is given is set to d. The value d is a
double (32-bit) number representing a position d bytes from the start of the file. This
is the function that allows random access in a file.

MPE Pinc PowerForth Page 43

The Operating System Using Files For Text Input/Output

SET-PATHNAME $addr pcb-addr —
“set-path-name”

Parse a file specification from a Forth counted string, into the path control block. The
whole path control block is initialised, and any previous information in it will be
destroyed. Do make sure that any path previously used by this PCB has been properly
closed. The string address is the address of the string’s count byte. See PATHNAME

SYSTEM —
“System”

use in the form:

“” <command> [<parameters>]" System

This is an implementation of the OS EXEC function. The file <command> is loaded
and executed and the parameter string <parameters> is passed to it. The program
<command> is loaded outside the memory area used by Forth, and exit from
<command> is back to Forth.

TYPE addr n —
“type”

The len characters at address addr are sent to the path whose handle is in the internal
variable OP-HANDLE. Nothing is displayed if n is zero. See EMIT OP-HANDLE
KEY KEY? IP-HANDLE

WRITE-PATH addr len handle — count good-status | error-No
error-No
“write-path”

Writes ‘len’ bytes from a buffer at address ‘addr’ to the path whose ‘handle’ is given.
The ‘count’ returned is the number of bytes actually transmitted. If the ‘count’ equals
the ‘len’ and ‘good-status’ (zero) are returned, the write has suceeded. If the status is
good but the ‘count’ and ‘len’ are not equal then the disk is full. Otherwise the
operation failed.

Page 44 MPE Pinc PowerForth

Using Files For Text Input/Output The Operating System

Vectored Execution

6.0 Introduction
It is often of value to be able to change the action of a word without re-compiling.
Examples are: (1) changing an i/o word from one device to another without changing
the high level code; and (2) allowing the factoring of code to be less dependant on
compilation order, because an early-compiled word can use a later-compiled word.

6.1 Vectored Execution
This ability is known as Vectored or Defered execution, and is provided in Pinc
PowerForth. There are two stages envolved: (1) declaring a word whose action can be
altered; and (2) altering the action.

6.1.1 Declaring A Vectored Word
The defining word to declare a vectored or defered word is called DEFER. As an
example of its use, the definition of KEY in the Forth nucleus is as follows:

DEFER KEY (— char)

At the moment the action of KEY, if executed, would be a word called CRASH
which causes an error abort. The desired action(s) of KEY will be asigned later.

To demonstrate how DEFER works we can define it using DOES> (whose run-time
action is to return the address of a defined word’s parameter field), like so:

: DEFER
CREATE [‘] CRASH , \ create word with default action
 DOES> @ EXECUTE \ execute current action

;

Words defined by DEFER (e.g. KEY) will execute the word whose execution
address has been placed in their parameter field. Pinc PowerForth actually uses a
much faster machine code routine for DEFER but the example above demonstrates
the idea properly.

MPE Pinc PowerForth Page 45

Vectored Execution Introduction

6.1.2 Assigning An Action
The words to assign an action to a defered word are ASSIGN and TO-DO.
Continuing the KEY example given above, a separate word (KEY) is defined which
actually does the work, by the phrase:

ASSIGN (KEY) TO-DO KEY

As an other example, suppose a CAD application program uses a number of different
devices in a common way, and needs to switch between them at run-time:

\ define device drivers

: PLOTTER-O/P ;
: TAPE-O/P ;

DEFER WRITE \ o/p driver

\ output redirection

: DEVICE (—) \ select device
?DEVICE \ get device id
 CASE

PLOT OF ASSIGN PLOTTER-O/P TO-DO WRITE ENDOF
TAPE OF ASSIGN TAPE-O/P TO-DO WRITE ENDOF

ENDCASE
;

\ use like this

DEVICE WRITE \ select device and write

Page 46 MPE Pinc PowerForth

Vectored Execution Vectored Execution

6.2 Supplied deferred words
The following words in Pinc PowerForth are deferred, and are documented in the
main glossary:

NORMAL-DRIVERS
KEY? KEY
EMIT TYPE
CR PAGE CLS
GOTOXY GETXY
INV-ON INV-OFF
HALF-ON HALF-OFF
UNDER-ON UNDER-OFF
CURSOR-ON CURSOR-OFF
FMT-DATE FMT-TIME
PROMPT
EXPECT
QUIT ABORT ERROR
LOADER
USER-INIT
$CREATE
FIND
WORD
I-LOOP C-LOOP
NUMBER?

6.2.1 Glossary of vectoring words

(TO-DO) cfa1 —
“paren-to-do”

The run-time code compiled by TO-DO. The parameter pfa1 is converted to a cfa and
stored at pfa2, which is assumed to be the parameter field of a deferred word.

ASSIGN — cfa (executing) I
“assign” —(compiling)

Used to assign the action for a deferred word. Used in the form:

ASSIGN <action-word> TO-DO <deferred-word>

it returns, or compiles as a literal, the PFA of the word following in the input stream.
See TO-DO and the chapters on multi-tasking and timers.

MPE Pinc PowerForth Page 47

Vectored Execution Supplied deferred words

CRASH —
“crash”

The default contents of a word created by DEFER. If such a word is executed without
another assignment to it being made, CRASH executes, and causes an error abort.

DEFER —
“defer”

Use in the form:

DEFER <name>

A defining word which creates a word called <name>. When <name> is executed, the
contents of its parameter field are executed.

TO-DO cfa — (executing)
“to-do” — compiling

Uses the given cfa when executing, or compiles the code to use it when compiling.
The result is that the given cfa is stored in the pfa of the word following in the input
stream. Use in the form:

ASSIGN <action> TO-DO <name>

Blank page

Page 48 MPE Pinc PowerForth

Supplied deferred words Vectored Execution

Application Programs

7.0 Generating An Application Program
The word SAVE generates a file containing an dictionary image of the current Forth.
Specifically, a file that can be passed as the first argument on the command line to
Pinc PowerForth. SAVE sets the initial values of DP FENCE and VOC-LINK and
preserves any other modified values in the start-up locations.

To generate a turnkey package that executes an application immediately, first compile
the application, and then assign the required word to be used by QUIT. Assuming that
the application word is called APPLICATION the following phrase will do the job:

ASSIGN APPLICATION TO-DO QUIT

If you want to modify the error handling change the assignment of ABORT. ABORT
should reset the data stack, perform any error recovery, and then (according to the
standard) should execute QUIT.

ASSIGN ERROR-HANDLER TO-DO ABORT

The standard action of ABORT is (ABORT) which is defined as:

: (ABORT) (—)
S0 @ SP!
QUIT

;

During the start-up of Pinc PowerForth almost the first word executed in COLD is the
word LOADER. This is a deferred word used for the purpose of loading any required
tools. Its default assignment is to execute NOOP. Before an application program can
be generated, this assignment can be changed. If you do not wish to have the MPE
Pinc PowerForth sign on message in your application, the action of LOADER can
include ABORT, so bypassing the rest of COLD.

If the file to be saved is called <filename> the following will generate an executable
file of that name. If QUIT and ABORT have been re-assigned, the new assignments
will be used when the program starts.

SAVE <filename>

Where <filename> is a valid file name.

MPE PC PowerForth Page 49

Application Programs Generating An Application Program

Blank Page

Page 50 MPE PC PowerForth

Generating An Application Program Application Programs

Pinc PowerForth Internals

8.0 Introduction
This section of the manual describes some of the internal workings and structures of
Pinc PowerForth.

8.1 User Area Layout
The user area is an area of memory usually reserved for variables that may differ from
task to task in a multi-tasking environment.

For instance, two tasks may be preparing numbers for output. This will require them
to use a buffer are known as PAD. Each task should have its own area to avoid
corruption by other tasks. Variables such as BASE should also be independent. It is
for this reason that separate user areas can be created for each task.

When a user variable is defined:

n USER <name>

the value of “n” is stored. When <name> is later executed, the address returned by
<name> is calculated by adding n to the base address of the user area, which is held in
the processor’s DI register. The base address may be different for each task, or several
tasks can share one user area.

⊗ Please note that at the time of going to press the locations given for user variables
are correct, but may change in future releases of Pinc PowerForth.

The size of the User Area is set when Pinc PowerForth is created.

MPE Pinc PowerForth Page 51

Pinc PowerForth Internals Introduction

Summary Of The Use Of The User Variables

No. (Hex) User Variable Desciption

WIDTH Contains the maximum name
field width. This word may well
disappear in later versions of Pinc
PowerForth.

>IN Contains the current offset from
the start of the input stream.

OUT Contains the current output
character position in the line.

SPAN Contains the number of
characters last read into TIB by
EXPECT.

HLD Is used during number
conversion.

BASE Contains the number conversion
base.

DPL Contains the number of digits
after the decimal point or double
number marker, -1 meaning no
marker.

#TIB Contains the length of the
terminal input buffer.

#L Contains the number of cells last
returned by NUMBER?.

TAB-WIDTH Contains the tab separation in
characters.

#D @TABLEWORDS2 = Contains the number of digits last converted by
NUMBER?.

LINE# Contains the line number on the
page. It is incremented by CR
and cleared by PAGE.

PAGE# Contains the output page number.
It is incremented by PAGE and
must be cleared by the user.

R0 Contains the offset of the top of
the return stack in the task’s stack
segment.

S0 Contains the offset of the top of
the data stack in the task’s stack
segment.

SYMBOL_TABLE Reserved.
WORD_BUFF Buffer used by WORD to store text gleaned

from the input stream. The address of this buffer
is returned by ‘WORD.

Page 52 MPE Pinc PowerForth

User Area Layout Pinc PowerForth Internals

PAD Consists of two buffers: one is
used for string handling, above
PAD; and the other is used for
numeric text conversion,
immediately below PAD.

TIB Terminal input buffer. This area
is used to store lines read in by
EXPECT.

INIT-FENCE Initial value of the top of the
dictionary. This variable is set
using the IS-FENCE word to
prevent words below the address
placed within it being forgotten.

INIT-DP Initial value of the dictionary
pointer. This variable is set
before the dictionary is saved to
allow all words defned to date to
be present when the dictioanary
is reloaded.

INIT-VOC-LINK Initial value of the vocabulary
link. This variable is set to point
to the last vocabulary defined. It
is used to preserve the vocabulary
structure defined when the
dictioanry is being saved, for
later use.

ROOT-VOC Pointer to the first vocabulary
defined in the system- ROOT.

CURRENT Points to the vocabulary into
which words are defined.

CONTEXT Is an array of up to sixteen
vocabularies which are searched
in order. See the tutorial section
on vocabularies.

8.2 Memory Map

8.3 Start Up Procedure
At program load the Forth virtual machine is started, and a startup word run. This
word initialises some of the user variables, and runs COLD. COLD initialises the io,
runs LOADER to load any required user setup action, and then runs ABORT.

ABORT resets the data stack and calls QUIT.

QUIT resets the return stack, and is the text interpreter main loop.

LOADER ABORT and QUIT are all deferred words, and may be set by the user to
do any required action. Note that LOADER is initialised to do NOOP. Before an
application program is generated and distributed, the assignment of LOADER can be

MPE Pinc PowerForth Page 53

Pinc PowerForth Internals Memory Map

changed to start the application (although the return and data stacks will have to be
initialised of course).

8.4 Pinc PowerForth Dictionary Structure
Pinc PowerForth uses a multiple thread vocabulary mechanism that gives extremely
high compilation speeds. All Forth words use the same dictionary structure. For
further information see the Power User Guide chapter.

Page 54 MPE Pinc PowerForth

Pinc PowerForth Dictionary Structure Pinc PowerForth Internals

Advanced Implementation and Extension.

This chapter details the advanced implementation techniques that can be applied to
Pinc PowerForth and how the system can be extended. The chapter should be read by
those with a good knowledge of both C and Forth who have already produced an
implementation of Pinc PowerForth by following the “Backup and Installation”
chapter.

9.0 Adding New Primitives.
This section describes how to add new primitives to Pinc PowerForth.

9.0.1 Forth Internal Definition Language (FIDL).
Unlike conventional Forth Systems, Pinc PowerForth primitives are not written in
Assembly Language. Each Pinc PowerForth primitive which is said to be
“understood” by the Pinc PowerForth virtual machine is written in a C-like
language-Forth Internal Definition Language (FIDL). FIDL was chosen as opposed to
straight C since it offers a terser syntax and concentrates the changes made to the
virtual machine to one file called FIDL.SRC. This file is translated into a series of C
source files which are included in various parts of the Pinc PowerForth program
source code. This translation process is performed by the FIDL compiler. You will
note the construction and execution of this compiler in the makefile.

9.0.2 FIDL Syntax.
The FIDL language has the following syntax.

<Forth Name> <Associated C Function name> <Type>
%

 C Code for Primitive

%

The names and type are delimited by spaces

E.g. The following header defines the Forth word ;, whose C function name is
semicolon. The type of the word is described below:

; semicolon :I

MPE Pinc PowerForth Page 55.

Adding New Primitives. Advanced Implementation and Extension.

A word may be any of three types:

 V vocabulary

 : colon definition
 :I immediate colon definition.

The example below shows the FIDL code for the primitive bye. The reader will note
that is a colon definitions whose Forth name is bye and whose C name is goodbye.
The function prints out a message on the output stream and executes paren_bye.

bye goodbye :
%
 fprintf(output, “BYE”);
 paren_bye();
%

Comments may be included in this source file, these are lines which contain \
followed by a space in the first two columns.

The quote character “ should be escaped whenever it is used. Thus the header for the
immediate forth word ”" would be:

\"\" quotes_quotes :I

9.0.3 Using the Stack Functions.
Most primitives you add to Pinc PowerForth will be required to manipulate the data
and/or return stack. The file stacks.c provides a set of functions for pushing and
popping items on/from both of these stacks. you may use these functions freely within
the body of a primitive written in FIDL.

9.0.4 An Example: ROT.
An example of using these functions is the Forth word ROT which takes the third
item down on the data stack and makes it the first. Using the stack functions the code
to perform this operation is a follows:

rot rot :
%
 unsigned CELL data1, data2, data3;
 data1 = pop_data();
 data2 = pop_data();
 data3 = pop_data();
 push_data(data2);
 push_data(data1);
 push_data(data3);
%

Page 56. MPE Pinc PowerForth

Advanced Implementation and Extension. Adding New Primitives.

9.0.5 Addressing Ram.
In order to facilitate relocation of the Pinc PowerForth program in memory and
reloading of saved dictionary files, there is no absolute addressing in Pinc
PowerForth. All addresses refer to and array called ram and can be thought of as
array indices. Thus to print the contents of byte 14 in ram as a character the statement
would simply be:

printf(“%c”, ram[14]);

Throughout the source code the reader will encounter the following phrase:

cell = (unsigned CELL *) &ram[x];

where x is some array index.

This code defines a CELL pointer “cell” into the array “ram”. Thus to access and print
a cell sized unsigned integer which starts at address 32 in ram we would write:

cell = (unsigned CELL *) &ram[x];
printf(“%ld”, *cell);

9.0.6 An Example: Fetch @.
An example combining both the stack manipulation functions and the addressing of
ram to read cells is the Forth word @ (fetch). The FIDL code to perform this
operation is as follows:

pop_data();
 cell = (unsigned CELL *) &ram[address];
 push_data(*cell);
%

9.0.7 Calling OS Libraries.
You may call additional C functions from a standard library or and object
module that you are going to bind in later. In the same way that you called the C
stack manipulation functions. However, you should declare these functions as
being extern in the file prim.c. This ensures that the C compiler passes the correct
types of parameters to the function and returns the correct value (if any). If you are
using a standard library, the extern declaration takes the form of including the
appropriate header file of that library. This is shown in the example below.

9.0.8 An Example: Time.
An example of calling a standard library function is the Forth words .TIME which
prints the time of day. The time of day may be found by calling the C functions
gmtime and asctime. The FIDL source code for the function is therefore:

MPE Pinc PowerForth Page 57.

Adding New Primitives. Advanced Implementation and Extension.

.time print_time :
%
 long time_now;
 struct tm *newtime;

 time(&time_now);
 newtime = gmtime(&time_now);
 printf(“%s\n”, asctime(newtime));
%

In addition we must edit the file prim.c to include the headers for the library functions
time. The macro command to be added to prim.c is:

#include <time.h>

9.1 Adding New Secondaries.
This section describes how to add new secondaries to Pinc PowerForth.

9.1.1 CWeed Forth and BOOT.DIC.
When Pinc PowerForth is executed, it loads a image of the Ram array. This contains
the User Variables and Dictionary Space of a complete Forth System. By default this
file is called boot.dic, although this may be overridden by specifying a dictionary file
argument on the command line. When a Pinc PowerForth system is made, a default
version of boot.dic is created. This is done by a mini Forth System called CWeed
Forth. You can follow the creation and execution of CWeed Forth in your makefile.
CWeed Forth performs the following functions:

1) Builds the vocabularies and primitive dictionary headers of those specified in
the fidl.src file.

2) Compiles a set of secondaries from CWeeds Secondary Code and Programming
Environment (cscape) file.

It is customary for cscape to terminate with the phrases:

‘ cold 0 !
‘ warm 4 !

save boot.dic
bye

The above sets the Cold Boot Vector (address 0), Warm Boot Vector (address 4),
saves of boot.dic and exits. You can change the contents of the vectors to execute you
own application code if you wish, although we recommend that you use the “assign
to-do” mechanism on the words ABORT or LOADER to ensure Pinc PowerForth is
properly initialised.

Page 58. MPE Pinc PowerForth

Advanced Implementation and Extension. Adding New Secondaries.

9.1.2 Editing the CSCAPE File.
The cscape file is like any other Forth Source file. You can therefore add and remove
Forth Source code to/from as with any other file. It contains all of the secondary
words which make up full Pinc PowerForth forth. You can add customisations and
system specifics to this file to taylor Pinc PowerForth to your requirements. E.g. you
can specify the name of your favorite editor with the EDITOR-IS word so that Pinc
PowerForth knows which editor to load when you type ED.

9.1.3 Creating a New BOOT.DIC.
When you have edited the cscape file you can build a new version of the boot.dic
dictionary file. To do this simply perform a make.

9.2 Embedding Pinc PowerForth in an Application.
This section describes how to embed Pinc PowerForth in an existing C application to
provide interactive debug and test capabilities on running C program. Before reading
this section you should ensure you have experimented and feel confident with the
concepts of Making Pinc PowerForth, CWeed Forth, Dictionary Saving and Boot
Vectors.

9.2.1 Calling Bootstrap.
If Pinc PowerForth is embedded in an application it is unlikely that it will be the main
program of the application. You are more likely to want to call Pinc PowerForth as a
C function when a certain event occurs. E.g. the playing of keyboard chord or if an
error occurs. At that point you will wish to “drop” into Pinc PowerForth to perform
some debugging and write some test words.

To facilitate this type of behaviour Pinc PowerForth has been constructed as a C
function which is called from main. The main program call a function bootstrap
with an argument of the dictionary file it should load. It returns an exit code of
success or error (some number other than 0). which is passed directly to the operating
system via the exit function. The basic code for main is a follows:

main(argc, argv)
int argc;
char *argv[];
{
 if(argc<1)

exit(bootstrap(argv[1]));
 else

 exit(bootstrap(DEFAULT_DICTIONARY_FILE));
}

This is the only occurance of exit in the whole Pinc PowerForth system. All functions,
such as bye return to bootstrap via a set jump, long jump scheme. Thus to call Pinc
PowerForth as a function:

1) Edit a copy of main.c to remove the function main.

MPE Pinc PowerForth Page 59.

Embedding Pinc PowerForth in an Application.
Advanced Implementation and Extension.

2) Edit a copy of the makefile so that is produces an object module of the
complete system. Note: CWeed Forth must be compiled and run to produce a
boot.dic file at least once.

3) Make a call to bootstrap in the appropriate place in you application and
compile it.

4) Link your application with the object module of the Pinc PowerForth system.

In order to interact with your application you should add primitives to the fidl.src file
which call relevant functions or address relevant data structures.

9.2.2 Booting Cold or Warm.
Using the above scheme, each time you call Pinc PowerForth from you application it
will load a dictionary and Cold Start. This may be undesirable, since you may wish to
call Pinc PowerForth several times from your application and not loose the state of
Pinc PowerForth between calls. This can be achieved bye calling the run_cforth
function instead of the bootstrap function on all subsequent entries to Pinc
PowerForth. You will find this function in the source file main.c. REMEMBER
bootstrap must be called first before subsequent calls to run_cforth.

The function run_cforth starts execution at the contents of the Cold Boot Vector
(address 0). You may wish to change the contents of this vector to that of the Warm
Boot Vector (address 4), before you leave Pinc PowerForth from the first call to
bootstrap. This will allow the contents of the dictionary, I/O buffers and user
variables to be preserved.

Page 60. MPE Pinc PowerForth

Advanced Implementation and Extension. Embedding Pinc PowerForth in an
Application.

Inside Pinc PowerForth, The Power Users Guide.

This chapter is for Power Users of Pinc PowerForth. It describes the structure and
behaviour of the complete Pinc PowerForth system in fine detail. In addition it
provides a guide to the complete Pinc PowerForth C source code. You should be
familiar with all previously defined concepts of Pinc PowerForth before you read this
section. You should read this chapter with the accompanying source code manual.

10.0 Virtual Machine Structure.
This section describes the components that comprise Pinc PowerForth and how the
implementation works. It assumes the reader is both familiar with C, Forth and the
concepts of threaded interpreters.

10.0.1 Memory Areas.
The Pinc PowerForth virtual machine consists of four memory areas. These are: the
data stack “S”, return stack “R”, general memory area “Ram” and user variable space
“User Area”. All of these areas are modeled by C arrays. Their definition can be
found in the file main.c. The size of these areas can be configured by modifying the
values of the macros in the file vmsize.h.

The User Area overlaps the Ram area occupying in excess of the first 600 bytes. By
providing this overlap, Forth users may apply the standard wordset to manipulate both
Ram and the User Area. In addition, by making it impossible for the dictionary to
begin at a very low address (below 600), machine primitives may be easily identified
(see later).

10.0.2 Boot Vectors.
The first two cells before the User Area are reserved as cold and warm start vectors
respectively. Thus when Pinc PowerForth boots the virtual machine begins to execute
code at the address held in cell 0.

10.0.3 Additional Buffers.
The various buffer and table areas required by Forth are defined as part of the User
Area. These include TIB, the address of the root vocabulary and current and context
areas. The size of the context area is defined in the file vocs.h. Care should be taken
when changing the size of this area to move the dictionary start accordingly.

The layout of the low ram area can be found in the file lowram.h.

10.0.4 Registers.
The virtual machine has the following registers:

MPE Pinc PowerForth Page 61

Inside Pinc PowerForth, The Power Users Guide.
Virtual Machine Structure.

sp Data Stack Pointer.

rp Return Stack Pointer.

dp Dictionary Pointer.

ip Instruction Pointer.

latest Pointer to the nfa of the last word defined

voc_link Pointer to the cfa of the previously defined vocabulary.

You will find these declared in the file main.c and imported into other files as
required. Any of the registers may be declared as C register variables, rather than
auto depending upon your speed requirements and the processor on which Pinc
PowerForth is running.

10.1 Forth Model.
The Pinc PowerForth model is a software implementation of a subroutine threaded
Forth model, where the subroutine calls are implicit. This is similar to RTX processor
range which implements the subroutine model in hardware. Thus a standard Forth
word, compiled into Ram consists of a list of addresses representing the CFA of other
words previously compiled in Ram. Such a word is termed a “Secondary”. An opcode
or “Primary” does not present a CFA within Ram and is interpreted directly by the
virtual machine. All colon definitions are terminated by the Primary NEXT.

10.1.1 Virtual Machine Primitives.
The Pinc PowerForth virtual machine “interprets” certain numeric values as opcodes.
On encountering an opcode the virtual machine executes a C function which is
associated with it. This function may manipulate the Ram, the stacks and/or perform
some I/O.

10.1.2 Inner Interpreter and Next.
The execution of Forth programs is performed by one main C Function- The Inner
Interpreter. The behaviour of this function is controlled by the C-Function Next. The
pseudo code algorithms for the Inner Interpreter and Next are given below.

Page 62 MPE Pinc PowerForth

Forth Model. Inside Pinc PowerForth, The Power Users
Guide.

Proc Inner_Interpreter
 Forever:
 The cell pointed to by ip is checked to see if its
 contents are the opcode of a primitive.
 If they are
 ip is moved onto the next cell
 the primitive is executed.
 Else
 the address of the next cell is pushed onto the return stack

 ip is set to the contents of the cell

Proc Next
 ip = pop return stack;

Note this model is pre-incrementing: The address of the next cell in a word is placed
on the return stack and not the current value of ip.

The complete source code of the Inner Interpreter can be found in the file inner.c.
The Next opcode is defined in the file fidl.src.

10.1.3 What is a Pinc PowerForth Address?
In order to facilitate relocation of the Pinc PowerForth program in memory and
reloading of saved dictionary files, there is no absolute addressing in Pinc
PowerForth. All addresses refer to Ram and can be thought of as array indices.

Throughout the source code the reader will encounter the following phrase:

cell = (unsigned CELL *) &ram[x];

where x is some array index.

This code defines a CELL pointer “cell” into the array “ram”. Thus to access and print
a CELL sized unsigned integer which starts at address 32 in Ram we would write:

cell = (unsigned CELL *) &ram[32];
printf(“%ld”, *cell);

10.1.4 Vocabulary Structure Mechanism.
The vocabulary mechanism used in Pinc PowerForth is a derivative of that proposed
by Bill Ragsdale in the Forth-83 Standard. It is compatible with previous systems,
while permitting control of the search order.

An address of the vocabulary into which words are compiled is held in the user
variable CURRENT and an address of the first vocabulary to be searched for word
names is held in the user variable CONTEXT.

CONTEXT is actually an array of up to sixteen vocabulary addresses, which are
searched in order. A zero entry indicates no vocabulary. The word FIND simply scans
along the array, searching each vocabulary in turn. The order in which vocabularies

MPE Pinc PowerForth Page 63

Inside Pinc PowerForth, The Power Users Guide.
Forth Model.

are searched is thus defined by the order of the vocabulary entries in the CONTEXT
array.

A very small vocabulary called ROOT contains a few definitions that allow the user
to switch vocabularies. This is the last entry and is (almost) never deleted from the
search order.

This singly linked, hashed dictionary structure, similar to other MPE products. Each
vocabulary consists of 5 items. Theses are:

1) A standard header including a link field and name field.

2) The primitive do-voc whose purpose is to put the cfa of the vocabulary into the
context array.

3) The primitive next which terminates the execution of a vocabulary (after the
do-voc).

4) A pointer to the cfa of the previous vocabulary.

5) The thread table of the vocabulary. This is an array of MAX_THREADS in length
(see vocs.h).

The structure is shown in the diagram below:

When a word is compiled into a vocabulary the name field of the word is hashed into
a number between 0 and MAX_THREADS-1 by taking the first char of the name and
its length and anding this with MAX_THREADS-1. The hash value forms an index
into the vocabularies thread table. Each entry in the thread table is a linked list of
words in that vocabulary which have the same hash value. The new words LINK
FIELD is added to the front of the list. N.B. the list front of the list is always the item
in the thread table.

10.1.5 Word Structure.
A standard colon definition in Pinc PowerForth consists the following, all of which
are cell aligned:

Page 64 MPE Pinc PowerForth

Forth Model. Inside Pinc PowerForth, The Power Users
Guide.

1) A link field which points to the link field of the previous word in the same
thread (see above).

2) A name field which contains both a count byte and a terminating trailing zero
for C’s benefit. The bottom five bits of the count byte contain the actual count,
and the top three bits are used as follows:

Bit 7: Always set
Bit 6: Set if word is IMMEDIATE
Bit 5: Set if word is hidden from search (SMUDGEd)

3) A word aligned CFA. This does not contain a jump to an inner interpreter or a
do-colon primitive. It contains either the CFA of another secondary, or the
opcode of a primitive instruction. All do-colon actions are implicit.

4) A PFA consists of one or more CFAs or primitive opcodes and is always
terminated by the primitive opcode next.

The structure of word is shown in the diagram below:

MPE Pinc PowerForth Page 65

Inside Pinc PowerForth, The Power Users Guide.
Forth Model.

Blank Page

Page 66 MPE Pinc PowerForth

Forth Model. Inside Pinc PowerForth, The Power Users
Guide.

The Pinc PowerForth C Source Code Guide.

This chapter provides the reader with a guide to the structure of the Pinc PowerForth
source files. Each file is listed with a brief description of its contents and function.

11.0 The .H files.

11.0.1 FNAME.H
This file defines the filenames of some of the standard file used by Pinc PowerForth.
E.g. the name of the Pinc PowerForth error file.

11.0.2 LOWRAM.H
This file describes the Pinc PowerForth Startup Vectors, User area, Current and
Context Tables and where the dictionary starts above it. The first two cells of ram are
defined to be the cold and warm startup addresses of Pinc PowerForth. These should
be set to the CFAs of the words COLD and WARM. Alternatively the user can set
them to point to their own application. If their contents are zero then Pinc PowerForth
knows it has not had the secondary level of code compiled on top of it. This is useful
for the error handler, which will either jump through warm if full Pinc PowerForth is
running or just return after printing the error in CWeed Forth.

TIB is defined to be very large in order for buffered file I/O using read and write to be
implemented at some later stage.

NOTE: It is important that the dictionary start address is greater than the ordinal value
of the last Pinc PowerForth Opcode. This property is used by Pinc PowerForths inner
interpreter to determine whether it is dealing with either a secondary or a primitive.

11.0.3 MISC.H
This file contains misc Constants and Macros.

11.0.4 NFMASKS.H
This file defines the bit patterns associated with the count byte of the Name Field of a
Pinc PowerForth definition. The count byte is distinguished as being at the start of the
name string by the fact that its top bit is set (bit7). If the next bit is set (bit6) then the
word is defined to be immediate. If the next bit is set (bit5) then the word has been
smudged. To Enable Fast thread table searches the Inverse of the Immediate and nfa
masks is included.

MPE Pinc PowerForth Page 67

The Pinc PowerForth C Source Code Guide. The .H files.

11.0.5 OS.H
This file defines the Operating System Specific Parts of Pinc PowerForth Note the
space at the end of the some of the command strings is significant.

11.0.6 STRSIZES.H
This file defines the size of the strings used by Pinc PowerForth.

11.0.7 STRUCT.H
This file associates a unique number with the type of control structure that may be
being compiled by Pinc PowerForth.

11.0.8 VMSIZE.H
Describes the sizes of the stacks and memory of the Pinc PowerForth Virtual
Machine.

11.0.9 CMODEL.H
This file describes the type of C Model you are compiling Pinc PowerForth on-
Large/Small. In addition it also defines the C Compiler you are using for any
implementation specific parts of Pinc PowerForth.

11.0.10 VOCS.H
This file defines the number of vocabularies that context can contain and the number
of threads that are contained in any vocabularies thread table.

11.0.11 CFORTH.H
Header included by all Pinc PowerForth Source Files

11.1 The .C files.

11.1.1 THREADS.C
This file contains the set of functions for traversing Pinc PowerForths Vocabulary
Thread Tables.

Page 68 MPE Pinc PowerForth

The .C files. The Pinc PowerForth C Source Code Guide.

11.1.2 CASECON.C
Pinc PowerForth can be implemented to form headers in either upper or lower case. It
can even be made case sensitive if you want. These two functions can be used to
convert strings into either upper or lower case.

11.1.3 INNER.C
This file contains the Pinc/CWeed Forth inner interpreter.

11.1.4 DICLOAD.C
This file contains the functions for loading a dictionary file of a given name from
disk.

11.1.5 DICMANIP.C
The following words manipulated the dictionary pointer and store data into ram.

11.1.6 IO.C
This file contains the Pinc PowerForth IO manager.

11.1.7 FIDL.C
The Forth primitives are defined in FIDL (Forth Internal Definitions Language). This
program takes input form the fidl.src file and produces the following fields which are
included in the Pinc PowerForth C source.

enum.h An enumerated type for primitives.

proto.h The C Function prototypes.

extproto.h The C Function prototypes as external declarations.

prim.h The C Function forth machine primitives.

carve.h The C Function calls to carve dictionary headers.

assign.h The assignments of function pointer to the execution vector.

11.1.8 HEADTRAV.C
The following functions convert given address fields to other address fields.

11.1.9 MAIN.C
Definition of the Forth Virtual Machine

MPE Pinc PowerForth Page 69

The Pinc PowerForth C Source Code Guide. The .C files.

11.1.10 PRIM.C
The functions which define the Pinc PowerForth primitives are inserted here. These
are generated by the FIDL compiler and can be found in the file prim.h. In addition
the function assign_primitives assigns their addresses into the execution vector.

11.1.11 N2STR.C
This file contains a set of word for converting number into strings. In addition the
function print_one_stack line is provided for use by .s

11.1.12 CWEED.C
This file contains the CWeed Forth Interpreter, Compiler and Initialisation Functions.

11.1.13 ERROR.C
This file contains the Pinc PowerForth Error Handler.

11.1.14 STR2N.C
This file contains the functions used by Pinc PowerForth/Cweed Forth to convert a
string into a number depending on the base.

11.1.15 STACKS.C
The following functions define the basic operation that can be performed upon the
data and return stacks. At present these functions are used extensively by the Pinc
PowerForth primitives and no manipulation of the array structures representing the
stacks is allowed except through these functions. Thus the code for the Pinc
PowerForth primitives is specification of the stack manipulation involved but is not
efficient in terms of execution. Later version of Pinc PowerForth may define
primitives to explicitly manipulate the arrays and registers which define the stacks. By
use of a #inline compiler directive the stack manipulation functions may be inserted
inline inside Pinc PowerForth primitives. This will allow optimising compilers to
remove redundant variable assignments and manipulations.

11.1.16 CARVE.C
This file contains the set of functions which carve headers, compile colon definitions
and make vocabularies.

Page 70 MPE Pinc PowerForth

The .C files. The Pinc PowerForth C Source Code Guide.

References And Bibliography

12.0 References
To keep in touch with the Forth community, and to take advantage of other people’s
wisdom and experience, it is invaluable to subscribe to one or more of the user
magazines.

In Europe try:

MicroProcessor Engineering,
133 Hill Lane
Shirley
Southampton SO1 5AF
England

tel: UK: (0703) 631441
International: . . . (+44) 703 631441

In America try:

Forth Interest Group
PO Box 8231
San Jose
California CA 95155

tel: (+01) 408-277-0668

or:

Mountain View Press
PO Box 4656
Mountain View
California CA 94040

tel: (+01) 415-961-4103

MPE Pinc PowerForth Page 71

References And Bibliography References

12.1 Bibliography
An ever increasing number of books about Forth is available for all dialects of Forth.
Most Forth programmers end up buying several before finding enough to cover all
aspects properly.

All of the following books can be obtained from ‘Good Bookshops’ and MPE
directly, see our catalogue for latest prices.

12.1.1 Forth Text & Reference Books

 :
 & ()

A very large (more than 450 pages) text book on Forth. It includes chapters on most
subjects, the chapter on defining words does not fudge the issue (very rare), and it has
a large collection of examples with answers (as source code) in the back. Based on
Forth-83. Probably the most complete of the textbooks.

()

The classic book on Forth, it is not only well written, it is accurate, useful, contains
many examples of everyday Forth usage, and is complemented by a selection of
problems with answers. Now into the second (improved) edition. Every Forth
programmer ends up buying at least one of Brodie’s books.

 ()

The second of the Leo Brodie books, this one is about the philosophy and practice of
Forth. It includes quotes from senior Forth programmers, discussions of Forth project
management, as well as an introduction to its more advanced features. Recommended

 ()

Really a book about defining words. The overall theme being using defining words to
create an object oriented extension to Forth. The book is based on the implementation
of abstract data types in Forth, and the creation of systems using object based
techniques, the book explores defining words and vocabulary techniques. Well
written, and a valuable source of ideas. Recommended as an excellent second level
book about Forth.

Page 72 MPE Pinc PowerForth

Bibliography References And Bibliography

 &

This provides standard tools for programmers with a working knowledge of Forth
who need to develop tools. The book includes sections on debugging techniques,
sorting and merging, binary searches, and floating point. To Forth-79 standard, with
references to fig-Forth. Recommended.

An introduction to Forth for people who have work to do. Based around small
applications, this book will probably suit many practical programmers. Liked by a
customer who has evaluated nearly all the Forth books available.

 :

If you are starting out in the field of real time control of real hardware under Forth,
then this book is for you! This text covers most aspects of real time control under
Forth, from the very basics of what Forth is, through to control loops and digital
implentations of analogue filters.

A specification for the layout of Forth source code. Generated by the BT Martello
team at Martlesham as a result of training Forth programmers, it aims to provide an
outline that can be followed by newcomers to Forth, as well as providing standards
for experienced Forth users.

 ()

A good introductory book, readable and well regarded. Contains everything the new
user will need. The emphasis is on Forth-79, but valuable regardless of the dialect
being used. Linda’s favourite.

 . , .

This text descibes the evolution of Stack Computers and their impact on the
computing and industrial controller markets. Written by one of the chief designers
behind the RTX range of products, this book describes all major aspects of stack
machine architecture and its impact on software implementation and efficiency.

MPE Pinc PowerForth Page 73

References And Bibliography Bibliography

The subject of this book is threaded code systems (TILs), and how to build one from
scratch, using Forth on a Z80 as an example. Now somewhat dated, but if you are
interested in other forms of Forth interpreters, or have to write a new Forth from the
ground up, this book contains much of value.

12.1.2 Non-Forth Books

 ()

The best of the technical guides to programming on the PC. Now in its second edition.

12.1.3 Papers & Proceedings

 . ()

 ()
 1987
 1988

FORML is the main US West Coast theoreticians conference, and Rochester is more
industrial conference on the East Coast. Their proceedings contain much of interest to
professionals, tool-builders, and language implementors. JAFAR is a refereed
technical journal, the bibliography contains all known references to Forth at the time
of publication. The Index is a guide to the contents of FORML, Rochester, and
JAFAR.

 83

12.1.4 Newsletters

 ()

The US Forth user group. The original Forth magazine and still the best. The quality
of some of the articles is high. FIG take credit cards, and back issues are available.

Page 74 MPE Pinc PowerForth

Bibliography References And Bibliography

 ()
 . .

The magazine of the English Forth Interest Group chapter. Available from:

Membership Secretary - fig (UK)
54 Wild Briar
Wokingham
Berkshire RG11 4UL

MPE Pinc PowerForth Page 75

References And Bibliography Bibliography

Blank page

Page 76 MPE Pinc PowerForth

Bibliography References And Bibliography

Error Messages

13.0 Introduction
Pinc PowerForth error messages are stored in text form in the screen file pinc.err,
where the message number n corresponds to the n-th line in the file (n starting with 0).
If the file cannot be opened, an error number is given. Many of the error numbers are
a hangover from the original fig-Forth standard. Not all of the error messages
originally defined are appropriate to Pinc PowerForth, and some error messages and
numbers were not assigned by the standard. Consequently not all numbers are used.
The file pinc.err is a normal text file, and can be edited by you standard editor if new
messages need to be added, or the text of an existing message needs to be changed.
This file should be kept in the same directory as the one in whic you are running.

MPE Pinc PowerForth Page 77

Error Messages Introduction

13.1 Forth Compiler/Interpreter Errors & Messages

0
The word does not exist in the dictionary. Often caused by mistyping the name of the
word.

1 ,
The parameter stack is empty. Caused by taking too many items off the stack.

2 ,
The dictionary space is exhausted. Usually caused by either running out of space by
loading too much code.

3

4
The word being defined already exists. This is a warning only.

5
The word does not exist in the dictionary. Often caused by mistyping the name of the
word.

7
The parameter stack space is exhausted. Usually caused by a software fault. Try
looking for a loop that leaves too many items on the stack.

8 ? ?

9

12
A deferred word has not had an assignment made to it. When a deferred word is
created, its initial assgnment is the word CRASH which causes this error message.

13
The current value of base is not decimal.

Page 78 MPE Pinc PowerForth

Forth Compiler/Interpreter Errors & Messages Error Messages

14

17 , ,
A word which can be used only inside a colon definition has been used outside a
colon definition. Many of Forth’s structure words are immediate, and can only be
used when compiling.

18
The word has been used during compilation. Usually this means that “:” has been
used inside a definition, or the last definitions’ “;” was missing.

19
Conditional words are not paired or nested correctly. Caused either by a stack fault
from an immediate word inside a conditional structure, or caused by incorrectly
overlapped conditional structures, e.g:

IF ... BEGIN ... ELSE ... UNTIL ... ENDIF

20
A definition has been terminated by a semicolon before it has been completed.
Usually caused by not finishing a conditional structure properly.

21
An attempt has been made to FORGET below FENCE, which marks the upper limit
of the protected dictionary.

22 ,
The operation —> was executed from the keyboard, not from a screen being loaded
from disc.

23 0..32767 (0..7)
An attempt has been made to edit a screen outside the screen’s bounds. Only relevant
when using the old fig-FORTH line editor.

24
An attempt to FORGET has been made when the CONTEXT and CURRENT
vocabularies are not the same.

25

MPE Pinc PowerForth Page 79

Error Messages Forth Compiler/Interpreter Errors & Messages

13.2 Assembler Errors

33
An attempt has been made to use an addressing mode, or combination of modes, that
is invalid for the instruction.

34 8 080..07
Byte offsets in 80x86 instructions are signed, and so are restricted to the range -
080h..07Fh. The word value to be truncated was checked and found to be outside this
range.

35
The required number of shifts is too large for this instruction, or this form of the
instruction.

45
The local label facility has a limited number of labels, and the required label was out
of this range.

46
A reference to a local label was made in this word, and has not been resolved (the
label does not yet exist) at the end of the word.

47 ,
This is the result of a catch-all check performed by END-CODE. The stack depth on
exit is not the same as on entry to the code definition. This usually means that
something untoward has happened during address arithmetic.

Page 80 MPE Pinc PowerForth

Assembler Errors Error Messages

13.3 Memory Handling Errors

52
Pinc PowerForth asked DOS for more memory, and couldn’t get it. This error will
occur if there simply isn’t enough memory in the computer, or if the memory
allocation is too fragmented to provide a hole big enough.

54 49
A request to DOS was made to release a block of memory that DOS doesn’t know
about. This is either a simple programming error or a total disaster if an amok
program has trashed the linked list of memory block headers.

MPE Pinc PowerForth Page 81

Error Messages Memory Handling Errors

13.4 Block/Screen File I/O Errors

65
No screen file was open when the operation needed one.

66 /
The file pointer could not be set to point at the required block number.

67 /
A fatal error occurred while writing to the file.

68 /

69

70

72

73

74

75

76

77 /

78

Page 82 MPE Pinc PowerForth

Block/Screen File I/O Errors Error Messages

13.5 MSDOS Errors

81
DOS doesn’t know what to do as the function number is undefined.

82

83 ? ?

84
All handles are in use. DOS normally enforces a limit of 20 open handles. It is
possible to get round this. Contact MPE for details.

85 . .

86 / ?

87 !
The DOS memory header list has been trashed.

88
640k/1Mb is not enough

89

90
Previous SET or PATH command bad, or the environment has been trashed.

91

92
The required access code does not mean anything to DOS. Either a simple
programming error, or the application needs a higher DOS version than the one being
used.

MPE Pinc PowerForth Page 83

Error Messages MSDOS Errors

93

95
Attempt to access a drive that does not exist in this system.

96

97

98

Page 84 MPE Pinc PowerForth

MSDOS Errors Error Messages

13.6 Text File Inclusion Errors

113

114

115

116

117

118

119

120

MPE Pinc PowerForth Page 85

Error Messages Text File Inclusion Errors

13.7 Errors Specific to Pinc PowerForth

145 .

146 + ? .

147 .

148 .

149 .

150 .

151 ..

152 .

153 .

154 .

155 .

156 .

157 .

158 .

159 .

160 .

Page 86 MPE Pinc PowerForth

Errors Specific to Pinc PowerForth Error Messages

Glossary Notation

The documentation of the glossaries uses a methodology based on that used for the
FORTH-83 Standard document. As this is not a standard document, but a user
manual, we have taken some liberties to make this manual easier to look at.

We cannot call the Glossary a Dictionary, as this is a Forth term for the system itself.

You may come across some words in the dictionary which are not documented. These
words are undocumented because they are words which are only used in passing as
part of other words; also these words may not exist in later versions of PC
PowerForth, and their existence should not be relied upon.

14.0 Order
The glossary definitions are listed in the following order:-

, . : ; ! ? “ < ‘ () [] { } $ + - * / ^ = % # & @ \ _ | > 0..9 A..Z

14.1 Forth Words
Word names in text are capitalized and bolded throughout, e.g. the Forth word
SWAP.

Forth program examples are shown in a courier font thus:

: NEW-WORD (—)
OVER DROP

;

14.2 Stack Notation
The stack parameters input to and output from a definition are described using the
notation:-

before — after

where: ‘before’ means the stack parameters before execution
and ‘after’ means stack parameters after execution.

In this notation, the top of the stack is to the right. Words may also be shown in
context when appropriate. Unless otherwise noted, all stack notation describes
execution time. If it applies at compile time, the line is followed by:

(compiling)

MPE Pinc PowerForth Page 87

Glossary Notation Order

14.3 Stack Parameters
Unless otherwise stated all references to numbers apply to 16-bit signed integers. The
implied range of values is shown as {from..to}. The content of an address is shown by
double braces, particulary for the contents of variables, e.g., BASE {2..72}. The
following are the stack parameter abbreviations and types of numbers used throughout
the glossary. These abbreviations may be suffixed with a digit to differentiate multiple
parameters of the same type.

STACK NUMBER RANGE IN MINIMUM
ABBRV. TYPE DECIMAL FIELD

flag boolean 0=false, else=true 16

true boolean 1 (as a result) 16

false boolean 0 16

b bit {0..1} 1

char character {0..127} 7

8b 8 bits not applicable 8

16b 16 bits not applicable 16

n number {-32,768..32,767} 16

+n +ve int {0..32,767} 16

u unsigned {0..65,535} 16

w unspecified weighted {32,768..65,535} 16
 number (n or u)

addr address {0..65,535} 16

32b 32 bits not applicable 32

d double number {-2,147,483,648 32
 ..2,147,483,647}

+d positive double {0..2,147,483,647} 32
 number

ud unsigned double {0..4,294,967,295} 32
 number

d unspecified weighted {-2,147,483,648.. 32
 double number 32 4,294,967,295}
 (d or ud)

sys 0, 1, or more system n/a n/a
 dependent entries

Page 88 MPE Pinc PowerForth

Stack Parameters Glossary Notation

Any other symbol refers to an arbitrary signed 16-bit integer in the range
{-32,768..32,767}, unless otherwise noted. Because of the use of two’s complement
arithmetic, the signed 16-bit number (n) -1 has the same bit representation as the
unsigned number (u) 65,535. Both of these numbers are within the set of unspecified
weighted numbers (w). On many occasions where the context is obvious, informal
names are used to make the documentation easier to use.

14.4 Input Text
<name>

An arbitrary Forth word accepted from the input stream. This notation refers to text
from the input stream, not to values on the data stack.

ccc

A sequence of arbitrary characters accepted from the input stream until the first
occurrence of the specified delimiter character. The delimiter is accepted from the
input stream, but it is not one of the characters ccc and is therefore not otherwise
processed. This notation refers to text from the input stream, not to values on the data
stack. Unless noted otherwise, the number of characters accepted may be from 0 to
127.

14.5 Other markers
The following markers may appear after a word’s stack comment. These markers
indicate certain features and peculiarities of the word.

C The word may only be used during compilation of a colon
definition.

I The word is immediate. It will be executed even during
compilation, unless special action is taken, e.g. by preceding
the word with the word [COMPILE].

U A user variable.

MPE Pinc PowerForth Page 89

Glossary Notation Input Text

Blank page

Page 90 MPE Pinc PowerForth

Other markers Glossary Notation

MPE Pinc PowerForth Page 91

.

Licence Terms

16.0 Distribution Of Application Programs
Providing that the user can have no access to the underlying Forth and its text
interpreter, applications written in Pinc PowerForth may be distributed without
royalty. An acknowledgement will be gratefully appreciated.

Distributed applications may be based on the file pinc and any number of overlays.
Object code generated from the source files can of course be included in your
applications. MPE source files and all other files are part of the development
environment, which may not be distributed without prior permission in writing from
MicroProcessor Engineering.

16.1 Pinc PowerForth source code
FORTH development packages are available for software developers. These packages
allow code to be placed in ROM for dedicated applications, and/or to be compiled
without dictionary headers for space or security reasons. The packages include a cross
compiler with full source code, and source code for a FORTH nucleus.

MPE Forth cross compilers support more than a dozen different processors, including
the 80x86, and 680x0 families. The Z80, 80x86 and 680x0 targets include a nucleus
compatible with Pinc PowerForth. Software developers can apply for all or part of the
source code of the current version of Pinc PowerForth.

16.2 Warranties, Support, and Copyright
We try to make Pinc PowerForth as good as we possibly can. We support our
products. If you find a bug in Pinc PowerForth we will do our best to fix it. Please
send us a disc with a piece of sample code and a paper listing of the problem, and let
us know the serial number of your issue disc. We will then send you an updated disc
when we have fixed the problem. Do however, contact us or your supplier first in case
the problem has already been fixed.

Make as many copies as you need for backup and security. The discs are not copy
protected. It is copyrighted material and only ONE copy of it should be in use at any
one time. Contact ourselves or your vendor for details of multiple copy terms and site
licensing.

As we sell copies of Pinc PowerForth through dealers and purchasing departments we
cannot keep track of all our users. If you fill out the registration card enclosed, and
send it back to us, we will put you on our mailing list. This way we will be able to
keep you informed of updates and new extensions for Pinc PowerForth. If you want
direct technical support from us we will need these details to respond to you. If you
have lost the registration card that came with the manual, please return the following
form to us. If you do not want to tear out the form from the manual, please photocopy

MPE Pinc PowerForth Page 93

Licence Terms Distribution Of Application Programs

it and send us the copy. You will find the serial number of the system on the original
issue disc.

Page 94 MPE Pinc PowerForth

Warranties, Support, and Copyright Licence Terms

16.3 Software Registration Form
SEND TO:

MicroProcessor Engineering Limited
133 Hill Lane
Shirley
Southampton SO1 5AF
England

Tel: (+44) 703 631 441
Fax: (+44) 703 339 691

Customer details
We need your name, company, department, address, phone number, etc, in fact
enough details so that we can send you letters, and answer telephone enquiries.
Overseas customers - please include the country with your address!

Name:

Company:

Department:
@FILL IN ... = Address:

Telephone number & extension:

Package details
We need enough detail to be able to send you an update disc.

Title:

Computer type: (PC,XT,AT,386,Sun,Vax; clone; etc)

Operating system: (MSDOS,PCDOS,Unix,VMS; version)

MPE Pinc PowerForth Page 95

Licence Terms Software Registration Form

Disc format: (5 1/4",3 1/2"; 360k,720k; etc)

Serial number:

Purchase date:

Supplier:

Blank page

Page 96 MPE Pinc PowerForth

 Software Registration Form Licence Terms

Index

!
! ...94
!CSP ..94
“” ...95
#...28, 103
#...28
#~...103
#D..103
#L ..103
#LITERAL ..103
#S ..28, 103
#THREADS ..103
#TIB ..104
$+ ..98
$...98
$~PAD...98
$CREATE ...98
$VARIABLE ..98
‘ ...96
‘WORD ...96
(...14, 35, 96
(EXPECT)...96
(TO-DO)..48, 97
) ...14
*...100
*/..100
+! ...99
+ ..99
+LOOP..22, 99
,..91
- ...99
-ROT ...99
-TRAILING ..100
...91
." ..91
.(..91
.BYTE ...91
.DEPTH...92
.ED ..35, 92
.FREE..92
.FTH ..35, 92
.NAME..92
.PCB ..41, 92
.R ...92
.S ...92
.WORD ...92
/..100

/MOD ..100
/STRING ...100
0...104
0= ..105
0’ ...104
0’~ ...104
0~...105
1+ ..105
1- ...105
2! ...105
2*...105
2+ ..105
2- ...105
2/..106
2@ ...106
2DROP..106
2DUP...106
2OVER..106
2ROT...106
2SWAP..106
:..15, 93
28
= ..101
? ...94
?BRANCH ..94
?COMP..94
?CSP..94
?DO ...22, 94
?DUP...95
?ERROR..95
?EXEC ..95
?LEAVE..22, 95
?NEGATE...95
?OF..26
?PAIRS..95
?STACK..95
@ ...104
\..104
_...97
_’£ ...97
_COMPILE£ ...97
‘ ...101
‘# ...101
‘= ...101
‘~ ...101
‘MARK ...101
‘RESOLVE ...101

MPE Pinc PowerForth Page 97

Index !

| ..93
|P..35, 93
|S..93
~= ..102
~...102
~BODY ...102
~IN ..102
~MARK...102
~NAME...102
~R..102
~RESOLVE...102
£...98

A
ABORT ...106
ABORT"..107
ABS...107
Address Interpreter................................18
AGAIN..23, 107
ALLOT..107
ALSO ..30, 107
AND ..108
ASCII ..108
ASCII file ..33
ASSIGN ..48, 108

B
Backup ...5 - 10
BASE ..108
BEGIN ..23, 108
BELL...109
BINARY ...109
BL..109
BLANK...109
Block
path control...37
BODY~ ...109
Bottom-up design..................................12
BOUNDS ..109
brackets ...13
BRANCH ..109
BYE...41, 109

C
C!...110
C+! ..110
C, ...110
C@ ..110

CASE ..25, 110
CLOSE-PATH41, 110
CLS ...110
CMOVE ..110
CMOVE~ ..111
CMOVEL..111
COLD..111
comment..14
COMPILE ...111
compiler ..11
CONSOLE41, 111
CONSTANT19, 111
Constants ...20
CONTEXT79, 112
control structure21
COOKED41, 112
COUNT...112
CR ...15, 40, 112
CRASH ...48, 112
CREATE27, 112
CREATE-PATH41
CREATE-PATH-PCB42, 113
CURRENT79, 113
CURSOR-OFF113
CURSOR-ON......................................114

D
data stack...12
DECIMAL ..114
DEFER ..48, 114
DEFINITIONS..............................29, 114
DELETE-PATH..................................114
DEPTH..114
dictionary ..11
DIGIT..115
DO...22, 115
DOES~ ..115
dot-S ..13
DP..115
DPL ...115
DROP..116
DUMP ...27, 116
DUP...116

E
ED ...33, 35, 116
editor
Configuration..33
program ..33
text ..33

Page 98 MPE Pinc PowerForth

A Index

EDITOR-IS33, 36, 116
ELSE ...21, 116
EMIT.................................28, 40, 42, 116
END-CASE...................................26, 116
END-CODE ..80
ENDCASE25, 117
ENDIF ...21, 117
ENDOF ...25, 117
ERASE ..117
ERROR ...117
Error Messages......................................77
EXECUTE ..117
EXIT..117
EXPECT..27, 117

F
FENCE ..118
File handles ...37
File interface ...37
FILL ..118
FIND ...118
FORGET79, 118
Formatting......................................27 - 28
FORTH..118
FROM ...33, 36
FROM-FILE....................................33, 36

G
glossary ...2, 11
GOTOXY..119

H
HALF-OFF..119
HALF-ON ...119
HALT? ..119
HANDLE42, 119
HERE ..120
HEX ..120
HLD ..120
HOLD..28, 120

I
I ...120
I-LOOP..120
I/O
device independent38
IF ...21, 120

IMMEDIATE................................65, 121
Inner Interpreter18
input/output....................................40 - 44
Installation5 - 10
INTEGER?..121
INTERPRET121
interpreter ..11
Introduction..1 - 4
INV-OFF ...121
INV-ON ..121
IP-HANDLE42, 121

J
J ...122

K
KEY ..40, 122
KEY?...40, 122
KISS method ...17

L
L ..122
LAST ...122 - 123
LATEST..123
LEAVE..22, 123
LINE#..123
LIT ..123
LITERAL ..123
LOOP ..22, 124

M
MAX ...124
MEM-TOP ..124
MIN...124
MOD ...124
Moore,Charles...3
MOVE...124

N
N~LINK ..124
NAME~...125
NEGATE...125
NEXT-CASE26, 125
NIP ..125
NOOP..125

MPE Pinc PowerForth Page 99

Index F

NOT ..125
notation..14
NUMBER?..125

O
OF..25, 126
OFF ...126
ON...126
ONLY..30, 126
OP-HANDLE..........................40, 42, 126
OPEN-PATH42, 126
OPEN-PATH-PCB........................42, 126
Operating system...................................37
OR ...127
ORDER ...31, 127
OUT ..127
Outer Interpreter....................................18
OVER..127

P
P-NAME43, 127
PAD...127
PAGE# ..127
PATH
CLOSE-PATH......................................39
OPEN-PATH..40
PATHNAME38, 43, 128
PCB..................................37 - 38, 43, 128
OPEN-PATH-PCB...............................38
PICK..128
PINC.ERR...77
PLACE ..128
postfix ..12 - 13
PREV-PCB..43
PREVIOUS ...128
PROMPT...128
PSP ..43, 129

Q
QUERY...27, 129
QUIT ...129

R
R0 ..129
R@ ..129
R~..129
READ-PATH39, 43, 129

RECURSE...130
REPEAT..24, 130
RESET-BIT...130
return stack..12
ROLL ..130
ROT...130
RP! ..130
RP@ ..131

S
S0 ..131
S= ..131
S~D ...131
SAVE ..43, 131
SAVE-BUFFERS................................131
SCAN ..132
SEEK-PATH...........................39, 44, 132
semi-colon ...15
SET-BIT..132
SET-PATHNAME38, 44, 132
SIGN ...132
SKIP ..132
SMUDGE......................................65, 132
SP! ...133
SP@...133
SPACE ..133
SPACES..133
SPAN ..133
Stacks ...12 - 13
STATE ..133
string
counted ...27
string extraction.....................................27
Strings ...26
SWAP..133
System" ...44, 133

T
TAB...134
TAB-WIDTH134
TEST-BIT ...134
Text ...26
THEN ..134
TIB ..27, 134
TO-DO ..48, 134
TOGGLE-BIT.....................................135
TRUE ..135
TUCK..135
TYPE.......................................28, 44, 135

Page 100 MPE Pinc PowerForth

O Index

U
U..135
U’ ..135
U~..135
UNDER-OFF135
UNDER-ON..136
UNIX...37
UNTIL...24, 136
UPC...136
UPPER ..136
USE ...33, 36
USER ..136

V
V-FIND ...136
VARIABLE19, 137
Variables ...20
VOC-LINK ...137
Vocabularies29 - 32
vocabulary11, 29, 137
VOCS..31, 137

W
WARM..137
WHILE..24, 137
WIDTH ...138
WITHIN? ..138
WORD27, 30, 138
words11, 17, 138
Defining..19
Immediate...19
WRITE-PATH44, 138

X
XOR ..139

MPE Pinc PowerForth Page 101

Index U

