MPE Forth 6 Cross Compiler

User Manua

MPE Forth 6 Cross Compiler

User manual
Manual revision 1.600

Date 08 October 2003

Software

Software version 6.20

Package Number:

For technical support
Please contact your supplier

For further information

MicroProcessor Engineering Limited

133 Hill Lane, Southampton

SO15 5AF, UK

Tel: +44 (0)23 8063 1441 from USA: 011 44 23 8063 1441
Fax: +44 (0)23 8033 9691 from USA: 011 44 23 8033 9691

e-mail: mpe@mpel td.demon.co.uk
tech-support@mpeltd.demon.co.uk

web: www.mpel td.demon.co.uk

mailto:mpe@mpeltd.demon.co.uk
mailto:tech-support@mpeltd.demon.co.uk
http://www.mpeltd.demon.co.uk

Acknowledgements

MPE would like to thank the following people for their involvement in the production of
this product:

Mark Davis, Stephen Pelc, Matthew Purvis, Paul Richards

MPE Forth 6 Cross Compiler
Copyright © 1993-2003 MicroProcessor Engineering Limited

Licence terms

Distribution of application programs

Providing that the end user has no access to the underlying Forth and itstext interpreter
except for engineering and maintenance access only, applications compiled with the Forth
6 cross-compiler may be distributed without royalty. An acknowledgement will be
gratefully appreciated. No part of the cross-compiler or the target source code may be
further distributed without permission from MicroProcessor Engineering.

If you need to ship applications with an open Forth system, or wish to check what
congtitutes engineering and maintenance access, please contact MPE. An OEM version of
ROM PowerForth isavailable for distribution with your products, and includes
documentation on disc.

Warranties and support

We try to make our products asreliable and bug free as we possibly can. We support our
products. If you find a bug in this product and its associated programs we will do our best
tofix it. Please check first by fax or email to seeif the problem has already been fixed.
Please send us enough information including source code on disc or by email to us, so that
we can replicate the problem and then fix it. Please also let us know the serial number of
your system and its version number. We will then send you an update when we have fixed
the problem. The level of technical support that we can offer may depend on the Support
Policy bought with the product.

Technica support will only be available on the current version of the product.

Make as many copies as you heed for backup and security. Theissue discs or CD are not
copy protected. The code is copyrighted material and only ONE copy of it should be use
at any onetime. Contact MPE or your vendor for details of multiple copy terms and site

licensing.

Asthis copy is sold direct and through dealers and purchasing departments, we cannot
keep track of all our users. If you fill out the registration form enclosed and send it back to
us, we will put you on our mailing list. Thisway we will be able to keep you informed of
updates and new extensions, as they become available. If you need technical support from
us we will need these detailsin order to respond to you. Y ou will find the serial number of
the system on the origina issue discs.

Table of Contents

Licence terms

Distribution of application programs
Warranties and support

1 Installing the system 1
System requirements 1
Running the installer 1
Release notes 1
EPROM emulator drivers 1
Port access under Windows 2000/NT 2

2 The system components 5
MPE Forth cross-compiler 6
Standalone target Forth 6
Umbilical Forth 7
Leburg EPROM emulator drivers 7
Documentation directory 7
Changes from v6.0 to v6.1 8
Learning Forth 10

3 Configuring with macros 11
Text macros 11
Compiler macros 11
Directory structures 13

4 Generating a standalone Forth 15
Isyour target already supported? 15
The control file 15
The memory map 16

Setting the memory map 16
Setting the start and end of ROM 16
Setting the start and end of initialised RAM 16
Setting the start and end of uninitialised RAM 17
Setting the compilation areas 17
An example 17

Licence terms

Modifying the serial line drivers
Interrupt driven

Polled
Initialising the serial line
Sending a character to the host

Receiving a character from the host
Detecting a received character

Setting up the system
Setting up the hardware
Setting up the software

Cross-compiling
Creating an image
The cross-compile log
The compilation summary

The created image

Problems, problems...

Downloading the compiled image
Downloading to a LeBurg EPROM emulator
Downloading to a different emulator or programmer

Running the target Forth
Switching to target mode
Resetting the target board
Thesign-on

Cross-compiling an application
Modifying the control file
Running your application
Generating a turnkey application

Generating an Umbilical target

Requirements for Umbilical Forth
Isyour target already supported?
The control file
Cregting a control file
The memory map
Setting the memory map
Setting the start and end of ROM
Setting the start and end of initialised RAM
Setting the start and end of uninitialised RAM
Setting the compilation areas
An example
Modifying the serial line drivers
Interrupt driven
Polled

17
18
18
18
19
19
19
20
20
20
20
20
21
21
22
23
23
23
23
23
23
23
23
25
25
25
25

27

27
27
27
28
28
28
28
29
29
29
30
30
31
31

Initialising the serial line

Sending a character to the host
Receiving a character from the host
Detecting a received character
Exporting the names

Setting up the system
Setting up the hardware
Setting up the software

Cross-compiling
Creating an image
The cross-compile log
The compilation summary

Problems, problems...

Downloading the compiled image
Downloading to a LeBurg EPROM emulator
Downloading to a different emulator or programmer

Running the target Forth
Resetting the target board
Thesign-on

Cross-compiling an application
Modifying the control file
Running your application
Debugging and devel oping your application
Generating a turnkey application

Debugging the serial link

Using other link drivers

Optimising your target Forth

Reducing the size of your image
Removing headers
Removing all headers
Selectively removing headers
Factoring your code
Removing excess code
Using equates instead of constants
Removing forward references
Using Umbilical Forth
Speeding up your code

Generic 1/10

About Generic I/0
Creating a new device
Selecting a device

Licence terms

31
31
32
32
32
33
33
33
33
33
33
35
35
35
35
36
36
36
36
37
37
37
37
37
38
38

41

41
41
41
42
42
42
42
43
43
43

45

45
45
46

\'

Licence terms

Vi

Multitasker

Initialising the multitasker
Selecting the multi-tasker
Starting the multitasker
Stopping the multitasker

Writing a task
Using the scheduler
An example
Task dependent variables

Initialising a task

Controlling tasks
Starting a task
Stopping a task

Handling messages
Sending a message
Receiving a message

Cregting events
Writing an event
Initialising an event
Triggering an event
Clearing an event

Interrupts and critical sections

Semaphores

The multitasker internals
The scheduler's data structure

A simple example
Defining a simple task
Initialising the multitasker
Activating the exampl e task
Controlling the example task

Troubleshooting tasks

Single chip tasking

Converting to the v6.1 multitasker
Configuration
Task identifiersand TASK
WAIT and MS
INITIATE and ACTIVATE
PEVENT

Glossary

TIMEBASE
Periodic timers and TIMEBASE

47

47
47
47
48
48
48
48
49
49
50
50
50
50
51
51
51
51
51
51
52
52
53

55
55
56
56
56
57
57
58
58
58
58
58
58
59

63
63

10

11

12

The basics of timers
Considerations when using timers
Implementation issues

Timebase glossary

Heap and memory allocation

ANS Standard

Source code
HEAP16
HEAP32
Common

Glossary

Software floating-point

Source code
Entering floating-point numbers
Theform of floating-point numbers
Cregting variables
Accessing variables
Creating constants
Using the supplied words
Calculating sines, cosines and tangents
Calculating arc sines, cosines and tangents.
Calculating logarithms
Calculating powers
Setting degrees or radians
Converting between degrees and radians
Displaying floating-point numbers
Changes from v6.0 to v6.1
32 bit targets: software floating point
16 bit targets: software floating point
Glossary

ROM PowerForth utilities

Compiling text files
Therequired files
Compiling a specified text file
Downloading a binary image
XMODEM binary image downl oad
Intel hex download
ROM PowerForth
Hardware requirements

Licence terms

63
64
64
65

67

67
67
67
67
68
68

71

71
71
71
72
72
72
72
73
73
73
73
73
74
74
74
74
75
75

83

83
83
83
84
84
84
85
85

vii

Licence terms

Types of board 85
Making your application turnkey 86
AIDE file server protocols 87
Glossary 87
13 Controlling compilation 89
Starting the cross-compiler 89
Stopping the cross-compiler 89
Defining memory - Sections and the xDATA directives 89
Selecting section I/0 90
An example 91
Defining memory — Bank switched systems 92
Defining banks and pages 92
Use of CDATA pages 93
IDATA and UDATA pages 95
Aligning generated code 95
Numbers and 16 bit targets 95
Enabling floating-point 96
Turning thelog on and off 96
Conditional compilation 96
An example 96
[DEFINED] and [UNDEFINED] 97
[REQUIRED] 97
Library files 97
Direct port access under Windows NT/2000 99
14 The VFX code generator 101
Inlining 101
Colon definitions 101
Code definitions 102
COMPILER directives 102
15 Debugging tools 103
INTERACTIVE 103
XDASM, DASM, DIS 103
LOCATE 103
USES 103
XREF, XREF-ALL, XREF-UNUSED 103
WORDS 104
LABELS 104
EQUATES 104
ESCAPE 104

viii

16

Licence terms

HELP 104
INTERPRETERS 104
COMPILERS 105
Command line switches 105
Compilation in more detail 107
Special compilation behaviour 107
Code generator 107
Immediate 108
Strings 108
Comments 108
Control structures 108
Special casein defining words 108
Special interpretation/compilation behaviour 108
Compiler directives 109
Host referring words 110
Defining words 110
Assembler control 110
Target memory and interpretable 110
Structures 112
Allocating memory and variables 113
CREATE 113
Commas:, C, W, 114
ALIGN and ALIGNED 114
ALLOT 114
HERE (CHERE IHERE UHERE) 114
ORG (CORG IORG UORG) 115
VALUE and VARIABLE 115
BUFFER: 116
RESERVE 116
UNUSED 117
Local variables 117
Extending the compiler 119
Defining words 120
Automatic handling 120
Explicit handling 121
IMMEDIATE words 122
Automatic handling 122
Explicit handling 122
Checksums 122
Automatic build numbering 122
Macrosin text strings 123

Licence terms

17

18

19

20

Forth on the target

Inside a ROM target Forth

The Forth memory map
RAM initialisation

Register usage

Threading

Forth models

Inside Umbilical Forth

Optimising development

Speeding up the compilation
Saving the compilation state
Restarting from a saved state
An example

Speeding up the downl oad
Setting EPROM size and bus width
Setting the page
Using the emulator driver

Converting from v6.0 to v6.1

Generic 1/0
Multitasker

User variables
Heap
TIMEBASE
Build numbering

Moving from v5 to v6/VFX cross compilers

Introduction

Basic v5 to v6 conversion
Memory definitions
EPROM emulator
Assembler changes
Bank switched systems
Conditional compilation
Interpreted calculations
Startup code
Testing

Converting from DTC to STC and VFX compilers
Strategy
COMPILE, and ,
Vector tables

125

125
125
125
126
126
126
127

129

129
129
129
130
130
130
131
132

141

141
141
141
142
142
142

143

143
143
143
144
144
144
144
145
145
145
145
146
146
147

21

22

23
24

Licence terms

Choice of word names — ANS and Forth-83 148
CREATE CDATA IDATA UDATA and sections 148
COMPILER, INTERPRETER, HOST, TARGET and ASSEMBLER 149
Umbilical Forth 150
FLOATS and REALS 150
Converting from Forth-83 to ANS 151
Choice of word names — ANS and Forth-83 151

INVERT NOT and 0= 151

EXPECT SPAN and ACCEPT 151

S’ and C’ 151

ASCII CHAR and [CHAR] 152

LSHIFT and RSHIFT 152

FORGET and MARKER 152
Division 153
CREATE and friends 153
>BODY and friends 154
FLOATS and REALS 154
CATCH and THROW 154

Description 154

Sample implementation 155

Stack rulesfor CATCH and THROW 156

Some more features 157
POSTPONE 157
COMPILE, and , 158
IRTC and Stamp compiler differences 159
IRTC compilers 159
Forth Stamp compilers 159
Technical glossary 161
Error messages 163
General Forth errors 0..15 163
System messages 16..31 164
Assembler errors 32..47, 144...159 165
Binary module errors 48..63 165
Sourcefile errors 64..79 165
Operating system errors 80..112 165
Text fileerrors 112..127 166
Overlay load errors 128..143 167

Xi

Licence terms

Xii

25

26

Further information 169
MPE courses 169
Architectual introduction to Forth 169
Embedded software for hardware engineers 169
Quick Start Course 169
MPE consultancy 169
Recommended reading 170
Index 171

List of Figures

Figure 1: DireCtory StrUCIUNE........ooevieeiiie e 6
Figure 2: Target SIgM-ON........cooiieeeiee et 24
Figure 3: Exampleturnkey application............ccceveieiieniicee e, 26
Figure4: Umbilical Forth turnkey application.............ccceeoeeiiieienceneneen. 38
Figure 5: Umbilical Forth Structure...........occoe i 128

List of Tables

Table 1: Standard control filetext macros...........ccocveieenienieeseeseeens 12
Table 2: Cross-compiler directory structurein detailcccoeeceeeeenn. 13
Table 3: Key t0 cross-compiler 10g.......cooveriiereiie e 22
Table4: Key to cross-compiler 10g.......coovereieiiiie e 34
Table5: Task control bIOCK.........ccceee i 55
Table6: Task StatuShYte........coveeiee e 55
Table 7: Compiler extension direCtivescoccevevcereicie e, 119
Table 8: EPROM SIZe iNQiCALONS. .. .ccoiveieieeeiiee e 131
Table 9: Bus width iINICALOrS..........oviiieeeiee e 131

Installing the system

The ingaller helps you through the installation process and will make sure you have all
the files you need.

System requirements

To ingtall and use the development system you need:
PC with Windows 95 or NT or higher with 32 Mb or more of RAM.

At least 8-20 Mbytes of free disc space, depending on the amount of CPU specific
documentation provided.

Running the installer

The software is supplied on a CD. Use the Windows Explorer or ‘My Computer’ shortcut
to navigate to your CD drive. To install the devel opment system, double-click thefile
SETUP. EXE

Theingaller will prompt you for all the information it needs, offering defaults. The
installer will also create anew start menu program group for you that contains shortcuts to
tools and help files.

Everything you need can be accessed throught the AIDE shell. Many people find it useful
to put ashortcut to AIDE\AIDE.EXE on the desktop.

Release notes

Late changes to the compiler and target code are documented in release note files. These
are called RELEASE.xxx. TXT and will be found in the relevant directories. They are of
particular value when upgrading from one version of the compiler to the next. Pleaseread
them!

The most important of these are the compiler and target CPU rel ease notes which are kept
in the DOC directory. They will be called RELEASE.XC6 and RELEASE.cpu, where for
example RELEASE.51 refers to the 8051 compiler and RELEASE.ARM refersto the
ARM/StrongARM compiler.

EPROM emulator drivers

The devel opment system is supplied with facilities for the LeBurg EPROM emul ator,
seriestwo. If you have the earlier series, please contact MPE if you do not have the

Port access under Windows 2000/NT

TSR021 or TSR041 drivers. All the necessary drivers are supplied with the EPROM
emulators.

The ingtaller needs to know what PC port address to map the emulator driver to. Note that
for use with Windows 95, the DOS driver must be included in your AUTOEXEC.BAT
file.

Later versions will support the MPE PowerROM Target Access Systems over Ethernet.

Port access under Windows 2000/NT

Direct accessto 1/0 portsisrequired for the Leburg EPROM emulator drivers, the SPI
parald port drivers, and other target access drivers. If you are using Windows 2000/NT
(any version) or later, direct port I/O requires a driver that permits this access, otherwise
you will trigger a Windows exception with an error message such as "Cannot run
privileged instruction”.

The directory COMPILER\XTRA contains NTPORT.EXE, which permits an application
to use any I/O port. Note that this completely bypasses the normal Windows NT 1/0 port
protection mechanism. If you want something more secure there are several utilities
available from the Internet.

Toingtall NTPORT perform the following procedure. Our thanks go to Graham Gollings
of LMS bv for this description of the process.

Run the NTPORT utility located in your COMPILER\XTRA folder. This puts various
filesin theright places, but does not install the driver itself. Loading adriver is performed
by the LOADDRYV Ltility.

Run LOADDRV.EXE from your COMPILER\XTRA folder. In the window "Full
pathname of driver" to point to GIVIO.SYS

Tick on INSTALL (It should say operation was successful)
Tick on RUN (It should say operation was successful)
Now run TST10.exe (and a tune should play)

At this point GIVEIO.SY Sisrunning, but the next time the system is started from cold it
will beloaded at system start up but will not run, asit is configured as manual. We need it
to be loaded and running from cold start. In order to set this up, run REGEDIT

Look to path:
HKEY_LOCAL_MACHINE | SYSTEM | CURRENT CONTROL SET | SERVICES
| GIVEIO

Installing the system

Right click on GIVEIO, and changethe START REG_DWORD from 3 (manual) to
2 (automatic)

To test theingallation, run the compiler directly from the COMPILER directory with no
command line. In the console, type the following incantation:

ALSO C-C\ add C C vocabulary to search order
PIOINT\ initialise driver access

PI O TEST \ should play a tune

PREVI QUS \ renmove C-C from search order

BYE \ exit fromconpiler

When using the compiler, you must add the directive NT- ACCESS- PORTS to your
control file before any direct access to hardware isrequired. A good placeto additisin
the section after the CROSS- COVPI LE directive in which the compiler is configured.

The system components

Now that you have ingtalled the devel opment system, you may be wondering what you
have got. The devel opment system consists of:

MPE Forth 6 cross-compiler with source code. Note that VFX compilers are only
supplied with source code after a non-disclosure agreement has been signed.

Source code for generating atarget Forth that includes a standa one Forth interpreter
useful for debugging with aterminal. Treat the target code as aresource for you to
read and extend.

Source code for generating an Umbilical Forth that needs the cross-compiler for
debugging, but is smaller than the standal one Forth. Treat the target code asa
resource for you to read and extend.

Driversfor the LeBurg EPROM emulators

The AIDE devel opment environment AIDE is documented in a separate on-line
manual.

Tools directory. Thisincudes file format converters from the memory images
generated by the MPE Forth 6 compilersto Motorola S-record format and Intel Hex
format. The OMAKE make utility is also included.

Documentation directory. This directory includes much useful documentation,
including the ANS Forth specification for target code reference. There are many CPU
specific files taken from manufacturers’ web sites. You will find here the
RELEASE.XC6 and RELEASE.cpu text files which document late changes sincethis
manual was generated. You will also find PDF files for the latest available version of
thismanua (XC620MAN.PDF) and the CPU specific manual.

Target Code manuals. From v6.2 onwards, target code code is documented using
MPE’s DOCGEN system supplied with VFX Forth for Windows. The manual for the
common code may be found in COMMON\MANUAL\COMMONCODE.PDF and
the CPU specific code manua may be found in CPFUIMANUA L\CPUCODE.PDF
where CPU isreplaced by a CPU specific reference.

By default the installer creates the directory structure shown in the figure below. Note that
the AIDE directory isnot shown asthis can be installed to anywhere on your system.

MPE Forth cross-compiler

‘ <root> }——{ CPU HARDWARE

CONFIGS

DRIVERS

COMPILER

DOC

COMMON ROMFORTH

|
[T

EXAMPLES

Figure 1: Directory structure

MPE Forth cross-compiler

The cross-compiler can generate either aROM target Forth or an Umbilical Forth from
your source code. The source code for the cross-compiler is supplied for non-VEX
compilers, so that you can extend the compiler and rebuild it from scratch if required.
Source code for VEX compilersis available under specid terms which include anon-
disclosure agreement.

The compiler can automate the generation of paged targets and also has a built-in cross-
assembler. The compiler executable and associated files are in the directory COMPILER
and the sourceisin the directory COMPILER\SOURCE if provided.

Standalone target Forth

A standalone target Forth is supplied with the full compiler, and not with the IRTC and
Stamp verions.

Source code is supplied for devel oping a standal one target Forth. The Forth generated can
have a multitasker and software floating-point. The standal one Forth can be debugged
through a serial port or other link using aterminal or terminal emulator. This makes onsite

Optimizing development

debugging without the cross-compiler very easy, and the Forth can be used for debugging,
maintenance, and terminal configuration.

It also has a bigger wordset than an Umbilical Forth target, and consegquently requires
more memory. If you require the multitasker and don’t want to change any of the supplied
code, you must generate a standalone target Forth. Theinstaller places the target source
code in the directories COMMON and CPU. See the chapter on Generating a standalone
Forth for details.

Umbilical Forth

Source code is supplied to generate an Umbilical Forth. Umbilical Forthis asignificantly
smaller Forth than the standa one target Forth, so that an interactive Forth can be
generated which has a minimimal memory footprint. Umbilical Forth does not have all
words defined in the standal one target Forth, but is useful if ROM spaceis at a premium.
The Umbilical Forth source codeisin the directories COMMON and CPU.

In most cases (except for 8051, Z8...) the code for Umbilical Forth systemsis compatible
with the standal one Forth source code, so additional words required can be taken from the
standal one Forth code base.

Leburg EPROM emulator drivers

The cross-compiler can directly download code, asit is generated, to a LeBurg EPROM
emulator. Thisisdone by a TSR in the COMPILER directory.

Note that if you are using Windows NT/2000 or any other version of Windows that treats
direct port 1/0O as a privileged ingruction, you must install the NTPORT.EXE file from the
COMPILER\XTRA directory as described in the ingtalation section of the manual and
modify your contral fileto include the NT- ACCESS- PORTSdirective.

Documentation directory

Much of the documentation is avail able on-line from the DOCS directory. In particular
note the ANSFORTH directory. If you need it the ANS specification is provided in
HTML format in the DOCS\ANSFORTH directory. Start with DPANS.HTM

The generic cross compiler and CPU specific manuals are supplied as PDF files. These
may have been updated since the printed manuals. The use of PDF manuals enables us to
update our manuals on aregular basis to incorporate suggestions made by you the users.

A number of CPU manuals are also provided in PDF form to avoid you having to
download them.

Control files

Control files

In nearly all cases, the cross compilation processis controlled by a“control” file, which
defines the characteristics of the target hardware and memory layout and specifies which
filesto compile. You will find several in the CPU\CONFIGS directory/folder. For your
job, copy one of the existing files and modify as required.

Y ou can make your life much easer, especially when you go on site with alaptop, if you
use the text macro system described in the next chapter to handle the directory structure
for your applcation code and the MPE kernedl code.

Changes from v6.0to v6.1

The following are the major changes from the previous release of the cross compiler.

Inproved target performance. The VFEX compilers have been improved since v6.0, and the
16 hit targets have been changed from direct threaded code (DTC) to subroutine threaded
code (STC) and some optimisation. On an 8051, the v6.1 target can be twice as fast with
no increase in code size. On other 16 bit targets, such as the 68HC12, theimprovement is
considerably more. VFX targets are ten to fifteen times faster than their DTC
predecessors.

Target code disassembler. Y ou can now disassemble any definition, whether Forth or
code. Y ou can also see some of the new code generation optimisations.

Generic I/O permits you to add new 1/0 devices very easily and to use the sandard 1/0
words such as KEY and EM T with them. Each task may access a different default device,
and the default can be changed at any time.

Enhanced multitasker. The v6.1 target multitasker is fully list driven, which reduces the
RAM and code space needed. Thereisalso a stripped down version for use with the
single chip model. The source code for these taskersisin the files MULTIXXEXT.FTH
and MULTIXXINT.FTH.

TIMEBASE time and delay management system. Using asingle periodic clock interrupt,
you can generate delays, timeouts, and periodic execution very ssimply, using phrases such
as.

' <action> <nms> AFTER \ once after <nms> ns
' <action> <ns> EVERY \ every <ms> nsB

Enhanced Umbilical Forth. Previous versions of the compiler only supported Umbilical
Forth with a serial lineand an EPROM emulator. From 6.1 onwards, Umbilical Forth also
supports other protocols, such as SPI access for the Atmel 8958252 and BDM access for
Motorola CPU32 cores. Thisallows fully interactive programming and debugging through
the PC paralld port and frees up the target seria port.

Heap code is now provided with al targets, not just the VFX compilers.

Optimizing development

Automatic build numbering system. Y ou can embed a build version gtring into the
application. This string can be automatically updated after each successful build of your
project.

More examples.

Enhanced documentation. The manual has been revised, incorporating many comments
suggestions from users since the introduction of the Forth 6 compilers.

This compiler isnow available in three versions, Professional, IRTC, and Forth Stamp.

Professional. The full compiler with all tools, compiler source code, all target source
code, floating point, multitasker(s), TIMEBASE system, heap, automated test code,
Umbilical Forth and Forth Stamp hardware (if available).

IRTC. The same compiler and hardware but without compiler source code, and with
Umbilical Forth only. TIMEBASE, floating point, automated test code, and bank switched
targets are not supported.

Forth Stamp. Asthe IRTC compiler, but with code space restricted to 8k bytes. No cross
reference facilities are available. No multitasker is provided.

Changes from v6.1to v6.2

Examples. The EXAMPLES directory includes target code for a State Machine compiler,
PID loop contrallers, and a complete file system. The 12C support has been overhauled
and new devices added.

Kernel. Numerous detail changes for efficiency and to support extensions such asthe
PowerNet v3.0 TCP/IP stack. The 32 bit heap code has been overhauled for speed and
size. The ROMFORTH facilities have been extended with XMODEM in both directions.

Compiler. The following INTERPRETER directives are new:

[REQUI RED] | T H DE REVEAL KB MB TESTI NG [TEST TEST]
. FORWARDS

The use of structure fieldsin COMPILER ... TARGET definitions produces optimised
codein VFEX compilers.

Documentation. The high level kernel code in the COMMON directory now has separate
documentation.

AIDE shell. LOCATE supports external editors aswell as ForthEd.

Learning Forth

Learning Forth

If you are unfamiliar with Forth, MPE can supply arange of books and training courses.
For further details, please contact our office or look at our website (URL at start of
manual). See also the “Further Information” chapter of this manual.

10

Text macros

Configuring with macros

Both the compiler and the IDE can be configured using text macros, which are mostly
used to define directory, file and path names. The IDE and the cross compiler each have
their own independent sets of macros.

The macro system gives you grest flexibility in managing your source code. For example,
you can establish projects in which your source codeis held quite separately from the
issued MPE code.

When a project is moved from one machine to another, the directory structure may need to
change. With macros thisis easy to do by redefining the macros.

Text macros allow a similar function to therole of constructs such as %PATH% in
MSDOS batch files. In particular, the expanson of these macros are performed on file
names submitted to FROM FI LE or | NCLUDE, so something like the following piece of
code can be included in a control file before the CROSS- COVPI LE directive:

" C.\ MsD\ SRC' SETMACRO ROOT

| NCLUDE %R00T% FI LEA
| NCLUDE %R00T% FI LEB
| NCLUDE %R00T% FI LEC

When the file name is scanned, the compiler attempts to subsitute text between the * %’
characters. If a predefined macro cannot be found, the compiler will look for an
environment variable of the same name. The ‘%’ characters are not part of the macro
name. Notethat “” <t ext >” SETMACRO <narme> can be placed on the cross
compiler command-line and thus you can specify a root directory in a Windows short-cut.

If you need macros that are common to both the IDE and the cross compiler, use
environment variables.

Compiler macros

The compiler can be used independently of the IDE. However, the IDE supplies the
compiler with a set of text macros that define the names of the various source directories.
Some ingtallers provide the I DE with the names of the compiler directories via a Forth
source file, DIRS.FTH, which is always placed into the <root> directory. When the user
invokes a cross-compiler, the IDE includesthisfile before your control file on the
compiler's command-line. Hence, you don’t have to do anything to obtain this
information.

11

Compiler macros

12

If the IDE isnot used, then this information will have to be provided to the compiler some
other way. There are basically three ways of doing this:

Include the file DIRS.FTH (if it exists) yoursdf via the compiler's command-line,
perhapsin a short cut, or by including it in the contral file.

Define the required set of text macros as environment variables - just take DIRS.FTH
and use atext editor to convert it into a number of SET commands. In this case, no
"alien" source files need be included before your contral file. Note that the names are
fixed, so thisapproach will only work if you are using a single cross-compiler.

Include the relevant macros in your control file.

The text macros required by the standard contral files are as follows:

Macro Name Default Setting
Always present:

CpuDIR <root>\cpu
CommonDIR <root>\common
May be present:

DIRROMHOM <root>\cpu
DIRROMCFG <root>\cpu\configs
DIRROMDRV <root>\cpu\drivers
DIRROMCOM <root>\common
DIRROMFTH <root>\common\romforth
DIRROMEXA <root>\examples

Table 1: Standard control file text macros

Directory structures

Configuring with macros

For reference, the directory structure of the cross-compiler islisted below with a
description of each directory’s contents.

Directory Contains
<r oot > Ingaller filesand DIRS.FTH
CPU CPU-specific kernel source files
(e.g. 8051)
CONFI GS Example control sourcefiles
DRI VERS Serial and other driver sourcefiles
COWPI LER Compiler .EXE and error messages files
CPU CPU specific cross compiler source code
(e.g. 8051)
COMVON Cross compiler common source code
PFW Host Forth for the cross compiler
DCC Help files and other documentation
COMVON Non CPU-specific kernel sourcefiles
DRI VERS Serial and LED driver source files
EXAMPLES Chip-independent test and example source
ROVFORTH Chip-independent ROMFORTH source files
Al DE AIDE executables, data, configuration files

Table 2: Cross-compiler directory structure in detail

Note that the <root> directory nameis selected by the user. Note that because AIDE's
configuration file contains al the required information to run a given compiler and that all
of the other files are common, several cross-compilers can sharethe same AIDE directory.

13

4 Generating a standalone Forth

This chapter describes how to generate a ROMmable target ANS Forth for your target
board. It guides you through:

setting up your hardware and software
writing the serial linedrivers
modifying the memory map for your board

compiling and running a target Forth

Is your target already supported?

Supplied with the cross-compiler are configurations for a number of boards and terminals.
If one of the supplied contral files matches your hardware, useit. By using these files, the
installation of a ROM target Forth for your board will be greatly simplified.

If you do not have one of the supported targets you will have to modify a control file and
write seria linedrivers for your board.

The control file

The control file contains all the details of your board that the cross-compiler needsto
know. These include:

the memory map of your board
whether you wish alog to be displayed
the number of tasksin your system
the clock rate of your board

Aswell as containing configuration information, the contral file contains compiler
directivesand alist of filesthat are to be cross-compiled. Once the cross-compiler knows
these items, it can generate a correct binary image from your source code. An example
control fileis shown in the chapter on Controlling compilation.

To create anew contral file, copy an existing one and then modify it to match your target.

Thisisnormally easier than generating one from scratch. Example control files arein the
directory CPU\CONFIGS.

15

The memory map

The memory map

The memory map describes the addresses where the ROM and RAM areas start and end in
your target system.

Setting the memory map

The memory map is described in your control file, so once the file has been created, you
can change the memory map definition to match your target. The memory map is
described in three parts:

the start and end of ROM - wherethe codeis.
the start and end of initialised RAM

the start and end of uninitialised RAM

Setting the start and end of ROM

The start and end of ROM (and any other memory area) is defined by using the compiler
directive SECTI ONin the form:

romstart romend CDATA SECTI ON <nane>

whererom-start is the address of the gart of ROM used for code, rom-end isthe address
of theend of ROM used for code, and <name> is the name of the output file. The
compiler automatically gives the filename <name> an extension .IMG so <name> must be
just a name without an extension. The numbers rom-start and rom-end are, by default, in
decimal, but can be entered in hex by preceding them with a $, e.g

$0100

This area also contains any data defined by CDATA during the cross-compilation. This
directive is discussed elsewherein the manual.

Setting the start and end of initialised RAM

The start and end of theinitialised RAM areais defined by using the compiler directive
SECTI ON,i.e.

ramstart ramend | DATA SECTI ON <nane>

whereram-start isthe address of the start of RAM, ram-end is the address of the end of
RAM and <name> isthe name for this area of memory. The numbers ram-gart and ram-
end are, by default, in decimal, but can be entered in hex by preceding them with a $.
<name> isnot actually used but must be stated.

Theinitialised RAM area contains any data defined by VARI ABLE or VALUE or | DATA
during the cross-compilation. These directives are discussed elsewhere in this manual. 1f

16

Generating a standalone Forth

an interactive Forth is compiled for the target then definitions entered interactively are
placed in this section.

Setting the start and end of uninitialised RAM

The start and end of the uninitialised RAM areais defined by using the compiler directive
SECTI ON, used in the form:

ramstart ram end UDATA SECTI ON <nane>

whereram-start isthe address of the start of uninitialised RAM, ram-end is the address of

the end of RAM and <name> isthe name for this area of memory. The numbersram-start
and ram-end are, by default, in decimal, but can be entered in hex by preceding them with
a$. <name> isnot actually used but must be stated.

The uninitialised RAM area contains data areas all ocated by BUFFER: or UDATA during
the cross-compil ation.

Setting the compilation areas

The compiler must be instructed to compile into the areas defined by SECTI ON.
Therefore, after the memory map is defined you must code:

<nanel>
<nane2>
<nane3>

where <namel> isthe name of the ROM area, <name2> istheinitiialised RAM area, and
<name3> isthe uninitialised RAM area

An example

If your target board has a memory map as in the figure above, your control file should be
modified so that it reads:

$00000 $07FFF CDATA SECTI ON Kern

$08000 $0OFFFF | DATA SECTI ON Ker nl
$10000 $1FFFF UDATA SECTI ON Ker nU
Kern Kernl KernU

CDATA

Thisindicates three areas of memory with names Kern and Kernl and KernU. With this
setup, your kernel will have 32k of ROM and 32K for variables and interactive
development, plus 64k of uninitialised RAM that is not affected at power up.

Modifying the serial line drivers

Y our target board communicates with the external world viaa UART. Driversare
supplied for the supported targets. If you are using one of these, the appropriate supplied

17

Modifying the serial line drivers

seria driver code can be used. Thisislocated in the directory ROM\DRIVERS. Look here
first, as new drivers may have been added since the manual was written.

If you are using a UART for which driver code is not supplied, you will need to write all
the words required to:

initialisethe UART

send a character

receive a character

test if acharacter has been received

All four words will normally be Forth CODE definitions. Thisisrequired so that the send
and receive words are as fast as possible. Example serial line driversin the files
ROM\DRIVERS can be used as atemplate. Aswith the control fileit isnormally easier to
modify an existing serial line driver filerather than creating your own from scratch.

Two types of seria driver can be written:
interrupt driven

polled

Interrupt driven

An interrupt driven seria line can only be used if the UART generates interrupt signals
when characters are received. An interrupt driven driver will allow buffered serial
communications to be implemented with least processor overhead. Interrupt-driven
drivers are alittle more difficult to write than polled drivers.

Polled

A polled driver will continuoudly poll a status bit in the UART to detect when the UART
has either transmitted or received a character.

Initialising the serial line

Theword | NI T- SERmust perform all the UART initialisation required. Thisincludes
Setting:

the baud rate
any handshaking required

the number of data bits

18

Generating a standalone Forth

the number of stop bits
the parity to be used

It isrecommended that the baud rateisinitialy set to 9600 baud until the target board is
working. It can then be raised to make a more responsive target.

Sending a character to the host

The target code needs to be able to send a character to the host for display. Therefore, you
need to write aword which:

waits for the tranamit line to become available
tranamits a character to the host
increments the USER variable OUT

The method used can be either apolled or interrupt driven driver but must be called
(EM T).Once(EM T) iswritten, it must be assigned to the defered word EM T. The
stack effect of (EM T) is:

(EMT) \ char -- ; send char to host

Receiving a character from the host

The target code needs the ability to receive a character from thehost. To do thisit needs
to:

wait for a character to be received
place the character on the Forth stack

The method used can be polled or interrupt driven but the word must be called (KEY) .
Once (KEY) hasbeen written, it must be assigned to the deferred word KEY. The stack
effect of (KEY) is:

(KEY) \ -- char ; wait for char to be received

Detecting a received character

Thetarget needs (KEY?) to detect if a character has been received. This can be used as
part of (KEY) . (KEY?) needsto:

return true on the Forth stack if a character isavailable (-1)

return false on the Forth stack if a character is not available (0)

19

Setting up the system

Once (KEY?) iswritten, it must be assigned to the defered word KEY. The stack effect of
(KEY?) is:

(KEY?) \ -- t/f ; true if character received

Setting up the system

Setting up the system involves both hardware and software. The target hardware, PC,
EPROM emulator/programmer and serial line have to be connected as well as configuring
aterminal program to run the cross-compiler.

Setting up the hardware
To generate an interactive Forth target you need:

APC

A serial cable

A target

An EPROM emulator or programmer

Your PC needs to have at least one serial port for connecting to the target, so making the
Forth interactive. The default serial port is set in the umbilical contral file. The
PowerTerm terminal emulator defaultsto COM 1.

Setting up the software

To compile source code that generates a standal one Forth target, you need to configure the
cross-compiler to usethe control file you have just selected or created. The easiest way to
do thisisto modify the APP and APPDIR macros so that the cross-compiler knows where
your files arelocated. This can be done from within the IDE.

Cross-compiling

Now the hardware and software have been setup, you can now cross-compile the source
code to generate an executable image.

Creating an image

To cross-compile the source, ensure that the cross-compiler macros are set up correctly
and point to your control file. Press the cross-compile toolbar button to begin compilation.
The compiler displays its sign-on message and then compiles the source code.

20

Generating a standalone Forth

The cross-compile log

Following the compiler sign-on, depending on the compiler settings, you should see the
cross-compile-log. Aseach word is compiled the compiler displays the word's address, its
type and its shortened name. The type of item is coded as two characters as Table 3: Key
to crass-compiler log.

The output can be sent to afile or to the printer. Note that turning the log on to the screen
slows down the compiler considerably, but is useful when you have alot of compilation
errors or debug information to display. The scroll bars allow the log to be reviewed before
the compiler finishes, and portions of the text can be sent to the printer using the File
menu.

Turning thelog on and off

Ingtead of having the data displayed for each compiled item, thelog can be turned off. The
advantage of thisisthat the compiler spendsless time displaying data and so the cross-
compilation is quicker. To do this, change the compiler directive in the contral file from
LOGto NO- LOG Thelog can beturned on again by replacing LOGwith NO- LOGin the
control file.

Sending thelogto afile

The cross-compiler can redirect thelog to afileinstead of the display. To do this, use:

FI LE: <nane>

where<nane> isthefilenameto generate. This directive must be placed before the
command CROSS- COVPI LE. A macro is provided that can be set from within the IDE to
turn thelog on or off.

Sending thelogto a printer
The cross-compiler will send thelog to a printer. To do this, use:

PRN:

before the command CROSS- COVPI LE

The compilation summary

Once the cross-compiler has finished cross-compiling the source code, it displays
information about the compilation. Thisincludes:

any unresolved references

the number of forward references made and the number of unresolved (outstanding)
forward references

21

The created image

the size of the compiled image

the initialised RAM table address and length
section information

the compilation time

Unresolved references are words that are referenced in the source code but are not
defined. These can be due to spelling mistakes or not compiling some of your code.

If there are any unresolved forward references, your target may not work, and the
compiler tellsyou so.

The size of the compiled image isthe amount of actual code output into thefile. The
actual file size will be the size of the ROM indicated by the memory map.

The RAM tableisthe placein ROM where initial datafor theinitialised RAM section is
stored. When thetarget board is reset, theinitialisation code copies thistable into the
initialised RAM areas. These initial values of variables will be modified in RAM when
you store into avariable.

Code | Compiled type Code | Compiled type
VR Variable Fv Floating-point variable
CN Constant FC Floating-point constant
LB Label FA Floating-point array
Colon definition EQ Equate
CD Code definition CR Child of CREATE ... DOES>
DF Deferred word us USER variable
VC Vocabulary

Table 3: Key to cross-compiler log

The created image

22

The image created by the cross-compiler isa straight binary executable. It can be
downloaded to a suitable EPROM emulator or programmer. Thefile has the name given
when defining the memory map using the compiler directive SECTI ON. It hasthe
extension .IMG, which cannot be changed.

Generating a standalone Forth

Problems, problems ...
If an error occurs during compilation, the compiler will stop and display the line on which
the error occurred. The cross-compiler shows the line number and the file name where the
error occurred as well asthe type of error that has occurred.

Downloading the compiled image
Once the source code has been compiled the image needs to be downloaded to an EPROM
emulator or programmer.

Downloading to a LeBurg EPROM emulator

The MPE cross-compiler supports direct compilation into the LeBurg EPROM emulators
(series 2 onwards). If you have a LeBurg EPROM emulator, you can make a short cut to
the EPEM4.COM program by adding an externd tool to AIDE.

Downloading to a different emulator or programmer
The binary image can be downloaded to any EPROM emulator aslong asthe emulator's
software supports binary image files.

Running the target Forth
The image generated by the compiler has been downloaded to thetarget, it isready to be
reset and the Forth tested.

Switching to target mode

To receive characters from the target, run and configure your terminal program. All
versions of Windows are supplied with terminal emulation programs. The cross-compiler
IDE also comes supplied with its own terminal emulator * PowerTerm'.

Resetting the target board

Once the image has been downloaded, you can reset the target board. Y ou can either use
the reset supplied on the board or if no reset is on the board, turn the board's power off and

on again.

The sign-on
Once the board has been reset, the target should sign-on. Y ou should see amessage
similar to that in figure below. The version number and the number of bytes free will
depend on your system. Y ou how should have a working Forth. If the target did not show

the message, then you may have a problem with:

the seriadl line drivers

23

Running the target Forth

24

the memory map definition

your target board

your EPROM emulator/programmer

Direct port access under Windows NT/2000

Each of these should be checked.

MPE Hi tachi H8/300H ANS ROM Power Fort h v3. 00
16383 bytes free

ok

Figure 2: Target sign-on

Theserial linedrivers

If you do not get the sign on message, your transmit word might not be working correctly.
Y ou can check that you can transmit a character up the seria line, by appending code for
emitting a character up the serial line, onto the end of theinitialisation word | NI T- SER
Therefore a character can be transmitted and seen early in the initialisation sequence.
The memory map definition.

If the memory map for the ROM definition iswrong. Thetarget may not sign-on at all. If
the definition of the RAM memory map is wrong, the target may sign-on but may display

“garbage'.
Y our target board

It is aways necessary to check the obvious. Is the serial line connected? Has your target
board got power? EPROMSRAM plugged in correctly? Are jJumpers set correctly?

Y our EPROM emulator/programmer

Check to see if your emulator is emulating an EPROM that your target board is expecting.
If you have the wrong EPROM set, your target will not sign on.

Testing the Forth - an example

Once the Forth has signed-on, you need to test that it's working properly. Type WORDS,
thiswill display all the Forth words available.

If this works then typein,

Generating a standalone Forth

: FORTH TEST \ -- ; Aquick test for forth
" HELLO'

FORTH- TEST
This should display:
HELLO

followed by the ok prompt.

Cross-compiling an application
Once your Forth isworking on your target board, you will now want to compile your
application code.

Modifying the control file

Once new code has been written, you can add it to the control file. Near the bottom of the
contral file, thereisalist of commandsin the form:

I NCLUDE <nane>

To compile your application files you add them to the end of the list, although normally
before the line that reads similar to:

I NCLUDE . ..\ LI BRARY

Thisfile contains some useful words for cross-compiled targets, but isnot essential.
Running your application
To compile the application you need to:
run the cross-compiler
download to the EPROM emul ator/programmer
apply power and reset the target
Thetarget board signs-on. Y ou can now test your application.

Generating a turnkey application

Once you have written your application, you will want to makeit start when the target
board isreset. Thisisknown asaturnkey or autostarting application. Y our application
does not necessarily need to be interactive, so the compiler directive NO- HEADS can be

used. Thisremoves all the word headers, so making the final image more compact.

25

Cross-compiling an application

To make an application turnkey, use the directive MAKE- TURNKEY in the form:

MAKE- TURNKEY <nane>

where <name> is the name of the word to run at startup. The word <name> must be
defined before using this directive. The examplein Figure 3 generates a smple turnkey
application when cross-compiled. If you require the use of serial communications, the
multitasker, the heap, or leds, you must initialise them in your application. To initidise the
serial communicationsuse theword | NI T- SER To initialise the multitasker use | NI T-
MULTI . Notethat (I NI T) must be called so that initialised data can be copied into RAM

etc.
RUN
(INI'T) \ Init. system (Mandatory!)
I NI T- SER \ Init. the serial line
I NI T- MULTI \ If multitasking
I NI T- HEAP \ If using the heap
0 \ counter
BEG N
CR*“ Hello world!” dup .
1+
AGAI N \ Application never ends
MAKE- TURNKEY RUN

Figure 3: Example turnkey application

26

5 Generating an Umbilical target

This chapter describes how to generate an Umbilical Forth target for your target board. It
guides you through:

setting up your hardware and software
writing the serid linedrivers
modifying the memory map for your board

compiling and running a target Forth

Requirements for Umbilical Forth

To generate an interactive target you require:
aLeBurg EPROM emulator for fast download
interrupt driven serial drivers

If you want to define new wordsinteractively, you need to use a LeBurg EPROM
emulator. When the cross-compiler generates code, it will write to the emulator. This
normally “upsets the processor so the processor should be put to sleep while waiting for
seria communications. Once the UART becomes available, the processor will be taken
out of sleep mode and will continue processing.

Is your target already supported?

The cross-compiler shipswith at least one, usually more, contral files for various
commercial target boards. By using one of these contral files, theinstallation of an
Umbilical Forth target for your board will be greatly ssimplified.

If you do not have one of these boards you will have to create a control file and serial line
driversfor your board.

The control file

The control file contains all the details of your board that the cross-compiler needsto
know. These include:

the memory map of your board

whether you wish alog to be displayed

27

The memory map

the clock rate of your board's crystal

Aswell as containing configuration information, the contral file containsalist of files that
are to be cross-compiled.

Once the cross-compiler knows these items, it can generate a correct binary image from
your source code.

Creating a control file

To create anew contral file, copy an existing one and then modify it to match your board.

Thisisnormally easier than generating one from scratch. Example control files arein the
directory CHIP\CONFIGS.

The memory map

The memory map describes the addresses where ROM and RAM start and end in your
target system. The word SECTI ON defines an area of memory that will become the
current memory area of its type when used. Three memory types are defined:

CDATA - Code — where code is compiled
| DATA - Initidised data— where data that must beinitialised is placed
UDATA - data that should not beinitialised such as battery backed RAM or EEPROM.

The directives CDATA | DATA and UDATA sdlect which type of memory the Forth words
bel ow affect:

, ALI GN ALI GNED ALLOT C, CREATE HERE UNUSED W

Setting the memory map

The memory map is described in your control file, so once the file has been created, you
can change the memory map definition to match your board.

The memory map is described in three parts:
the start and end of code ROM
the start and end of initialised RAM

the start and end of uninitialised RAM

Setting the start and end of ROM

The start and end of ROM are defined by using the compiler directive SECTI ONused in
the form:

28

Generating an Umbilical target

romstart romend CDATA SECTI ON <nane>

whererom-start is the address of the gart of ROM, rom-end is the address of the end of
ROM and <narme> isthe name of the output file. The compiler automatically gives the
filename <name> an extension .IMG so <nane> must be just aname without an
extension. Thenumbersr om st art andr om end are, by default, in decimal, but can
be entered in hex by preceding them by a $.

This area also contains any data defined by CDATA during the cross-compilation. This
directive is discussed elsewherein the manual.

Setting the start and end of initialised RAM

The start and end of initialised RAM are defined by using the compiler directive
SECTI ONused in theform:

ramstart ramend | DATA SECTI ON <nane>

wherer am st ar t isthe address of the start of RAM, r am end isthe address of the
end of RAM and <name> is the name for this area of memory. The numbers ram-start and
ram-end are, by default, in decimal, but can be entered in hex by preceding then by a $.

Theinitialised RAM area contains any data defined by VARI ABLE or VALUE or | DATA
during the cross-compilation. These directives are discussed elsewhere in this manual.

Setting the start and end of uninitialised RAM

The start and end of thisRAM is defined by using the compiler directive SECTI ON, used
in the form:

ramstart ram end UDATA SECTI ON <nane>

wherer am st ar t isthe address of the start of RAM, r am end isthe address of the
end of RAM and <nane> isthe name for this area of memory. The numbersram-start

and ram-end are, by default, in decimal, but can be entered in hex by preceding them by a
$. <name> isnot actually used but must be stated.

The unitialised RAM areas contain data space alocated by BUFFER: or UDATA during
the cross-compil ation.

Setting the compilation areas

The compiler must be instructed to compile into the pages defined by SECTI ON.
Therefore, after the memory map is defined you must code:

<nanel> <name2> xDATA

29

Modifying the serial line drivers

where <namel> isthe name of the ROM area, <name2> isthe RAM area, and xDATA is
one of CDATA | DATA and UDATA (normally CDATA).

An example

If your target board has a memory map asin the figure, your control file should be
modified so that it reads,

$00000 $07FFF CDATA SECTI ON Kern
$08000 $0FFFF | DATA SECTI ON Ker n-data
$10000 $1FFFF UDATA SECTI ON Ker n-uram
Kern Kern-data Kern-uram CDATA

Thisindicates two areas of memory with names Kern and Kern-data. With this setup, your
kernel will have 32k of ROM and 32K for variables and interactive devel opment, plus 64k
of unitialised RAM that is not affected at power up.

Modifying the serial line drivers

Y our target board communicates with the external world viaa UART. Driversare
supplied for the supported targets. If you are using one of these, the appropriate supplied
seria driver code can be used. Thisisin thedirectory CHIPADRIVERS. Look herefirg, as
new drivers may have been added since the manual was written.

For interactive compilation with Umbilical Forth through the EPROM emulator, the
processor must be put to sleep while compilation isin progress. In practice, this means
that the processor is put to sleep while waiting for a character, and isrestarted by the
receiver interrupt. If the processor cannot be put to sleep, interactive compilation can be
achieved by placing the receiver-polling loop in RAM, so that the EPROM is not used
while the CPU is palling for keyboard input.

If you are using a UART for which driver code is not supplied, you will need to write all
the words required to:

Initialise the UART

Send a character

Receive a character

Test if acharacter has been received
Export the names to the link driver

All four words will normally be Forth CODE definitions. Thisisrequired so that the send
and receive words are as fast as possible. Example serial line driversin the filesin the
DRIVERS directory can be used as atemplate. Aswith the contral fileit isnormally

30

Generating an Umbilical target

easier to modify an existing serial line driver filerather than creating your own from
scratch.

Two types of seria driver can be written:
interrupt driven

polled

Interrupt driven

An interrupt driven seria line can only be used if the UART generates interrupt signals
when characters are received. For interactive use, the processor must al so be capabl e of
being put to deep. An interrupt driven driver will alow buffered serial communications to
be implemented with least processor overhead. Interrupt-driven drivers are alittle more
difficult to write than polled drivers.

Polled

A polled driver will continuoudly poll a status bit in the UART to detect when the UART
has either transmitted or received a character.

Initialising the serial line

Theword | NI T- SERmust perform all the UART initialisation required. Thisincludes
Setting:

the baud rate

any handshaking required
the number of data bits
the number of stop bits
the parity to be used

It isrecommended that the baud rateisinitialy set to 9600 baud until the target board is
working. It can then be raised to make a more responsive target.

Sending a character to the host

The target code needs to be able to send a character to the host for display. Therefore, you
need to write aword which:

waits for the tranamit line to become available

tranamits a character to the host

31

Modifying the serial line drivers

The method used can be either apolled or interrupt driven driver. The stack effect of
(EMT) is

(EMT) \ char -- ; send char to host

Receiving a character from the host
The target code needs the ability to receive a character from thehost. To do thisit needs
to:
wait for a character to bereceived

place the character on the Forth stack

The method used can be polled or interrupt driven. Once (KEY) has been written, it
must be assigned to the deferred word KEY. The stack effect of (KEY) is

(KEY) \ -- char ; wait for char to be received

Note that the version of KEY that you export to the link driver must not call the
multitasker, and must put the CPU to deep if an EPROM emulator is being used.

Detecting a received character

Thetarget needs (KEY?) to detect if a character has been received. This can be used as
part of (KEY) . (KEY?) needsto:

return true on the Forth stack if a character isavailable (-1)
return false on the Forth stack if a character is not available (0)

Once (KEY?) iswritten, it must be assigned to the defered word KEY?. The stack effect
of (KEY?) is

(KEY?) \ -- t/f ; true if character received

Exporting the names

The Umbilical Forth link uses standard names for itslink drivers. These must be
associated with your words. Note that the version of KEY that you export to thelink driver
must not call the multitasker, and must put the CPU to sleep if an EPROM emulator is
being used. The standard way to export the namesisto usethe SYNONYM <new>

<ol d> notation, which creates anew name for an existing word. Thisisusually donein
the contral file just before compiling the files MESSAGES.FTH and TARGEND.FTH.

Synonym wai t -byte (serkey)
Synonym send-byte (serenit)
Synonym Wi t - Byt e? (serkey?)
Synonym I nit- XTL I nit-Ser

32

Generating an Umbilical target

Setting up the system

Setting up the hardware
To generate an interactive Forth target you need:

APC

A serid line

A target board

An EPROM emulator or programmer

Your PC needs to have at least one serial line port for connecting to the target board, so
making the Forth interactive. The default seria port is set in the umbilical control file. The
PowerTerm terminal emulator defaultsto COM 1.

If the Leburg EPROM emulator is being used, you will also need to connect the emul ator
to the digital 1/0O card ingtalled in your PC.

Setting up the software

To compile source code that generates a standal one Forth target, you need to configure the
cross-compiler to usethe control file you have just selected or created. The easiest way to
do thisisto modify the APP and APPDIR macros so that the cross-compiler knows where
your files arelocated. This can be done from within the IDE.

Cross-compiling

Now the hardware and software have been setup, you can now cross-compile the source
code which is automatically compiled down to your EPROM emulator.

Creating an image

To cross-compile the source, ensure that the cross-compiler macros are set up correctly
and point to your control file. Press the cross-compile toolbar button to begin compilation.
The compiler displays its sign-on message and then compiles the source code.

The cross-compile log

Following the compiler sign-on you see the cross-compilelog. As each word is compiled

the compiler displays the word's address, itstype and its shortened name. The type of item
is coded as two charactersasin Table 4.

The output can be sent to afile or to the printer. Note that turning thelog on to the screen
slows down the compiler considerably, but is useful when you have alot of compilation

33

Cross-compiling

34

errors or debug information to display. The scroll bars alow the log to be reviewed before
the compiler finishes, and portions of the text can be sent to the printer using the File
menu.

Code | Compiled type Code | Compiled type
VR Variable Fv Floating-point variable
CN Constant FC Floating-point constant
LB Label FA Floating-point array
Colon definition EQ Equate
CD Code definition CR Child of CREATE ... DOES>
DF Deferred word us USER variable
VC Vocabulary

Table 4: Key to cross-compiler log

Turning thelog on and off

Ingtead of having the data displayed for each compiled item, thelog can be turned off. The
advantage of thisisthat the compiler spendsless time displaying data and so the cross-
compilation is quicker. To do this, change the compiler directive in the contral file from
LOGto NO- LOG Thelog can beturned on again by replacing LOGwith NO- LOGin the
control file.

Sending thelogto afile
The cross-compiler can redirect the log to afileinstead of the display. To do this, use:

FI LE: <nane>

where<nane> isthefilenameto generate. This directive must be placed before the
command CROSS- COVPI LE. A macro is provided that can be set from within the IDE to
turn thelog on or off.

Sending thelogto a printer
The cross-compiler will send thelog to a printer. To do this, use:

PRN:

before the command CROSS- COVPI LE

Generating an Umbilical target

The compilation summary

Once the cross-compiler has finished cross-compiling the source code, it displays
information about the compilation. Thisincludes:

any unresolved references

the number of forward references made and the number of unresolved (outstanding)
forward references

the size of the compiled image

the initialised RAM table address and length
section information

the compilation time

Unresolved references are words that are referenced in the source code but are not
defined. These can be due to spelling mistakes or not compiling some of your code.

If there are any unresolved forward references, your target may not work, and the
compiler tellsyou so.

The size of the compiled image isthe amount of actual code output into thefile. The
actual file size will be the size of the ROM indicated by the memory map.

The RAM tableisthe placein ROM where initial datafor theinitialised RAM section is
stored. When thetarget board is reset, theinitialisation code copies thistable into the
initialised RAM areas. These initial values of variables will be modified in RAM when
you store into avariable.

Problems, problems ...

If an error occurs during compilation, the compiler will stop and display the line on which
the error occurred. The cross-compiler shows the line number and the file name where the
error occurred as well asthe type of error that has occurred.

Downloading the compiled image

Once the source code has been compiled the image needs to be downloaded to an EPROM
emulator or programmer.

Downloading to a LeBurg EPROM emulator

The MPE cross-compiler supports direct compilation into the LeBurg EPROM emulators
(series 2 onwards). If you have a LeBurg EPROM emulator, you can make a short cut to
the EPEM4.COM program by adding an externd tool to AIDE.

35

Running the target Forth

Downloading to a different emulator or programmer

The binary image can be downloaded to any EPROM emulator aslong asthe emulator's
software supports binary image files.

Running the target Forth

The image generated by the compiler has been downloaded to the target, it isready to be
reset and the Forth tested. If you are not using the EPROM emulator you must transfer the
codeto the target yoursdf. If the target is usng an Umbilical Forth monitor in EPROM,
you will be able to download the code to the target across the target link during the
Umbilical Forth startup procedure.

Resetting the target board

Once the source code has been compiled and downloaded to the target you can reset the
target board. Follow the instructions given by the cross-compiler.

The sign-on

Y ou will see a message displaying information such as the version number, copyright
details etc. The cross-compiler itself displays this message, so thetarget isnot necessarily
up and working.

To test thetarget board, you need to create a definition. Therefore if you type:

: FORTH TEST \ -- ; Aquick test
" HELLO'

FORTH- TEST

This should display:

HELLO

followed by the ok prompt. Note that if you have compiled the multitasker and are using
an EPROM emulator, it must be disabled with SI NGLE before any compilation takes
place. Thishasto be done because the tasker never permits the CPU to go to sleep.

If you didn't get this response, then you may have a problem with:
the serial line drivers
the memory map definition
your target board

your serial line

36

Generating an Umbilical target

your EPROM emulator/programmer
Direct port access under Windows NT/2000.
multitasking being enabled and an EPROM emulator isin use.

Each of these should be checked.

Cross-compiling an application

Once your Forth isworking on your target board, you will now want to compile your
application code.

Modifying the control file

Once new code has been written, you can add it to the control file. Near the bottom of the
contral file, thereisalist of commandsin the form:

ALL FROM FI LE <nane>

To compile your application files you add them to the end of thelist.

Running your application
To compile the application you need to:

run the cross-compiler
download to the EPROM emul ator/programmer
apply power and reset the target

The target board signs-on. Y ou can now test your application.

Debugging and developing your application

Forth is an interactive language, use thisto your advantage by writing small sections of
code and testing as you go. Within Umbilical Forth you can compile onefile at atime, or
enter definitions at the keyboard. They will be compiled and immediately downloaded to
the target, where they can be tested, just as with any other interactive Forth. Y ou can use
the assembler, and refer to LABEL s and EQUates by name.

Generating a turnkey application

Once you have written your application, you will want to makeit start when the target

board isreset. Thisisknown asaturnkey or autostarting application. Y our application
does not necessarily need to be interactive, so the compiler directive NO- HEADS can be

used. Thisremoves all the word headers, so making the final image more compact.

37

Debugging the serial link

To make an application turnkey, use the directive MAKE- TURNKEY in the form:

MAKE- TURNKEY <nane>

where <name> is the name of the word to run at startup. The word <name> must be
defined before using this directive. The examplein the figure generates a ssimple turnkey
application when cross-compiled. If you require the use of serial communications or the
multitasker, you must initialise them in your application. To initialise the seria
communications usetheword | NI T- SER To initialise the multitasker use | NI T-
MULTI . Notethat (I NI T) must be called so that initialised data can be copied into RAM
€tc.

Also turn off the EQUate UVBI LI CAL? in the contral file to remove the Umbilical Forth
drivers from the code.

: RUN
(INI'T) \ Init. system (Mandatory!)
I NI T- SER \ Init. the serial line
I NI T- MULTI \ If multitasking
0 \ counter
BEG N
CR*“ Hello world!” dup .
1+
AGAI N \ Application never ends

MAKE- TURNKEY RUN

Figure 4: Umbilical Forth turnkey application

Debugging the serial link

If the serial link is being serioudly stubborn, you can display the seria traffic. When serid
debugging is enabled, characters are displayed as hex bytes. Character transmitted by the
PC arein the form <xy>, and charactersreceived by the PC are shown in the form [ab].

+SERI AL-DEBUG \ -- ; enable serial debugging
-SERI AL-DEBUG \ -- ; disable serial debugging
SERI AL- DEBUG? \ -- flag ; true if debuggi ng

Using other link drivers

The other Umbilical Forth link drivers are specific to various CPU types and families, and
are described in the target specific manuals. Note that there are two partsto the Umbilical
system, the link driver which handles communications during debugging, and the memory
driver which handles programming of the CPU code space. New drivers can be installed

38

Generating an Umbilical target

at any time, and users wishing to write a new driver should contact M PE for further
details. MPE is also avail able to devel op new drivers for you.

Atmel 8958252 SPI link —Umbilical link and programming
8051 SPI access— Umbilical link only

BDM for CPU32 cores such asthe 68332 — Umbilical link plus RAM and limited
EPROM/Flash drivers

JTAG for ARM cores— Umbilical link pluslimited RAM and EPROM/Flash drivers.
JTAG for MSP430 cores—Umbilical link pluslimited RAM and EPROM/Flash drivers.

Note that if you are using Windows NT/2000 or any other version of Windows that treats
direct port 1/0O as a privileged ingruction, you must install the NTPORT.EXE file from the
COMPILER\XTRA directory as described in the ingalation section of the manual and
modify your contral fileto include the NT- ACCESS- PORT S directive.

39

6 Optimising your target Forth

Once you have atarget Forth running, you may want to either reduce the size of your
image or increase the execution speed of the code. This chapter describes those features of
the MPE Devel opment system that hel ps you with thisaim.

Reducing the size of your image

During devel opment you may need to reduce the sze of your target image. For example,
your application may have grown too large for your ROM space. Reducing ROM
requirements is usually done by:

removing headers

factoring your code

removing excess code

using equates instead of constants
removing forward references

using Umbilica Forth

Removing headers

If you have already been using Umbilical Forth, the compiler will not have generated any
heads, so this discussion only appliesto a standal one target.

To reduce the size of the compiled image, you can ingruct the compiler to compile all or
some of the code without heads. For each word defined, the cross-compiler generates a
header in the target image. A header isthe name of the word stored as a counted string
and is used when thetarget is used interactively. Therefore, by removing the heads of
words you reduce the interactivity of your system.

Removing all headers

To remove the heads from all the code, use NO- HEADS. The compiler will produce code
that will be greatly reduced in size, but cannot be used interactively.

41

Removing headers

42

Selectively removing headers

To select anumber of wordsto be made headerless, use | NTERNAL and EXTERNAL.
I NTERNAL instructs the compiler to stop generating headers, and EXTERNAL instructs it
to generate headers again.

Factoring your code

When writing in Forth, code should be reused as much as possible. By reusing code, your
target image can be reduced greatly. The smaller the procedures you use, the more easily
they can be reused. In addition, small procedures are easy to test. Consequently code
written with small proceduresis normally morerdiable.

Removing excess code

During devel opment, debug and test code is often inserted into the source. This codeis
easily left and forgotten about. By stripping out this excess code you can gain more space
in the EPROM. The easest way to do thisisto use the XREF system (not availablein the
Forth Stamp versions).

The XREF system is turned on by using theword +XREFS in the contral file. All code
after +XREFS will be cross referenced. Use —XREFS to turn cross referencing off.

Use XREF- UNUSED to find which words are unused. The XREF words:

XREF <nanme>
XREF- UNUSED
XREF- ALL

are always available in Umbilical Forth. For standal one Forths, you can put the compiler
into interactive mode by including | NTERACTI VE before FI NI Sin your contral file, or
you can include the XREF words in your source code.

You can a so reduce the size of the code by using thelibrary file mechanism (see
Controlling compilation) which enables the compiler to include only those words that
have already been referenced.

Using equates instead of constants

An equate isa congtant that just resides within the cross-compiler. It therefore cannot be
referenced when interactively debugging on your target system. The actual value of the
equate iscompiled “in-lin€' instead of refering to a constant. Therefore you can save some
space on the target board for each constant defined but sacrifice some interactivity. This
only works if you don't refer to an equate many times, as several instances of an equate
compiled in-line may use more bytes than the memory required to store a constant and
referenceit.

Optimising your target Forth

Defining an equate
An equate is defined in a similar way to a constant:

xxXxx EQU <nane>

where xxxx is the value of the equate and <nane> isits name.

Using an equate
An equate is used in the same way as a constant, by stating its name.

0100 EQU ADDRESS
ADDRESS 4 + EQU ADDRESS2

: SOVE- WORD \o--
. ADDRESS ...
. ADDRESSZ2 ...

Removing forward references

When aforward reference is compiled on a subroutine threaded target, the largest
available target range branch hasto be used. For most CPUs, shorter ingructions are
available if the destination address is already known. Removing forward references
reduces the number of unknown destinations and so reduces code size.

The compiler log tells you how many forward references were made. Y ou can find out
which words were forward referenced using the directive. FORWARDS (--).

Using Umbilical Forth

If you require a compact target Forth but without the inconvenience of removing target
headers, you can use Umbilical Forth. Umbilical Forth gives you an interactive Forth in a
very compact size (the Umbilical Forth kerndl isabout 2.5k for 16 bit targets, and 4k for
32 bit targets). The kerne does not contain all the words in the standal one target, so you
might have to write afew words to get your code to compile or copy some code from the
standalone target Forth. For more detail s see the chapters on Generating an Umbilical
Forth target.

Speeding up your code

The normal way to increase the speed of your code isto code strategic words in
assembler. Good candidates for coding are:

inner loops

words containing alot of stack manipulation words (DUP, SWAP etc)

43

Speeding up your code

44

The VEX optimisers significantly reduce the need to code in assembler. However, some
impact can be made by replacing very small definitions by compiler directives. Every time
the VFX optimiser hasto generate acall, it hasto generate a canonical Forth stack. If you
replace a short definition by a compiler directive, the optimiser does not call it, but
compilesit asif from source code. Thus:

. foo \ addr -- addr’
3 cells + @

can be replaced by

conpi l er
. foo \ addr -- addr’
3 cells + @

i ar get
On many target CPUs, especially those with good indexed addressing modes, the resulting

codeis shorter. Compiler directives allow you to retain the code modularity of short Forth
definitions without the calling overhead.

7 Generic I/0O

About Generic I/O

Generic I/O alows the Forth words KEY KEY? EM T TYPE CRto use any /O device.
The user variables | PVEC and OPVEC contain pointers to the current device structure. For
example, input can be from a seria channd, and output can beto an LCD screen. The
selection can be changed at any time by the application, and because | PVEC and OPVEC
are USER variables, different tasks may have different 1/0 devices.

The generic 1/O structure consists of any array of five (six for Harvard targets) XTs. The
XTsarefor the words that perorm the following basic functions.

cell KEY action

cell KEY? Action

cell EM T action

cell TYPE action

cell CR action

cel | TYPEC action Harvard targets (e.g. 8051) only

The CRand TYPE actions are provided to ease implementations of devices such asLCD
output in which CR does not naturally correspondto13 EM T 10 EM T, and for
which TYPE will be much faster than repeated EM Ts. The output functions update the
USER variable OUT before calling the action.

Creating a new device

When creating anew device driver, make an array that contains the pointers. The
following code is taken from the 8051 serial driver.

cdata \ this table goes in CODE space

create SerConsole \ -- addr ; OUT nanaged by upper driver
tasking? [if]

(mserkey) \ -- char ; schedule, receive char
[el se]

(serkey) , \ -- char ; receive char
[then]

(serkey?) , \ -- flag ; check receive char

(serenmit) |, \ -- char ; display char

(sertype) , \ caddr len -- ; display string

(sercr) , \ -- ; display new line

(sertypec) , \ caddr len -- ; display CDATA

\ for Harvard targets only

The generic 1/O dispatcher handles all use of QUT for the output functions. OUT is
mani pulated before the action is performed so that special cases can update OUT
themselves.

45

Selecting a device

When the multi-tasker is used, a multi-tasking version of (SERKEY) musgt be used. This
isusualy called (MSERKEY) in the source code.

Selecting a device
To select serid input, the phrase

Ser Consol e | pVec !

isal that isneeded. Similarly, to select seria output

Ser Consol e OpVec !

isdl that isneeded.

46

8 Multitasker

The multitasker supplied with the MPE devel opment system can greatly simplify complex
tasks by breaking them down into manageabl e chunks. This chapter |eads you through:

initialising the multitasker
writing atask

communicating between tasks
handling events

The multitasker isin thefile MULTIxx.FTH in the CPU directory, where the 'xx' denotes
the processor type. Where the CPU (e.g. 8051) uses a different code base for single chip
and expanded operation, the fileswill be called MULTIxXxXINT.FTH and
MULTIXXEXT.FTH.

Initialising the multitasker

The multitasker needs to be initialised before use. At compile time the cross-compiler
must be told the total number of tasks that your system requires and at run-time, all the
tasks must be initialised.

Selecting the multi-tasker

When set non-zero, the equate TASKI NG? in the control file causes the multitasker to be
loaded. Note that TASKI NG? also affects other words such as KEY and M5 so that callsto
scheduler areincluded by words that can block for a significant amount of time, for
example when waiting for human input.

xxxxX EQU TASKI NG?

The configuration of the multitasker is controlled by other equates which control what
facilities are compiled.

6 cells equ tch-size
0 equ event-handl er?
0 equ nessage- handl er?
0 equ semaphores?

internal consistency check
true for event handl er
true for message handl er

\
\
\
\ true for semaphores

Starting the multitasker

Before use the multitasker must beinitialised by theword I NI T- MULTI , which
initialises theinitial task MAI N, and enables the multi-tasker.

a7

Writing a task

To start the multitasker, use MULTI . MULTI sarts the scheduler so new tasks can be
added.

Stopping the multitasker
To stop the multitasker, use SI NGLE.

Writing a task

Tasks are very straightforward to write, but the way tasks are scheduled needsto be
understood.

Using the scheduler

The multitasker is software scheduled. This meansthat each task relinquishes control back
to the scheduler when it'sready. Thisisdifferent from a pre-emptive scheduler where the
scheduler interrupts atask. A word is supplied so that atask can relinquish control back to
the scheduler, PAUSE.

Using PAUSE

The word PAUSE passes control back to the scheduler, which executes all the other tasks
once, then returns back to thistask

An example

An exampletask is shown below. Thetask isan endless oop with theword WAI T
embedded in it. When the word WAI T is executed, the scheduler reschedul es to the next
task. The scheduler will not run thistask until it hasrun all other tasks 1000 times. Each
time the task is executed, it will emit a beep.

VAT \'n--; wait for niterations
0 ?DO PAUSE LOOP

: ACT1O0N1 \ —; An exanple task
BEG N \ Start an endl ess | oop
7EMT \ Produce a beep
1000 WAI'T \ Reschedul e 1000 tines
\ Go round again

AGAI N

TASK TASK1 \ nanme task, get space for it

The task name created by TASK is used asthe task identifier by all wordsthat control
tasks.

48

Multitasker

Task dependent variables

An areaof memory is set aside for each task. This memory contains user variables which
contain task specific data. For example, the current baseisnormally a user variable asit
can vary from task to task.

Defining a user variable
A user variableis defined in the form:

n USER <nane>

where n isthe nth byte in the user area. From version 6.1 onwards, the word +USER can
be used to add a user variable of a given size:

<si ze> +USER <nane>

The use of +USER avoids any need to know the offset at which the variable starts. The
v6.1 kernd code relies on +USER and new application code should use +USERIN
preference to USER

Using a user variable

A user variableis used in the same way as anormal variable. By stating its name, its
addressis placed on the stack, which can then be fetched using @and stored by ! .

Tasksand local variables

Local variables areheld on thereturn stack. If heavy use of local variablesis made, the
required return stack depth can be large. If you suspect this of causing problems such as
random crashes, increase the value of the EQUate for the return stack size in the control
file.

Initialising a task
A task needsto be initialised in order to be run.

* ACTIONL TASK1 I NI TI ATE
where ACTI ONL1 isto be the action of the task and TASK1 isthetask identifier

Thetask identifier is used to control the task. Tasks defined by TASK <nane> return a
task identifier when <nane> is executed.

49

Controlling tasks

Controlling tasks

Tasks can be controlled in the following ways:
activated
suspended for a number of schedules
halted
restarted after its been halted

You can aso stop the current task.

Starting a task
A task is started by activating it. To activate atask, usetheword | NI TI ATE

' <action> <task> I NI TI ATE

where* <action> gives the xt of the word to be run and <task> isthe task identifier.

Stopping a task
A task may be temporarily suspended. A task may also stop itsdlf.
Temporarily stopping a task
To temporarily stop atask, use HALT. HALT is used in the form:

<task> HALT

where <task> isthe task to be stopped. To restart a stopped task, use RESTART.
RESTART isused in the form:

<t ask> RESTART
where <task> isthe task to restart.

Stopping the current task
To stop the current task (i.e. stop itsalf) use STOP. STOP isused in theform,

STOP
Handling messages

An essential feature of the multitasker isthe ability to send and receive messages between
tasks.

50

Multitasker

Sending a message

To send a message to another task, use the word SEND- MESSAGE. SEND- MESSACE is
used in the form:

message task SEND- MESSAGE

where message is a 32-bit message and task istheidentifier of the task to send the
message to. The message can be data, an address or any other type of information but its
meaning must be known to the receiving task.

Receiving a message

To receive a message, use GET- MESSAGE. GET- MESSAGE suspends the task until a
message arrives. When a message isreceived the task isre-activated and the sending task
and the data isreturned.

Creating events

Events are ana ogous to interrupts. Whereas interrupts happen on hardware signals, events
happen under software control.

Writing an event

An event isanormal Forth word. An event is associated to atask so that when the event is
triggered, thetask is activated. Therefore, an event is usually used asinitialisation for a
task.

Initialising an event
Eventsareinitialised in asSmiliar way to tasks. They are assigned in the form,

ASSI GN EVENT1 task TO EVENT

where EVENT1 isyour event handler and n isthetask number of thetask that it isto be
associ ated with.

Triggering an event
There are two ways of triggering an event:
using SET-EVENT
setting a bit in the status word

Using SET-EVENT

SET- EVENT isaword that sets an event flag for atask. Once the event flag is set, the
tasker will execute the event before it switchesto the task. Thetask isalso activated.

51

Interrupts and critical sections

Setting a bit in the status wor d.

A bit can be set in atask's status word that indicates to the multitasker that an event has
taken place. This method can be used to trigger an event from a hardware interrupt. Refer
to "The multitasker internals' later in the chapter for details on the status byte.

This mechanism can easily be used by interrupt code written in assembler to signal that an
interrupt has taken place, and that consequent processing should start.

Clearing an event

To stop an event handler being run, use CLEAR- EVENT.

Interrupts and critical sections

52

Sometimes the multitasker has to be inhibited so that other tasks are not run during critical
operations that would otherwise cause the scheduler to operate, e.g. KEY. This achieved
using the words SI NGLE and MULTI .

SINGLE -- : inhibit tasker
MULTI -- : restart tasker

When communication between atask and an interrupt routineisrequired, or if the
scheduler has been converted to be pre-emptive rather than the default cooperative mode,
great care must be taken. Flags must be tested by the main task, interrupted and modified
by the interrupt routine, and then written back by the main routine, causing the last
interrupt change to beignored. Six words are provided for interrupt management, and
these are a so documented in the interrupt chapter. Thereis considerable variation in CPU
architectures, and if the words described here are not present, alternatives will
documented in the CPU specific section of the manual.

DI -- ; disable interrupts
“ d_iH

Glaobally disable interrupts.
El -- ; enable interrupts
He_iH

Glaobally enable interrupts
SAVE-INT -- X ; save interrupt status
“save-int”

Return current interrupt state, and disable interrupts. Thisword is provided for
compatibility with previous versions of the compiler and target code, but shorter
and faster code islikely to be produced using the new constructs[| and 1] .

Multitasker

RESTORE-INT X -- ; restore interrupt status
“restore-int”

Restore the interrupt state returned by SAVE- | NT. . Thisword is provided for
compatibility with previous versions of the compiler and target code, but shorter
and faster code islikely to be produced using the new constructs[| and 1] .

[l R: -- x ; saveinterrupt staus, disable inteerupts
“bracket-i”

Save the current interrupt status on the return stack and disable interrupts. This
word can only be used insde acolon definitionand [| and 1] must be used in
matching pairs.

M R: ccr -- ; restore CCR from return stack
“i-bracket”

Restore the interrupt status from the return stack. This word can only be used
inside a colon definitionand [| and I] must be used in matching pairs.

Semaphores

A SEMAPHORE is a structure used for signalling between tasks, and for resource
allocation. It hastwo fields, a counter (cell) and an owner (taskid, cell). The counter field
isused as a count of the number of times the resource may be used, and the owner field
containsthe TCB of thetask that last gained access. Thisfield can be used for priority
arbitration and deadlock detection/arbitration. An example compiler definition of
SEMAPHORE is below.

Interpreter

: semaphore \ -- ; -- addr [child]
idata create
o, 0, \ count and arbiter fields
iarget

This design of a semaphore can be used either to lock aresource such as a comms channel
or disc drive during access by one task, or as a counted semaphore controlling accessto a
buffer. In the second case the counter field contains the number of times the resource can
be used.

Semaphores are accessed using SI GNAL and REQUEST. SI GNAL increments the counter
field of a semaphore, indicating either that ancther item has been allocated to the resource,
or it isavailable for use again, O indicating in use by a task

: signal \ addr -- ; increnment counter,
\ so making it available
save-int \ must be interrupt safe
1 over +! cell+ off \ inc. counter, release

restore-int

53

The multitasker internals

REQUEST waits until the counter field of a semaphoreis non-zero, and then decrements
the counter field by one. This allows the semaphore to be used asa COUNTED

semaphore. For example a character buffer may be used where the semaphore counter
shows the number of available characters.

Alternatively the semaphore may be used purely to shareresources. The semaphoreis
initialised to one. Thefirst task to REQUEST it gains access, and all other tasks must wait
until the accessing task SI GNAL s that it has finished with the resource.

: request \ sem-- ; get access to semaphore
>r
begi n
save-int r@@o= \ n.b test and set
whi | e
restore-int pause \ operations nust be
repeat \ non-interruptible
-lr@+! \ got it, decrenment counter
self r> cell+ ! \ mark resource as mne
restore-int \ re-enable interrupts

The multitasker internals

54

A multitasker tries to simulate many processors with just one processor. It works by
rapidly switching between each task. On each task switch it saves the current state of the
processor, and restores the state that the next task needs.

The Forth multitasker is software scheduled. This means that each task relinquishes

control to the scheduler, which then switches to the next task. In thisway | ess processor
state information needs to be saved.

The scheduler's data structure

The Forth multitasker creates atask control block for each task. Thetask control block
(TCB) isadata structure which containsinformation relevant to atask (see below). The

status byte (TCBST) contains information on the execution of thetask and its event (see
bel ow).

The control block occupies the start of the USER area.

Multitasker

Field Contents Size Offset
TCB.LINK Pointer to next next’s TCB Cdl 0
TCB.SSP Saved task stack pointer Cdll 2/4
TCB.STATUS | Task status Cdll 4/8
TCB.MSRC Task ID of last message sent to thistask | Cell 6/12
TCB.MESG Message data Cdll 8/16
TCB.EVENT | XT of word run by task’s event handler Cdll 10/20

Table 5: Task control block

Bit When set When Reset

0 Task isrunning Task ishalted

1 M essage pending but not read No messages

2 Event triggered No events

3 Event handler has been run No events (reset by user)
4. User defined User defined

Table 6: Task status byte

A simple example

The following example is a simple demonstration of the multitasker. Itssimpleroleisto
display a hash (#) every so often, but leaving the forground Forth running. To use the
multitasker you must cross-compilethe file MULTI*.FTH into your target.

Defining a simple task
The following code defines asimpletask called TASK 1. It displays a # every 1000

schedules.
VARI ABLE DELAY \ tine delay between #'s
1000 DELAY ! \ initialise tinme del ay
: ACTI ON1 \ -- ; task to display #'s
[CHAR] $ EM T \ Display a dollar ($%$)
BEG N \ Start continuous | oop
[CHAR] # EMT \ Display a hash (#)
DELAY @0 \ Reschedul e Del ay times

55

A simple example

?DO PAUSE LOCP
AGAI N \ Back to the start ...

Initialising the multitasker

Before any tasks can be activated, the multitasker must beinitialised. Thisis done with
the following code:

I NIT- MULTI
Theword I NI T- MULTI initidlises al the multitasker's data structures and starts
multitasking. Thisword need only be executed once in a multitasking system.

Activating the example task
To activate (run) the example task, type:

TASK TASK1
ASSI GN ACTI ONL TASKL | NI TI ATE

Thiswill activate ACTI ON1 asthe action of task TASK1. Immediately you will see a
dollar and ahash ($#) displayed. If you press <return> afew times, you notice that the
Forth is still running. After afew seconds another hash will appear. Thisisthe example
task working in the background.

Controlling the example task

The exampletask can be controlled in several ways:
therate of generation of hashes can be changed
it can be halted
once halted it can be restarted

it can be started from scratch

Changing the rate of hashes
Changing the variable DELAY can change the rate of production of hashes. Try:

2000 DELAY !

This changes the number of schedules that the example tasks makes between displaying
hashes to 2000. Therefore the rate of displaying hashes halves.

56

Multitasker

Halting the example task
Typing the task’ s number followed by HAL T halts the task:

TASK1 HALT

Y ou natice that the hashes are not displayed.

Restarting the halted task
Thetask isrestarted by the word RESTART. Type the task followed by RESTART:

TASK1 RESTART

Y ou natice that the hashes are displayed again.

Restarting the task from scratch
To restart thetask from scratch, just kill it and activateit again:

TASK1 TERM NATE
ASSI GN ACTI ON1 TASK1 | NI TI ATE

Y ou notice the dollar and the hash ($#) are displayed, followed by hashes (#).

Troubleshooting tasks

The most common fault isa stack fault. Since atask isan endlessloop it is Smpleto put
stack depth checksin themain loop. A simpletask with checking is shown below.

: TASK- ACTI ON
sp@so0 ! \ store stack base
<initialisation>
BEG N
<body of task>
depth \ non-zero if anything there
I F
s0 @sp!
<warn programer!>
ENDI F
AGAI N

When using Umbilical Forth, be careful to make sure that the multitasker is disabled by
SI NGLE before compiling new definitions interactively. If the multitasker isnot disabled,
the CPU is never put to deep, and the act of compiling code through an EPROM emul ator
will crash the running target.

Single chip tasking

Some of the smaller 8 bit CPUs, e.g. 8051, have a different memory model when used in
single chip mode rather than with external RAM. For these and for CPUs with very

57

Converting to the v6.x multitasker

limited internal RAM, thereisa small version of the multi-tasker. The single chip version
of the multitasker does not include event handling, messages, or semaphores. Details of
this multitasker are provided in the CPU specific section of the manual.

Converting to the v6.x multitasker

58

Configuration

The multitasker is configured by a different set of equates. The equate #TASKS was used
to build atable of TCBs at compile time. Thisequateis replaced by TASKI NG? which
only indicates that the multitasker isrequired.

1 equ tasking? \ true if nmultitasker needed
6 cells equ tcb-size \ internal consistency check
0 equ event-handler? \ true for event handler
0 equ nessage- handl er? \ true for message handl er
0 equ semaphores? \ true for semaphores

Task identifiers and TASK

The v6.x multitasker uses alinked list of tasks. Tasks are created by the defining word
TASK <nane> which allocates the resources needed. Execution of <name> returns the
base address of the task’ s USER area, and the task control information occupies the start
of the user area. Thisaddressisreferred to asatask identifier.

WAIT and MS

Theword WAI T isnot present in the v6.1 multitasker. It was mostly used to produce
timed waits, and this function is provided by the new word MS, which is supplied by the
codein TIMEBASE.FTH or another timing system. MS waits for the specified number of
milliseconds.

VS \ s --

INITIATE and ACTIVATE

The word ACTI VATE has been replaced by theword | NI TI ATE and DEACTI VATE has
been replaced by TERM NATE.

INITIATE \ xt task —
TERM NATE \ task --

?EVENT

The word ?EVENT was hardly ever used in application code, and its action is now built
into PAUSE.

Glossary

Multitasker

This glossary contains details of the major words in the multi-tasking system. Other words
exist, but are only used as fractions of the words below.

CLR-EVENT-RUN --
"clear-event-run"
Clearsthe event run flag for the current task. Thisisbit 4 in the task status byte.
DI -- ; disable interrupts
“ d_iH
Glaobally disable interrupts.
El -- ; enable interrupts
He_iH
Glaobally enable interrupts
EVENT? - tf
"event-query"
Returnstrue if the event-triggered bit has been set in the current task's status byte.

GET-MESSAGE -- messagetask
"get-message’
Waits for a message and returns the message and the sending task.

HALT task --
"halt"

Halts the task whose number is given. Do not halt task MAI N. Halting a task
preventsit responding to messages or events.

INIT-MULTI --

"init-multi"
Initialises the multi-tasker and starts the multi-tasker. Just include thisword in
COLD to kick the multi-tasker into action.

INITIATE xt task --

"initiate"
Initialises and startsthe given task . Task MAl Nis Forth itself and was activated
when Forth started. Note that INITIATE causes the task to start from the very

beginning. If the task was halted, and execution should resume whereit left off,
use RESTART ingtead.

59

Glossary

60

MS ms —

“ m_g!
Waits for at least ms milliseconds, the exact time depending on the granularity of
thetimer.

MSG? task -- t/f

"message-query”
Returnstrueif thetask is holding a message, and is therefore not free to receive
another one.

MULTI -

"multi”
Turns the multi-tasker on, by clearing the bit in the TASK# bytein RAM that
inhibits the scheduler.

PAUSE -

"pause’
Waits for one iteration of the scheduler.

RESTART task --

"restart”

Restarts atask that was halted by HALT or WAIT. UnlikeINITATE, thetask
resumes where it |eft off.

RESTORE-INT -
"restore-int”
Restore the interrupt enable state previoud'y saved by SAVE-INT.
SAVE-INT -
"save-int"
Saves the current state of theinterrupt enable, and disables interrupts. See
RESTORE-INT.
SELF -- task
llgfll
Returnsthe task identifier for the current task. Useful with M SG?in particular to
determine whether or not a message has been received by the task.
SEND-MESSAGE message task --
"send-message”

Sends a message to the given task. The message address can be used on its own, or
as a pointer to an extended message.

Multitasker

SINGLE -
"single"

Turns off the multi-tasker by setting the scheduler disable bit

STATUS -n
"status'

Returnsthe task status byte of the current task but with the running bit (bit 0)
masked off. If this valueis non-zero, the task has been awakened for areason other
than for normal running.

STOP -
“ gopﬂ

Halt the current task until it is RESTARTed or TERM NATEd

TERM NATE task —
“terminate’

Remove atask from thelist of active tasks and reschedul e.

TO-EVENT cfa task --
"to-event"

Sets the CFA of a Forth word as the action to run when the task's event trigger is
.

ASSI GN <wor d> <t ask> TO EVENT

WAIT-EVENT/M SG -
"wait-event-or-message”

The current task is suspended until it receives a message or an event trigger. The
words M SG? and EVENT ? can be used to determine whether amessage or an
event trigger terminated the wait. Notethat if an event trigger is received, the event
handler will have been called, and the event run flag (bit 4 in the status byte) will
be set.

[l R: -- x ; saveinterrupt staus, disable inteerupts
“bracket-i”

Save the current interrupt status on the return stack and disable interrupts. This
word can only be used insde acolon definitionand [| and 1] must be used in
matching pairs.

M R: ccr -- ; restore CCR from return stack
“i-bracket”

Restore the interrupt status from the return stack. This word can only be used
inside a colon definitionand [| and I] must be used in matching pairs.

61

9

TIMEBASE

Periodic timers and TIMEBASE

The TIMEBASE code provides atimer system that allows many timersto be defined, all
daved from asingle periodic interrupt. The Forth words in the user accessible group
documented below are compatible with VFX Forth. This code assumes the presence of a
global value or word TICK S which returns atime value incremented in milliseconds. The
timebase is approximate, and granularity and jitter are affected by the timer ISR and the
time taken by your own code to execute. By default, thetimer is set to run every 10ms.
The main source codeisin thethe file TIMEBASE.FTH, and requires a CPU dependent
clock interrupt routine which provides Tl CKS and clock interrupt initialisation.

Thetimer chainisbuilt using a buffer area, and two chain pointers. Each timer islinked
either into the free timer chain, or into the active timer chain.

All time periods are in milliseconds. Note that on a 32 bit system such as VFX Forth or an
ARM, these time periods must be less than 2°31-1 milliseconds, say 596 hours or 24 days,
whereasif the code is on a 16 bit system, time periods must be less than 2°15-1
milliseconds, say 32 seconds.

The basics of timers

These basic words are defined for applications to use the timer system. Other words are
detailed el swherein this chapter.

START- TI MERS \ ; must do this first

STOP- TI MERS \ ; closes tiners

AFTER \ xt ms -- tinmerid/0 ; runs xt once
EVERY \ xt mse -- tinmerid/0 ; runs xt every ns
TSTOP \ timerid -- ; stops the tiner

Ms \ period -- ; wait for period ms

After thetimershave been started, actions can be added. The example below startsatimer
which puts a character on the debug console every two seconds.

start-tinmers

cot \ -- ; will run every 2 seconds
[char] * emt

' t 2 seconds every \ returns tinmer id, TSTOP to stop

Theitem on stack isatimer id (handle), use TSTOP to halt thistimer.

63

Considerations when using timers

AFTERIis very useful for creating timeouts, such asrequired to determine if something
has happened in time. AFTERreturns atimerid. If the action you are protecting happensin
time, just use TSTOP when the action happens, and the timer will never trigger. If the
action does not happen, the timer event will be triggered. Timer handles are not addresses,
and areintegers alocated in sequence. On a 16 bit system, timer handle numbers will only
be recycled every 2716 allocations. If thehandleis dready in use, it will not be
reallocated.

Considerations when using timers

All timers are executed within a singleinterrupt, and so all timer action words share a
common user area. This has some impact on timer action words. Since you do not know in
which order timer action words are executed, you must set up any USER variables such as
BASE that you may use, either directly or indirectly.

The interrupt that handles all the timers does not set | PVEC and OPVEC to a default
value. If you are going to use Forth I/O words such asEM T and TYPE within atimer
action, you MUST set | PVEC and OPVEC before using the 1/0. For the sake of other

timer action routines that may till be using default 1/0, it is polite to save and restore
| PVEC and OPVEC in your timer action words.

Do not worry about calling TSTOP with atimerid that has already been executed and
removed from the active timer chain; if TSTOP cannot find the timer, it will ignore the
request.

Under some conditions, the execution time of all the timer routines may be longer than the
regquested period of thetimer. Try to avoid this situation! In addition, the timer interrupt
may be subject to jitter, and because the timer routines are executed in sequence, the start
of atimer routine will be dependent on the execution time of the routines beforeiit. If this
isserious, code is available from MPE that measures and saves the actual period rather
than thenominal period. However, thisincreases the timer despatch time for each timer.

Implementation issues

The following discussion is only relevant if you want to modify this code. Functionally
equivalent code is provided with MPE's VFX Forth systems. In the Windows
environment, timer interrupts are implemented by callbacks and critical sections.

By default, the word DO- TI MERS isrun from within the periodic timer interrupt. If
interrupts are not re-enabled after resetting the timer interrupt, you may have latency
issues if anumber of timersisused, or if thetimer routines take a considerable time. In
this case, it would be better to set up the timer routineto RESTART atask which cals
DO Tl MERS, e.g.

64

TIMEBASE

. TI MER- TASK \ --
<initialise>
BEG N
DO TI MERS STOP
AGAI N

Such a grategy also permits you to use a fast interrupt, say 1ms, for the clock, and to
trigger the TI MER- TASK every say 32 ms.

Timebase glossary

#TIMERS -- n ; maximum number of timers
"hash-timers'

A constant used at compiletime to set the maximum number of timers required.
Each timer requires RAM as defined by the ITIMER structure.

DO-TIMERS -- ; process all thetimersin the chain
"do-timers’

The central timer despatch routine.

AFTER xt period -- timerid/O ; xt is executed once
“after"

Starts atimer that executes once after the given period. A timer handleisreturned
if the timer could be started, otherwise O isreturned.

EVERY xt period -- timerid/O ; xt is executed periodically
"every"

Startsatimer that executes every given period. A timer handleisreturned if the
timer could be started, otherwise O is returned. The returned timerID can be used
by TSTOP to stop the timer.

TSTOP timerid --
"t-stop”

Removes the given timer from the active list chain.

PAUSE -- ; multitasker hook

pause

Allows the sytem multitasker to get alook in. Under Windows this also alows the
message queue to be handled. Thisword will be a dummy if the equate
TASKI NG? iszero, otherwise it will be a call to theroutineinthe MULTIxx file.

65

Timebase glossary

66

TICKS -n
"ticks'

Get the current clock value in milliseconds. Note that this routine must be defined
in the CPU dependent interrupt handler codefile.

LATER n--n'
"later"

Generates the timebase value for termination in n millseconds time.

EXPIRED n -- flag ; trueif timed out
"expired”

Flag isreturned trueif the timebase value n hastimed out. Calls PAUSE.

TIMEDOUT? \ n--flag; trueif timed out
"timed-out-query”

Flag isreturned trueif the timebase value n hastimed out. TI MEDOUT? Does not
call PAUSE, so TI MEDOUT? can be used in interrupts, winprocs and callbacks. In
particular, TI MEDOUT? should be used rather than EXPI REDinddetimer action
words to reduce timer jitter.

MS n--
"m-s"
Waits for n milliseconds. Uses PAUSE.

START-TIMERS --; Startinternal time clock
"start-timers'

START- Tl MERS must be provided by the CPU dependent code. It initialises the
periodic clock and startsit.

STOP-TIMERS -- ; disable timer interrupts

"stop-timers’
STOP- TI MERS mugt be provided by the CPU dependent code. It turns off the
periodic timer.

10

Heap and memory allocation

ANS Standard

Source code

The supplied source code implements the ANS Forth memory all ocation word set with
extensions.

The source codeisin the files COMMON\HEAP16.FTH (for 16 bit targets) and
COMMON\HEAP32 (for 32 hit targets).

The heap is allocated from a predefined section of memory using the equate
SIZEOFHEAP to produce a statuc buffer STARTOFHEAP. Facilities are provided for user
expansion of the heap to mass storage, although the current code makes no provision for
page management. When the heap isinitialised, afree block and an end block are created.
The end block is of zero size, and is used only as a marker. The address returned by
ALLOCATE and RESI ZE isthe address of the first data byte, asisthe address consumed
by FREE.

Two equates are required during compilation to all ocate a contiguous block of RAM for
the heap.

STARTOFHEAP start address of the heap
S| ZEOFHEAP size of the RAM for the heap
HEAP16

The HEAP16 codeis optimised for code density.

Theheap is controlled using two cells per block for 16 bit targets. Thisinformation is
used in three parts:

#bytes, number of bytesin this block
cell =flag, split between afour bit and a12 hit field

The top four bits of the flag are used to indicate the block type, where $E = End, $F =
Free, $A = Allocated. Others may be added later for type management. The bottom 12 bits
of theflag are currently unused, and should be set to zero.

HEAP32

The HEAP32 code is optimised for performance and is usually used with the VFX code
generator.

67

Glossary

The HEAP32 code uses a single 32 hit cell for contral, the high byte containing the
control information, where $EE = End, $FF = Free, $AA = Allocated. Others may be
added later for type management. The bottom 24 bits of the flag are contain the size of the
allocated block’s data area..

Common

Glossary

68

The heap must be initialised before use by calling I NI T- HEAP. Heap access words
return status=0 for success, and status<>0 for error.

The following glossary doesn not include al the factors used in the code. If you are
interested in the implementation, please read the source code.

ALLOCATE #bytes -- addr status
“alocate’

Attempt to allocate some memory from the heap. Walk the heap looking for a
single big enough block. If the block is larger than than required split it into two
blocks. Allocate part or al of the free block. Status=0 for success.

FREE address — status
“ fr%”

Attempt to free a heap block. Status=0 for success.

INIT-HEAP -
“init-heap”
Initialise the heap. If you don.t the system will surely crash!
RESIZE addrl size -- addr2 status
“resize’

Try to resize an alocated block to anew size, allowing for alignment. If the
existing memory block is not big enough, the data will be copied to a new block,
and the returned addr2 will not be the same asaddrl. Status=0 for success.

SIZE addr -- currsize | -1

Hs'zeu
Return the size of an allocated block or -1 if there'san error. Note that the size
returned isthe actua size of the data area, not the requested size.

.HEAP -- ; display heap info

“dot-heap”
Walk the heap displaying block information.

Heap and memory allocation

HEAPOK? -- t/f ; check heap

“heap-o-k-query”
Walk the heap and return TRUE if the heap is"well". If theheap is sick, diagnostic
information will be displayed.

69

11 Software floating-point

Although most embedded applications only require integer arithmetic, some do require
floating-point. Therefore software floating-point is supplied with the cross-compiler and
the target Forth. Thetarget floating point wordset is not fully ANS compliant, but satisfies
the needs of embedded systems without undue complexity. The Forth data sack and the
floating point stack are the same. The floating point data storage format isnot IEEE
format, but is optimised for performance on small controllers. If you need a separate
floating point stack or IEEE format storage, please contact MPE. Any variationsin the
implementation will be documented in the target specific section of the manual.

The cross-compiler has amore limited floating-point support than the target, this means
that some words are avaliable within colon definitions, but not outside them.

Source code

The source codeisin two sets of files, one for 32 bit Forth targets, the other for 16 hit
targets. Thefilesare:

COMVON\ SFP32HI 32 bit primtives
COMMON\ SFP32COM 32 bit high |evel code
COMVON\ SFP16HI 16 bit primtives

COMMON\ SFP16COM 16 bit high | evel code

Thesefiles use no assembler definitions. Some targets have code versions of the
primitives, and these will be found in the CPU specific code directory. A significant
increasein performance can be obtained by using the code files.

Entering floating-point numbers
Floating-point numbers can be entered in two forms, 1.234 and 0.1234el

Floating-point numbers are compiled as literal numbers when in a colon definition and
placed on the cross-compiler's stack when outside a definition.

The form of floating-point numbers

A floating-point number is placed on the Forth data stack. For 32 hit targets, it congsts of
two 32-bit numbers, one for the mantissa and one for the exponent. For 16 bit targets, it
consists of a 32-bit double mantissa and a single 16-bit exponent. The mantissais
normalised. The exponent is on the top of the stack.

Note that for 16 bit targets, number conversion is affected by HOST- MATH and TARGET-
MATH. HOST- MATH leaves double numbers and floats in 32-bit form, whereas TARGET-
MATH leaves them in 16-bit form.

71

Creating variables

Creating variables

To create avariable, use FVARI ABLE. FVARI ABLE worksin the same way as
VARI ABLE. For example, to create a floating-point variable called VAR you code:

FVARI ABLE VARL

When VAR isused, it returns the address of the floating-point number.

Accessing variables

Two words are used to access floating-point variables, F@and F! . These are analogous to
@and !.

Creating constants

To create afloating-point constant, use FCONSTANT. FCONSTANT is anal ogous to

CONSTANT. For example, to generate a floating-point constant called CON1 with a value
of 1.234, you enter:

1. 234 FCONSTANT CONL

When the CON1 is executed, it returns 1.234 on the Forth stack.

Using the supplied words
The supplied words split into several groups:

sines, cosines and tangents

arc sines, cosines and tangents
arithmetic functions

logarithms

powers

displaying floating-point numbers
inputting floating-point numbers

The following functions only exist astarget words so you cannot use them in calculations
in your source code when outside a colon definition.

72

Software floating-point

Calculating sines, cosines and tangents

To calculate sing, cosine and tangent, use FSI N, FCOS and FTAN respectively. They
take either an angle in degrees or radians, depending on which is set at the moment. See
Setting degrees or radians.

Calculating arc sines, cosines and tangents.

To calculate arc sine, cosine and tangent, use FASI N, FACOS and FATAN respectively.
They return an anglein degrees or radians, depending on which is set. See Setting degrees
or radians.

Calculating logarithms

Two words are supplied to calcul ate logarithms, FLOGand FLN. FLOG calculates a
logarithm to base 10 (decima). FLN calculates alogarithm to base e. Both take a
floating-point number in the range from O to Einf.

Calculating powers
Three power functions are supplied:
e
107
Xy
Calculating €
To calculate €, use FE* X. FEM X takes x as a floating-point number.

Calculating 10*
To calculate 10%, use F10” X. F10” X takes x as a floating-point number.

Calculating X
To calculate XY, use FXMY. FXMY takes x and y as floating-point numbers.

Setting degrees or radians

The angular measurement used in the trigonometric functions can be set to be either
degrees or radians. To set it to degrees, use the word DEGREES. To set it to radians use
the word RADI ANS.

73

Displaying floating-point numbers

Converting between degrees and radians

To convert between degrees and radians use RAD>DEG or DEG>RAD. RAD>DEG converts
an angle from radians to degrees. DEG>RAD converts an angle from degreesto radians.

Displaying floating-point numbers

Two words are available for displaying floating-point numbers, F. and E. . Theword F.
takes a floating-point number off the stack and displays it in the form xxxx.xxxxx or

X XXXXXEyy depending on the size of the number. Theword E. displays the number in the
latter form.

Changes from v6.0

74

Renamed DI NT to F>D for consistency. F>D isthe ANSword. The original F>D was
just a synonym. Similarly SI NT was renamed to F>S.

The word FLQATS that enabled floating point number conversion has been renamed to
REALS to avoid aname conflict with the ANS word of the same name.

The F- PACK vocabulary has been removed as no oneliked it, and it could be considered
contrary to the ANS Forth specification. If you wish to retain the F- PACK vocabulary,
add the following lines before and after the compilation of the floating point code:

* k% added * k%

* k% added * k%

* k% added * k%
primtives

comon hi gh | evel code
* k% added * k%

only forth definitions
vocabul ary f-pack

al so f-pack definition

i ncl ude %CommonDi r % Sf p32Hi

i ncl ude %ComonDi r % Sf p32Com
previ ous definitions

—— — — — —

The code enabling floating point to work in degrees or radians has been commented out
for ANS compatibility. All trig functions now operate in radians. The commented out
code may be uncommented if you need backward compatibility.

32 bit targets: software floating point

Overhauled 32 bit software floating point and incorporated i mprovements contributed by
Hiden Analytical. These include more complete special case detection, faster high level
code, and more accurate number input and output.

Removed all use of global variables except PLACES to make the floating point code

usable in interrupt routines and in multitasked systems. If the output routines areto be
multitasked, change the definition of PLACES from:

VARl ABLE PLACES 8 PLACES !

to:

Software floating-point

CELL +USER PLACES
and remember to initialise PLACES before using the floating point output routines.

Many words that are only useful as factors have been made headerless to save target
memory space.

16 bit targets: software floating point

Glossary

Note that the 16 bit floating point pack isnot re-entrant. If you need to use the floating
point pack in a multitasking system, you should convert the global variables to USER
variables. Theword +USER can be used

<si ze> +USER <nane>

to define a USER variable of a given size (normally a CELL) at the next free offset in the
USER area. Only PLACES will need initialisation.

In the following glossary, you will find al the wordsthat you are likely to need when
using software floating-point; the words omitted are, in general, subroutines used by
words in the glossary.

N.B. Abbreviation: f.p. = floating-point
D>F d--f
"d-to-f"

Converts a double integer to anormalized f.p. number.
DEG>RAD f1--f2
"deg-to-rad”

Convert f1 degreesto its corresponding number of radians.
DEGREES -
"degrees’

Switches floating-point cal culations to be done in degrees.
DNORM dn--f
"d-norm"

Normalize double number d by n left shifts. Leaves a f.p. number on the stack.
E. f--
"e-dot"

Print the f.p. number on the stack in exponential form.

75

Glossary

76

F, f--
"f-comma’

Compilethef.p. number on the top of the stack.
F. f--
"f-dot"
Print thetop f.p. number on the stack in free format.
F! f addr --
"f-store"
Store the f.p. number f at address addr.

F+ f1f2--3

"f-plus’
Add together the top two f.p. numbers on the stack and put the f.p. result on the
stack.

F- f1f2--3

"f-minus’

Subtract the top f.p. number on the stack from the second f.p. number on the stack,
and put the f.p. result on the stack.

F* f1f2--3

"f-star"
Takethe top two f.p. numbers off the stack, multiply them together, and | eave the
f.p. result on the stack.

F/ f1f2--3

"f-dash"
Divide the second f.p. number on the stack by thetop f.p. number and leave thef.p.
result on the stack.

F< f1f2-- flag

"f-less-than”
Leavetrueflag if f1<f2. Otherwise, |eave afalseflag.

F<0 f--flag

"f-less-than-0"
Leave atrueflag if f<0. Otherwise, leave afalseflag.

Software floating-point

F= f1f2--flag
"f-equals’
Leave atrueflag if thetop two f.p. numbers on the stack are equal. Otherwise
leave afalseflag.
FO= f--flag
"f-0-equals'
Leave atrueflagif the f.p. number on thetop of the stack is zero.
F> f1f2-- flag
"f-greater-than"
Leave atrueflagif f1>f2. Otherwise, leave afalse flag.
F>0 f--flag

"f-greater-than-zero"
Leave atrueflag if the f.p. number on the top of the stack is greater than zero.
F>D f--d
"f-to-d"
Leave theinteger part of f as a double number on the stack.
F>S f--n
"f-to-s'
Takesthe single number integer part of f and putsit on the stack.
F# -- f [executing]
"f-hash” -- [compiling]

If interpreting, takes text from the input stream and, if possible, convertsit to af.p.
number on the stack. Numbersin integer format will be converted to floating-point.
If compiling, the converted number is compiled.

F# N -£3]0
"f-hash-in"

Attemptsto convert atoken from theinput stream to a floating-point number.
Numbersin integer format will be converted to floating-point. An indicator (O or 3)
isreturned in the same way as an indicator isreturned by FNUVBER?.

F@ addr -- f
"f-fetch"

Fetch the f.p. number from address addr and put it on the stack.

77

Glossary

78

F10M X f1--f2
"f-10-to-the-x"

Raise 10 to the power f1 and put theresult on the stack.
FABS f--|If|
"f-abs'
Returns the modulus of the f.p. number on the top of the stack.
FACOS f1--f2
"f-a-cos'
Leave, on the stack, the angle (in degrees or radians) whose cosineisfl, such that
0<=f2<=180 (f2 in degrees).
FARRAY fn-1..f0 n -- [parent]
"f-array" n -- fn [child]

When generating the array, take n f.p. numbers and n, and compile them into the
array. When executing the child word, take n and place f.p. number n from the
array onto the stack. Note that the numbering in the array goes 0,1,..n-1.

FASIN f1--f2

"f-a-sine"
Leave, on the stack, the angle (in degrees or radians) whose sineis f1, such that -
90<=f2<=90.

FATAN f1--f2

"f-artan”
Leave, on the stack, the angle (in degrees or radians) whose tangent isf1, such that
-90<f2<90.

FCONSTANT f -- [parent]

"f-constant” -- f [child]

Floating-point equivalent of CONSTANT. Use in the form:

<f.p. nunber on stack> FCONSTANT <nane>
FCOS f1--f2
"f-cos’
Takethe cosine of f1 (degrees or radians) and put it on the stack.
FDROP f--
"f-drop"
Drop thef.p. number on thetop of the stack.

Software floating-point

FDUP f--ff
“f-dup”
Duplicate the f.p. number on thetop of the stack.
FENX f1--f2
"f-e-to-the-x"

Raise e, the exponential number, to the power f1 and put the result on the stack.
FFRAC f1f2--3
"f-frac”
Leave thefractiona remainder from the division f1/f2. The remainder takes the
sign of the dividend.
FINT f1--f2
“fint"
Place thef.p. integer value of f1 on the stack.
FLITERAL f--
"“f-literal"
When compiling, compilef asaliteral. For example,

: ABCD [calculate f] FLI TERAL

Compilation is suspended for the compile-time calculation of f. Execution of ABCD
leaves f on the stack.

FLN f1--f2
"f-log-base-€"
Takethe logarithm of f1 to base e and put theresult on the stack.
FLOG f1--f2
"f-log-base-10"
Takethe logarithm of f1 to base 10 (decimal) and put the result on the stack.
FMAX f1f2 -- max{f1,f2}
"f-max"

Put the greater of the top two f.p. numbers onto the stack.

FMIN f1f2 -- min{f1,f2}
"f-min"

Put the lesser of the top two f.p. numbers onto the stack.

79

Glossary

80

FNEGATE f--f
"f-negate”

Negate the f.p. number on thetop of the stack.
FNUMBER? addr -- On 1jd 2Jf 3
"f-number-query”

Converts string at address addr to either asingle, double or floating-point number
alongwith 1, 2, or 3respectively. If a0 isleft on the stack then FNUVBER? was
unable to convert the string.

FOVER f1f2--f1f2f1
"f-over"
Floating-point equivalent of OVER.
FROT f1f2f3--f2f3f1
"f-rote"
Floating-point equivalent of ROT.
FSEPARATE f1f2--f3f4
"f-separate”
Leave the signed integer quotient f4 and remainder f3 when f1 is divided by f2.
Theremainder has the same sign as the dividend.
FSIGN f--fflag
"f-sign”
Leave thef.p. number and a flag on the stack. Leaves atrueflagif f is negative,
else leaves afalseflag.
FSIN f1--f2
"f-sine"
Leave thefloating-point sine of f1 (degrees or radians) and put it on the stack.
FSQR f1--f2
"f-sg-r"
Takethe square root of the floating-point number on the top of the stack and put
theresult onto the stack.
FSWAP f1f2--f2f1
"f-S\Nap"
Floating-point equivalent of SWAP.

Software floating-point

FTAN f1-- 2
"f-tan"

Takethe tangent of f1 (degrees or radians) and put the result on the stack.
FVARIABLE -
"“f-variabl€e"

Floating-point equivalent of VARI ABLE. Set up an fvariable by typing:

FVARI ABLE <nane>

FX~AN fln--f2
"f-x-to-the-n"

Raise f1 to the power n (n integer), and put result on the stack.
FXAY f1f2--3
"f-x-to-the-y"

Raise f1 to the power f2 and put theresult on the stack.
INTEGERS -
"integers’

Switches the action of NUVBER? to be | NTEGER?. This action reverses that of
REALS. Both REALS and | NTEGERS are in the FORTH vocabulary.

RAD>DEG f1--f2
"rad-to-deg"
Convert f1 radians to degrees, and put result on the stack.
RADIANS -
"radians’
Switches floating-point cal culations to be done in radians.
REALS -
"floats"
Switches the action of NUVBER? to be FNUMBER?. This action can be reversed by
| NTEGERS. Both REALS and | NTEGERS arein the FORTH vocabul ary.
SF n--f
"sto-f"
Converts a single number to anormalized f.p. number

81

12 ROM PowerForth utilities

Supplied as source in the ROMFORTH directory are utilities to:
compile source code on your target board from the cross-compiler IDE
upload a binary image from your target to your PC
download a binary image to your target from your PC

Note that the target source code supplied with cross compiler versions 6.02 onwardsis
incompatible with code supplied for previous versions of the cross compiler.

These utilities can be used to generate an EPROM that has all the tools required to
develop an application, or can be used during development to transfer modules to and
from your PC. All the code is designed to be used with the MPE devel opment
environment, AIDE. The code will also work with other compatible terminal emulators.

Users who wish to distribute ROMs containing the ROM PowerForth utilities should
contact MPE for details of the OEM licence, which includes documentation on disc of the
Forth kerndl and the ROM PowerForth utilities.

Compiling text files

Source text files can be compiled from the host PC onto the target system. This savestime
in not having to cross-compile the entire source if a small modification is made. The
utilities permit text file to be split into pages for better layout when printed. An ASCII
Form Feed character (decimal 12) separates one page from another.

The required files
To compile text files from your target board, cross-compile the files IODEF.FTH and

TEXTFLE.FTH.

Compiling a specified text file

To compile al or part of a specified text file onto your target, use GET or | NCLUDE in the
form:

I NCLUDE <fil enane>

Thiscompilesthefile<f i | ename> into thetarget's dictionary. AIDE'sinternal file
server must be enabled (in the console window configuration), and will be triggered

83

Downloading a binary image

Downloading a binary image

A binary image can be downloaded from the target to your host PC. Two utilitiesare
provided:

Intel hex download
XMODEM download

For both utilities the cross-compiler IDE or a suitable communications package will be
required.

XMODEM binary image download
Binary images can be downloaded to your PC using the XMODEM protocol.

Required files

To usethisutility you must cross-compile the file XMODEM.FTH (also called BIN-
DOWN.FTH in some targets).

Using the XM ODEM binary download utility

To download a binary image from the target system to your PC, use Bl N- DOANin the
form:

addr #bytes BI N- DOAN

where addr isthe start address and #bytes is the number of bytes to down-load starting
from addr. For example,

1200 400 Bl N- DOMN
sends the area of memory from 1200 to 1599 to your host PC. AIDE'sinternd file server
must be enabled (in the console window configuration), and will be triggered

Intel hex download
Binary images can be downloaded to your PC using the Intel hex format.

Required files
To usethisutility you must cross-compile the file INTELHEX.FTH.

Using the Hex download utility

To download a binary image from the target system to your PC, use HEX- DOANin the
form:

addr #bytes HEX- DOAN

84

ROM PowerForth utilities

where addr isthe start address and #bytes is the number of bytes to down-load starting
from addr. For example,

1200 400 HEX- DOAN

sends the area of memory from 1200 to 1599 to your host PC. In AIDE, turn on console
logging to receive thefile In other packages this may be referred to as file capture.

ROM PowerForth

ROM PowerForth can be used to generate a stand-alone Forth system. With these utilities,
you can generate an EPROM that contains an interactive Forth with the ability to devel op
an application.

Note: A licenceisrequired to distribute open Forth systems. Contact MPE for more
details.

Hardware requirements
To devel op an application using ROM PowerForth, your board requires an area which:
is aways EPROM
isaways RAM

isRAM for devel opment and EPROM for application

EPROM area
The areathat is always EPROM contains the devel opment kernd.

RAM area
The areathat is always RAM is used for variables and all changeable data.

RAM/EPROM area

Thisareais used to develop your application. Therefore, it must be RAM while
developing. Once your application is devel oped, the application'simage must be saved
into battery-backed RAM or EPROM. Therefore, this area must have the ability to be
alterable but also non-volatile.

Types of board
The type of board that can be used to develop using ROM PowerForth isrestricted to:
three site boards

two site boards with battery backed RAM

85

ROM PowerForth

two site boards with socket converter
Three site boards
Thethree areas are provided by three memory sockets:
EPROM holding devel opment kernel
RAM which holds the variables and changeable data
EPROM or RAM which is selectable by a link on the board
Two site boar ds with battery backed RAM
Thethree areas are provided by two sockets:
EPROM holding the development kernel
battery-backed RAM which is split into two areas

Two site boar ds with socket converter

On many boards, thereis unused space in the EPROM as ROM PowerForth occupies less
than 32k bytes of memory. Therefore, aheader board can be made which converts one
socket into two. For example, if the socket normally takes a 27512 EPROM, a board can
be made which has a 32k EPROM with the ROM PowerForth devel opment kernel and
32k bytes of RAM. To access the RAM, the write lineis attached to a suitable point on the
main board with afly lead.

After the application has been devel oped, the two images are combined back into asingle
EPROM.

Making your application turnkey

86

Once your application has been devel oped, it needs to be made turnkey so that it is aways
available. The application can be made semi-permanent by compiling into battery-backed
RAM in the RAM/EPROM area. Alternatively, it can be copied into an EPROM if the
board alows.

Configuring a turnkey application

The word SETUP takes the address of the word passed to it and marksthisin the
RAM/EPROM header as the address of the word to be run at power-up. If avalue of zero
is passed to SETUP, theinteractive Forth kernel will be run at power-up.

For example, the word JOB isto be run at power-up. Therefore you type,

' JOB SETUP

ROM PowerForth utilities

Discarding the application RAM area
The application can be discarded by typing:

0 ROM!

Changing the application RAM start address

The constant ROMreturns the start address of the application RAM area. If the address of
thisareaisto be changed, the EPROM must be modified. To do this, the 32-bit value in
ROMmust be changed.

AIDE file server protocols

Glossary

AIDE'sfile server must be enabled for automatic file handling.

Details of the protocols used should be obtained from the source code in the ROMFORTH
directory.

Bl N- DOAN adadr len --

"bin-down"
Transmits atarget imagein XMODEM format to the host. AIDE can receive this
fileif thefile server facilities are enabled.

CLS -

"c-l-s'
Clearsthe display by sending atrigger character (code 3) to the host.

GET <name>--

"get"
Compiles from a specified text file <name> on the host AIDE file server. File
loading can be nested.

HEX- DOVWN addr len --
"hex-down"

Transmits atarget imagein Intel Hex format to the host. The host can receive this
file by enabling logging/capture.

INCLUDE <name>--

"include"

Compiles from a specified text file <name> on the host AIDE file server. . File
loading can be nested.

87

Glossary

88

13 Controlling compilation

While cross-compiling, the cross-compiler needs to be instructed on how to configure
itself. You needto tell the cross-compiler:

when to start compiling
when to stop compiling
which code and data pages to compileinto
whether to align code to even/odd bytes
whether to enable floating-point
whether to turn the compiler log on or off
when to compile portions of code selectively
These instructions are normally placed in the control file, before any ingructions are

compiled.

Starting the cross-compiler

To start cross-compiling, use the word CROSS- COVPI LE. Any code after thisdirective
will be compiled into the target image instead of compiled onto the cross-compiler.

Stopping the cross-compiler

To mark the end of the cross-compilation phase, use FI NI S or UVBI LI CAL- FORTH
FI NI Sisused to finish crass-compilation completely, whereas UVBI LI CAL- FORTHis
used to finish the batch portion of the compilation and to start the cross target link ready
for interactive testing with an Umbilical Forth target.

Defining memory - Sections and the xDATA directives

Regions of memory, known as sections, are defined in the contral file by the SECTI ON
directive. The cross-compiler treats all memory asfitting into three types of memory,
code, initialised, and uninitialised, and maintains a current section for each type. The
directive SECTI ONis used in the form:

start end type SECTI ON <nane>

89

Defining memory - Sections and the xDATA directives

90

wherest ar t isthe start address of the section, end isthelast address of the section,
t ype isone of CDATA, | DATA or UDATA, and <name> isthe name of the section. By
default, the section will be saved to disc with the filename <name>.IMG. The compiler
automatically gives the filename <name> an extension .IMG so <name> should not
include an extension. <name> will then become the current section in use of that type.
When a section nameis executed, it becomes the current section

CDATA is used to define areas of memory that contain code, usually ROM. | DATA is used
to define areas of memory that can beinitialised at sart up. When the cross-compiler
finishes (the FI NI S or UMBI LI CAL- FORTHdirectives), the used portions of all the

| DATA sections are added to the end of the current CDATA section with headers so that
the target startup code can copy them into RAM. UDATA is used to define areas of
memory that will not be initialised.

CDATA sections contain code and any data defined by CDATA during the cross-
compilation.

| DATA sections contain any data defined by VARI ABLE or VALUE or | DATA during the
cross-compilation.

UDATA sections contain data allocated by RESERVE BUFFER: or UDATA during the
cross-compilation.

CDATA | DATA and UDATA control which section the following words apply to:

, ALI GN ALI GNED ALLOT C, CREATE HERE ORG UNUSED W

After executing CDATA | DATA or UDATA the current section of that type isreferenced by
these words. After executing a section name, that section becomes the current one of its
type, and that typeis applied. After defining al the memory sections for your target
hardware it isgood practice to explicitly select one of each type of section and to set the
default memory type.

Selecting section I/O

By default, SECTI ON creates a buffer that is saved to disc when the compiler finishes.

Other directives can be used to select a different behaviour. All these directives apply to
the current section.

VRI TE- 1 GNORE (--) causeswritesto the current section to be ignored, and reads
always return 0.

VWRI TE- I NVALI D (--) causeswritesto the current section to generate an error, and
reads always return 0.

For example, in a section of EEPROM, stores during cross-compilation would be
meaningless, and can be trapped by using WRI TE- | NVALI D.

Controlling compilation

$20000 $27FFF UDATA SECTI ON EEPROM WRI TE- | NVALI D

I N EMULATOR (of fset --) causesthesection memory to bein an EPROM
emulator. The offset valueis the offset from the start of the EPROM set at which the
section starts. If paged memory is being used, each page will bein the emulator a a
different offset. This meansthat the target can bereset as soon as the compilation has
finished, without any intervening download process. Umbilical Forth especially benefits
from this. The EPROM emulator is accessed through a defined interface used the
MPE/Leburg EPROM emulators. Any other EPROM emulators that provide this interface
can also be used.

$00000 $07FFF CDATA SECTI ON ROM O | N- EMULATOR

VI A-LINK (--) isused by Umbilical Forth to redirect sectionsto be accessed over
the Umbilical link during the interactive session. For example, atarget system may
contain three sections, ROM | RAMand URAM The ROM section will already bein the
EPROM emulator. When the interactive session starts, the user types:

I RAM VI A- LI NK
URAM VI A- LI NK
ROM

So that the RAM areas are accessed across the Umbilical link, so that target memory itself
isused.

An example

$00000 $07FFF CDATA SECTI ON ROM \ Main ROM area
$08000 $OFFFF | DATA SECTI ON | RAM \ Initialised data
$10000 $1FFFF UDATA SECTI ON BBRAM \ battery backed RAM
$20000 $27FFF UDATA SECTI ON EEPROM \ EEPROM

$80000 $803FF UDATA SECTI ON DPRAM \ dual port RAM

ROM | RAM BBRAM CDATA \ defaults

Thisindicates five areas of memory. With this setup, your kernel will have 32k of ROM
and 32K for variables and interactive devel opment, 64k of uninitialised RAM which isnot
affected at power up, an EEPROM area, and a dual port RAM.

Section toOLS
ORIGIN \ -- addr
Returns start address of CDATA section.

SEC-BASE \ -- addr

Returns start address of current section.

SEC-TOP \ -- addr

Returns end address of current section.

91

Defining memory — Bank switched systems

SEC-LEN \ --u

Returns length (size) of current section.

SEC-END \ -- addr
Returns BP of current section.

RESERVE \ len — addr
Allocates down from top of UDATA section

UNUSED \ --n
Returns the remaining available space in the current section. If this value becomes
negative, you have overrun the avail able space.

.SECTIONS \ --
Show section status.

Defining memory — Bank switched systems

Defining banks and pages

In bank switched systems BANKs may be defined, to which are attached PAGES. A bank
defines the address range and type of switched memory, and multiple pages are defined
within the bank. Thereis no limit to the number of separate banks and pages. Each page
behaves as a SECTI ON except that only the last referenced page in each bank is active.
Thisallows us to bank switch both ROM and RAM areas.

Each page must have a unique identifier, restricted only in that O can not be used as an
identifier. Otherwise the selection of page identifiersis entirely free, and can be chosen to
ease the writing of the page handling words (see below).

HEX
0 7FFF CDATA SECTI ON ROM \ 32k common ROM
8000 BFFF CDATA BANK ROVBANK \ 16k pages of ROM

0001 PAGES BANKO
0002 PAGES BANK1
0003 PAGES BANK2

C000 DFFF | DATA BANK | RAMBANK \ 8k | DATA pages
0101 PAGES | BANKO
0102 PAGES | BANK1
0104 PAGES | BANK2

EO00 FFFF UDATA BANK URAMBANK \ 8k UDATA pages
0201 PAGES UBANKO

92

Controlling compilation

0202 PAGES UBANK1
0204 PAGES UBANK2

FOOO F7FF | DATA SECTI ON SYSTEMRAM \ 2k non-banked | RAM

F800 FFFF UDATA SECTI ON STACKRAM \' 2k non-banked URAM

A very common configuration isto have afixed ROM areato hold the Forth kernd and
common application code, a bank switched ROM areafor code expansion, a bank
switched RAM areafor datalogging, and anon-switched RAM areafor system variables
and gtacks.

In order to configure the system, you must provide two words, PAGE@and PAGE! which
are used to find the current bank state, and to set a new one. These words use the same
page identifiers used by the PAGES directive.

PAGE@ \ -- page-id
PAGE! \ page-id --

Execution of aword in another pageis performed by the word PAGE- EXECUTE, which
performs page sel ection and restoration for you. The high level version of thiswordisin
the file PAGING\PAGING.FTH, which you should modify to suit your own hardware.

PAGE- EXECUTE \ i*x xt pageid — j*x

When compiling code into banks, the compiler keeps track of the selected bank, and if a
reference is made to code in an unselected bank, the compiler will generate the necessary
bank switch and restore code automatically. Y ou cannot forward reference aword in
another page.

Use of CDATA pages
CDATA page management

CDATA pages are usually used with processors that do not have alarge enough addressing
range for the code that must run on them. Thereisan overhead in calling aword in
another page because all such calls are made by PAGE- EXECUTE, which hasto save and
restore the current code page around the call. Asaresult, most users partition the code so
that inter-page calls do not produce any significant performance overhead.

Multitasking and interrupts

Because all inter-page callsrestore the previous page, the paging mechanism has no
impact of on the multitasker unless PAUSE or WAI T are used within a page. If any word
that callsthe scheduler is used in a page, the multitasker code should be modified to save
and restore the page. Y ou can use the code for PAGE@and PAGE! asamodd.

Similarly if interrupt routines are in pages, the interrupt handlers must restore the
previousdly active pages.

93

Defining memory — Bank switched systems

94

In many bank switched systemsit is better to be safe than sorry and the simplest thing to
do isto save the bank switch system state as part of the scheduler action. Similarly, doing
thisin theinterrupt system can improve code reliability.

CDATA pages and vocabularies

The cross compiler treats CDATA pages as special cases of vocabularies.

When a pageis defined, the compiler creates a vocabulary of the same name as the page
in the compiler.

When a pageisreferred to, the compiler performs the following actions,
the page becomes the current code page in the bank.

the vocabulary for the previoudy selected page in the same bank is removed from the
search order.

the vocabulary for the newly selected page becomes the top of the search order.

Consequently, you may need to use ALSOand PREVI QUS with page names in order to
keep the Forth kernel in the search order. Assuming that the Forth kernel isall in the
ROM section in the example above, the following code switches between the banks:

ONLY FORTH ALSO BANKO DEFINITIONS \ Use BANKO
BANK1 DEFI NI TI ONS \ change to BANK1

BANK2 DEFI NI TI ONS \ change to BANK2

Be aware that if you define vocabulariesinside a CDATA page, you are responsble for
removing them from the cross compiler’s search order before changing pages.

Using CDATA pagesinteractively

This section discusses using vocabularies and pages interactively with a standal one Forth
interpreter running on the target hardware. It is assumed that the reader understandsthe
use of vocabularies.

When a banked CDATA page is defined, the compiler reserves two cells for page
vocabulary links and some space in the current UDATA section. Any vocabul aries defined
in thisbank will not be linked into the normal vocabulary chain, but into a chain anchored
inthefirst cell. Asaresult, switching between pages on a standal one target Forth does not
affect the normal search order and the words in pages would be inaccessible even if heads
were generated for them.

In order to provide interactive access to paged words, the compiler can be told to construct
special vocabularies, which automatically handle bank switching and the search order.
Once dl the memory sections have been defined to the compiler, the directive MAKE-

Controlling compilation

PAGE- VOCS (used when the kerndl is the active code page) causes the compiler to
construct special vocabulariesin the kernel, which use the run time action of PAGE-
VOCABULARY instead of VOCABULARY. The action of PAGE- VOCABULARY isas
follows:

Make itself the CONTEXT vocabulary

Restore VOC- LI NKtoitsinitial value. Thisremoves the previously selected code
page from the search order.

Select therequired page asthe current page in that bank.
Add the pages own vocabularies (if any) to the VOC- LI NK chain.

Note that MAKE- PAGE- VOCS must be used when the kernel page is the active code page.
The data structure of a PAGE- VOCABULARY isthe same as that of anormal
VOCABULARY except that two more cells, containing the page identifier and page base
address have been added to the CDATA portion of the vocabulary.

IDATA and UDATA pages
Page management
The action of | DATA and UDATA page selection is smply to make them the current page
of their type.

Y ou can use these pages to expand the data area available to your application. For
example, some embedded systems use bank switched data pages as mass storage. Thisisa
typical way to use multi-megabyte memory cards in data loggers built around a processor
with arestricted memory space.

Multitasking and interrupts

Any routine that changes a current data page should be careful to restore it before calling
the scheduler. Aswith CDATA pages the simplest thing to do is to save the bank switch

system state as part of the scheduler action. Similarly, doing thisin the interrupt system
can aso improve code reliability.

Aligning generated code

Some processors require CFASs to be started on even addresses, so that instructions start
on an even address. To instruct the compiler to do this, use ALI GN- EVEN Other
processors require CFAs to be 4-byte aligned. In thisinstance use ALI GN- LONG

Numbers and 16 bit targets
Thisonly appliesto 16 bit targets.

95

Enabling floating-point

Double numbers and floating point numbers are converted to the format used by 16 bit
targets. This meansthat the interpreted behaviour of double number operators may not
give correct results. This conversion can be disabled and re-enabled by the directives
HOST- MATHand TARGET- MATH These is useful when calculating such things as baud
rate divisors using EQUates defined in the contral file.

HOST- MATH
<perform cal cul ati on> EQU <equat e- nanme>
TARGET- VATH

Enabling floating-point

If you want the compiler to be able to handl e floating-point numbers, you need to instruct
it with theword REALS. The default isinteger only. Floating point can be disabled by

| NTEGERS. Note that for 16-bit targets, number formats are affected by the HOST- MATH
and TARGET- MATH switches.

Turning the log on and off

The cross-compiler log can either display minimal information (when off) or information
on theitems compiled (when on). To turn thelog on, use LOG To turn the compiler off,
use NO- LOG

Conditional compilation

96

Conditional compilation is used to selectively compile portions of code. Threewords are
availabletodothis [| F],[ELSE] [ENDI F] and [THEN] . These are analogous to

| F, ELSE and ENDI F. They can be used within Forth words to selectively compile
portions of it, or can be used outside a Forth word to selectively compile whole words.

An example

Two code examples are shown below. The examples given perform conditional
compilation inside and outside a colon definition.

Conditional compilation outside a colon definition

The example shown below compiles one of the PRI NT1OR2's. Which oneiscompiledis
dependent on the value of 10R27?. If itisset to one, PRI NT1OR2 displays a one when
executed. If itisset to two, PRI NT1OR2 displays a two.

1 EQU 10R2?
10R2? \ Display one or two?
[1F \ If 10R2?=1, PRINT1 will be conpiled
: PRINT1O0R2 \ —; Display a one
woqe
’[ELSE] \ If 10R2?=2, PRINT2 will be conpiled

Controlling compilation

: PRINT10R2 \ —; Display a two
A

’[TI—EN] \ End narker for conditional conpilation

Conditional compilation within a colon definition

Using conditional compilation within a colon definition is dightly more complicated.
Thisis because you need to write a word which places anumber on the cross-compiler's
stack during cross-compiling. An exampleis shown below where a constant 30R47? is
added to the compiler. This can then be used to control compilation.

3 EQU 30rR4? \ add the word 30R4? As an EQUate
: PRI NT3CR4 \ —; Display a three or four
[30rR4?] [1F] \ EQUate is interpreted
[IF]
R \ Display a three
[ELSE]
L4 \ Display a four
[ENDI F]

[DEFINED] and [UNDEFINED]

Thewords[DEFI NED] and [UNDEFI NED] areusedto find out if a particular word has
already been defined, and return aflag. Thisis particularly useful when you want to keep
a common body of code, yet provide for assembly language versions for dow processors.
The following code allows a high-level version of aword to be defined if no other version
exists.

[UNDEFI NED] <FOG> [I F]
. <FOO>

[THEN]

[REQUIRED]

Library files

Thisword is used by the library mechanism (see below). [REQUI RED] <name> returns
true if <name> has been referenced but has not yet been defined. <nanme> may be aword
or alabd.

[required] foo [if]
. foo ...;
[then]

When you need to keep code size to a minimum, the cross-compiler can resolve forward
references by scanning library files repeatedly until no more forward references can be
resolved. Thisisdone by defining a group of files that can be scanned. This should be

97

Loading binary data

done asthe last action of the control file, although the compiler will permit scanning of
library files anywhere. Thelog will show the number of passes made over thelibrary files.

LI BRARI ES
all fromfile <filenanel>
all fromfile <filenane2>

END- LI BS

Within each library file, the code is compiled normally, except that the word
[REQUI RED] isused to control condition compilation.

[REQUI RED] <name> [| F]
© <name> ...;
[THEN

Thecodebetween[| F] and[THEN] will only be compiled if <name> has been
forward referenced, i.e. it isrequired.

Loading binary data

Test code

98

The DATA- FI LE directive loads a binary image file into target memory at HERE and
reserves space for it, returning the size of the file. Thisis useful for adding data such as
externally generated font tables and web pages. The fileisloaded into the current section,
s0 make sureto use CDATA or | DATA as appropriate. Macros in the file name are
expanded but no default extension is assumed. For example:

cdata create imge
data-file %\ppDir%image. bin
cr . ." bytes | oaded"

Thedirectives TESTI NG[TEST and TEST] support incorporating test code local to the
definition the code tests. The DOCGEN/SC extension can be used for safety critical
systems to produce FDA (the US Food and Drug Administration) standard documentation
directly from the source code and to extract separate test files.

In order to alow test code to be built into the source code, conditional compilation of test
codeis provided, controlled by the word TESTI NG

0 TESTING \ test code will NOT be conpiled (default)
1 TESTING \ test code will be conpiled

Test code should be surrounded by the markers[TEST and TEST] .

0 TESTI NG
[TEST

This will all be ignored
TEST]

Controlling compilation

1 TESTI NG

[TEST

. foo ... ;
TEST]

In thefirst example all the code between [TEST and TEST] will be ignored. In the
second case the code between [TEST and TEST] will be compiled.

C header files

In order to ease incluson of the vast number of peripheral registers by namein modern
microcontrollers, you can often cut and paste the definitions from a C or assembler header
files.

/1 - comrent to end of line
/* commrent N.B. white space delimted */

#def i ne <name> text

For #DEFI NE notethat the text up to the end of the lineis evaluated once at compile time
and produces an EQUate of that single integer value.

Direct port access under Windows NT/2000

If you are using Windows NT/2000 or any other version of Windows that treats direct port
I/O as aprivileged ingruction, you must install the NTPORT.EXE file from the
COMPILER\XTRA directory as described in the ingtalation section of the manual. You
must also modify your control fileto include the NT- ACCESS- PORTS directive.

99

14 The VFX code generator

The VFX code generator isa black box that simply doesits job of compiling and
optimising your code, and usually no user intervention isrequired. Some implementations
may have switches for special cases such asfor dealing with the children of FI ELD and
local variables. These will be documented in the target specific section of the manudl.

Inlining

Apart from these special casesthe VFX code generator gives some control over the use of
inlining, controlled by theword I NLI NI NG (n - -).When the code generator has
completed a word, the length of the word is stored in the symbol table. When theword is
to be compiled, itslength is compared against the value passed to | NLI NI NG and if the
length isless than the system value, the word is not referenced but is compiled inline, with
the procedure entry and exit code removed. This avoids pipdine gals, and is very useful
for short definitions.

By default four constants are available for inlining control, athough any number will be
accepted by | NLI NI NG

NO | NLI NI NG \ 0, inlining turned off

NORMAL | NLI NI NG \ 12-16, ~10% i ncrease in size

AGGRESSI VE | NLI NI NG \ 255, useful when tine critical
ABSURD | NLI NI NG \ 4096, unlikely to be useful

You canuse | NLI NI NGanywhere in the code outside a definition.

The following words are used immediately after a definition to control the inliner.

I NLI NE \ mark a CODE definition
I NLI NE- ALWAYS \ will always be inlined
I NLI NE- NEVER \ will never be inlined

Colon definitions

Any word that uses words that affect the return stack such as EXI T, or takesitems off the

return stack that you didn't put therein the same word, will automatically be marked as
not being able to be inlined.

Implementations that use absolute callswill disableinlining of any word that makes an
absolute call.

Use of RECURSE will disable inlining.

Note that when words are inlined, the effects may not be as expected.

101

Code definitions

A L \ inlined
B LA L \ Ainlined, B can be inlined
. C..B ...B ...; \' A Binlined, C can be inlined

If you want to prevent aword ever being inlined, follow it with | NLI NE- NEVER Thisis
usally only necessary after you have done sothimg particularly carnal in nature.

Code definitions

By default CODE definitions are not marked for inlining because the assembler cannot
detect all cases which may upset the return stack. If you want to make a code definition
available for inlining, follow it with theword | NLI NE.

If you want the word to be inlined regardiess of the state of | NLI NI NG use | NLI NE-
ALWAYS,

COMPILER directives

The VEX optimisers significantly reduce the need to code in assembler. However, some
impact can be made by replacing very small definitions by compiler directives. Every time
the VFX optimiser hasto generate a call, it hasto generate a canonical Forth stack. If you
replace a short definition by a compiler directive, the optimiser does not call it, but
compilesit asif from source code. Thus:

. foo \ addr -- addr’
3 cells + @

can be replaced by

conpi l er
. foo \ addr -- addr’
3 cells + @

tar get

On many target CPUs, especially those with good indexed addressing modes, the resulting
codeis shorter. COVPI LERdirectives allow you to retain the code modularity of short
Forth definitions without the calling overhead. Y ou can explore this quite quickly, and the
compiler section reports and file compilation reports will give you a good indication of
whether you are winning. How much gain in code density you will get is often non-
obvious, and the only way to get afed for it isto play with the compiler.

102

15

Debugging tools

INTERACTIVE

When | NTERACTI VE isused after CROSS- COVPI LE and before FI NI S, the compiler
will not exit after compilation isfinished, but will enter an interactive mode in which the
symbol table and image data are preserved. This allows you to use the other debugging
tools with a standal one target compilation.

XDASM, DASM, DIS

LOCATE

USES

Compilersfor subroutine-threaded (STC) targets and compilers with the VFX code
generator include a disassembler that can be used from Umbilical Forth, during cross
compilation, or if you enter the compiler at the end of compilation

XDASM <nane>
DASM <nane>
DI S <name>

will disassemble the word <nanme>.

When the compiler is active use the phrases

LOCATE <nane>
LOC <name>

to see the source code of word <name>. If you enter the compiler at the end of
compilation, use the words XL OCATE and XLOC instead.

When the compiler is active use the phrase

USES <nane>

to see the words that use the word <name>. If you enter the compiler at the end of
compilation, use the word XUSES instead.

XREF, XREF-ALL, XREF-UNUSED

The XREF cross reference system is turned on by using the word +XREFS in the control
file. All code after +XREFS will be cross referenced. Use —XREFS to turn cross
referencing off.

103

WORDS

When the compiler is active use the phrase

XREF <nanme>

to see the words that use the word <name>. If you enter the compiler at the end of
compilation with ESCAPE, use the word XUSES instead.

XREF- ALL produces a cross refence listing for the whole application. It is of most use
when cut and pasted into atext editor for further processing.

XREF- UNUSED produces a list of the words that have not been referenced in colon
definitions. XREF- UNUSED can be used to produce a minimum-sized application by
removing those words that are unused.

WORDS
WORDS produces a list of thetarget words. The following switches control whether or not
unresolved target words are shown by WORDS and friends:
+SHOW UNRESOLVED \ -
- SHOW UNRESOLVED \ -- ; default
LABELS
LABELS produces alist of thetarget labels.
EQUATES
EQUATES produces a list of thetarget equates.
ESCAPE
Using the word ESCAPE in the control file before the final FI NI S entersthe cross
compiler in host mode so that the debugging tools above can be used. Note that no files
are saved. Unless you are debugging an extension to the cross compiler itsef, the use of
ESCAPE isnow deprecated, and you should use | NTERACTI VE instead.
HELP
HELP ligs the compiler directives, and gives some reminders.
INTERPRETERS

| NTERPRETERS ligs all the words which are special when interpreting.

104

Debugging tools

COMPILERS
COWPI LERS ligs all thewords which are special when compiling.

Command line switches

These switches can be used on the command line that runs the cross compiler to control its
behaviour

| PAUSEOFF \ -- ; run in batch node

The compiler will terminate immediately after FI NI Sisused, otherwise it will offer you
the choice of re-entering the compiler.

/1 DE \ -- ; run from | DE host

When run from AIDE, this command tells the cross compiler to use the AIDE tool capture
window as the console window.

| PAGEOFF \ -- ; inhibit page-throws
Prevents the compiler from putting page throw charactersin thelog.

/ COLS \ cols -- ; specify nunber of |og
\ columms per line

Specifies the number of columns used in thelog. By default the cross compiler will
generate three columns, which alows 32 bit numbersto be logged as 8 hexadecimal
digits.

105

16 Compilation in more detalil

This chapter provides more detail on how to get the best out of the compiler. Topics
covered include:

Special compilation behaviour
Special interpretation behaviour

Defining words

Special compilation behaviour

The following words are treated as special cases during compilation, either because the
code generator/optimiser produces in-line code rather than acall to atarget word, or
because the word isnormally | MVEDI ATE and is executed during compilation. Asthelist
may have been extended since the manual was written, or because there are CPU specific
switches, full lists of the interpretation and compilation words can be obtained using the
directives | NTERPRETERS and COVPI LERS.

Code generator

! * + +!

+STRI NG - - ROT - TRAI LI NG
0< 0<> 0= 0>

1+ 1- 2! 2*

24 2. 2/ 2@

4* 4+ 4- 4/

< <= <> =

> >= ?DUP @

c Cc@ CHARS COVPARE
COUNT DROP DUP NI P
OVER Pl CK RCOLL ROT
SWAP TUCK u2/ u4/

U< 0 w @

107

Special interpretation/compilation behaviour

Immediate
o> : ; CODE ADDR
ASCI | EXIT I F(LI TERAL
LOCALS| POSTPONE RECURSE SEC- BASE
SEC- TOP TO TO DO {
[['] [CHAR] [COVPI LE]
[DEFI NED] [ELSE] [1F] [THEN]
[UNDEFI NED] [REQUI RED] [ENDI F]

Strings
" ABORT" C'
-

Comments
(((\

Control structures
+LOCP ?DO ?20F AGAI N
BEG N CASE DO ELSE
END- CASE ENDCASE ENDI F ENDOF
I F LOOP OF REPEAT
THEN UNTI L VWH LE

Special case in defining words

>NUVBER ?LEAVE ALLOT

ASSI GN BLANK C+! C,
COWPI LE CREATE DCES> ERASE
HERE | J LEAVE
MOVE W WORD

Special interpretation/compilation behaviour

The following words are treated as special cases during interpretation, because they mimic
target behaviour, usually by dealing with target memory, or they are defining words,

108

Compilation in more detalil

because they are compiler directives, or because they are made avail able for execution

during interpretation.

New directives may have been added since this manual was written, and afull listis
available by using the words HEL P, COVPI LERS and | NTERPRETERS.

Compiler directives
[ELSE]

[THEN]
2VARI ABLE
CaTT
COWPI LER
DEFI NE- EMULATOR
E27040
E2716
E27512
E2764L
ESCAPE

FI ELD- TYPE
FROM FI LE
HOST- COVPI LATI ON
| MVEDI ATE
I NTEGERS

I ORG
MAKE- BUI LD
ONLY
RESERVE
SDLC

SEC- TOP

- SHOW CODE

S| MPLE16

[ENDI F]

[UNDEFI NED]
32BI T

CDATA

CORG

E27010
E27080
E27256
E2764
EMJ 1 O
EXTERNAL
FINI'S

HOST

| DATA

I N- EMULATOR
| NTERNAL
LOCATE
MAKE- TURNKEY
ORG
RESTART- COVPI LATI ON
SEC- BASE
SERI AL
16BI T

SI MPLE32

[1F]

[REQUI RED]
8BIT
CHECKSUM
CRC16
E27020
E27128
E2732
E2764H

END- STRUCT
FI ELD
FORTH
HOST&TARGET
I F(

| NCLUDE

| NTERPRETER
LRCC16

NO- HEADS
PTO

SAVE- COVPI LATI ON
SEC- END
SHOW CODE
2CONSTANT

S| MPLES

109

Special interpretation/compilation behaviour

110

STACK- CHECK SUSPEND- COVPI LATI ON
TARGET- ONLY TARGET- SUPPORT
UCRG UPDATE- BUI LD

USE- MPE- CONTROLS VI A- LI NK

Host referring words

Defining words

aH '(H caH
W@ H) W (H)

: NONAMVE BUFFER:
CONSTANT CREATE DEFER
MARKER PROC STRUCT
VALUE VARI ABLE VOCABULARY

Assembler control

L$10: L$1: L$2:
L$4: L$5: L$6:
L$8: L$9: L:
POSTFI X PREFI X

Target

memory and interpretable

! e

#> #S ! (

) ELSE()ENDI F) THEN

*/ * [MOD +

+STRI NG

-1 - ROT - TRAI LI NG
.R

TARGET
UDATA
USE- ANS- CONTROLS

[DEFI NED|

c(H

EQU

USER

L$3:
L$7:

LABEL

(«

+!

- ZERCS

Compilation in more detalil

/ / MOD / STRI NG 0

0< 0<> 0= 0>

1 1+ 1- 2

2* 2+ 2- 2/

2DROP 2DUP 20VER 2ROT
2SWAP 4 < <#

<= <> = >

>= >BCODY >IN >NUMBER
?DUP @ ABS ACTI ON- OF
ALl GN ALI GNED ALL ALLOT
ALSO AND ASCI | ASMCODE
ASSEMBLER ASSI GN BASE Bl NARY
BLANK BOUNDS Cl C+!

C Cc@ CELL CELL+
CELLS CHAR CHAR+ CHARS
COVPARE COUNT CR D+

D< DABS DECI MAL DEFI NI TI ONS
DEPTH DNEGATE DROP DUP

EMT ERASE F# F*

F+ F- F/ FALSE

FI LL FI ND HERE HEX
HOLD I NVERT KEY KEY?

LSHI FT % M MCD MAX

M N MOD MOVE NEGATE
NI P NOT ONLY R
ORDER OVER Pl CK POSTPONE
PREVI QUS ROT RSHI FT RSHI FTS
S’ S>D S>F SCAN

111

Structures

Structures

112

SI GN SKI P SM REM STATE
SVAP TO TO DO TRUE
TUCK TYPE u. U<

U<= u> U>= UM

UM MOD UMoD w WH!

W W@ W DEN W THI N
WORD XOR ["1(T) \

A named structure is defined using the following template. When the name of a structure
is executed its sizeisreturned.
Si ze FIELD TYPE <fi el d-type- nane>
STRUCT <struct - name>
sizel FIELD <fi el d-nanel>
size2 FIELD <fi el d- nane3>
<fi el d-type-name> <fiel d- nane3>

END- STRUCT

Therun timeaction of a<f i el d- nane>isto add its offset in the structure to the
address on the top of a stack. A structure can be used as afield within another structure by
using the form:

<struct-nane> FIELD <fi el d- name>

The following example shows the construction of a structure defining arectanglein terms
of two points.

CELL FIELD-TYPE I NT

STRUCT PO NT \ -- size
INT . X addr - addr’
INT .Y addr - addr’
END- STRUCT
STRUCT RECT -- size
PO NT . TOP- LEFT addr - addr’

PO NT . BOTTOM RI GHT
END- STRUCT

RECT BUFFER: NEW RECT

CREATE ANOTHER- RECT
RECT ALLOT

\ addr - addr’

-- addr

Compilation in more detalil

Allocating memory and variables

This section shows the ANS definitions for each ANS word, and shows how to use them.
These words are affected by the current XDATA setting, and unless otherwise noted refer
to the currently selected data area which isone of CDATA | DATA and UDATA

The directives CDATA | DATA and UDATA sdlect which type of memory the Forth words
bel ow affect:

, ALI GN ALI GNED ALLOT C, CREATE HERE UNUSED W

CREATE

CREATE "<gpaces>name" —
“create”

Skip leading space delimiters. Parse name delimited by a space. Create a definition
for name with the execution semantics defined bel ow. If the data-space pointer is
not aligned, reserve enough data space to aign it. The new data-space pointer
defines name's data field. CREATE does not allocate data space in name's data
fidd.

name Execution: (-- a-addr)

a-addr is the address of name's data field. The execution semantics of name may be
extended by using DOES>.

Theresult of thisisto create areference to the current location. Space can now be
reserved using ALLOT or data can be laid down using one of the comma words.

CDATA CREATE BITS\ -- addr ; table of bit nmsks
8 C, \ size of table
$01 C, $02 C, $04 C, $08 C,
$10 C, $20 C, $40 C, $80 C,

Bl TS was defined with CDATA in effect, so the tableisin code space, normally ROM,
and is constant. If we had wanted to change thistable, we could replace CDATA with
IDATA, and then the table would be in RAM, but initialised at power up. If we just want
to reserve an uninitialised, we could use UDATA and ALLOT.

UDATA CREATE ABUFFER \ -- addr
<si ze> ALLOT

Note that it is either invalid or ignored to use the commawords in a UDATA section, or to
write data to these at compiletime. Y ou cannot rely on the behaviour of the compielr
under these circumstances.

113

Allocating memory and variables

Commas:, C, W,

These words lay data into the current XDATA section. C, lays a character (abytein byte-
addressed machines, or acdl in cell-addressed machines), , laysacdl, and W laysa 16
bit value in byte-addressed machines. Y ou can use these words as shown in the previous
section to lay initialised data at compile time.

ALIGN and ALIGNED

The ANS specification provides these words to provide portability between systems that
have different data alignment requirements. For example, a 386 does not require 32 bit
datato be on afour byte address boundary. A 68332 requiresit on atwo byte boundary,
and an ARM requiresit on afour byte boundary. ALI GNforces the section to the next-
cell aligned address, and ALI GNEDwill align an address on the stack.

ALIGN -
Halignn
If the data-space pointer isnot aligned, reserve enough space to align it.
ALIGNED addr —addr’
Halignajn

a-addr isthefirst aligned address greater than or equal to addr.

ALLOT

ALLOT isused to reserve space in the current section. Note that when used in IDATA
space, that the size of the initialised RAM table added by the compiler at the end of the
ROM may be increased. See RESERVE and BUFFER:

ALLOT n-—
ua“Otn

If nisgreater than zero, reserve n address units of data space. If nisless than zero,
release |n| address units of data space. If niszero, leave the data-space pointer
unchanged.

If the data-space pointer isaigned and n isamultiple of the size of a cell when
ALLOT begins execution, it will remain aligned when ALLOT finishes execution.

If the data-space pointer is character aligned and nisamultiple of the size of a
character when ALLOT begins execution, it will remain character aligned when
ALLOT finishes execution.

HERE (CHERE IHERE UHERE)

These words return the current data space pointer or that of the defined section in the case
of the x HERE words.

114

Compilation in more detalil

HERE -- addr
“ ha‘e”

addr isthe data-space pointer.

ORG (CORG IORG UORG)
ORG and friends set the the relevant data space pointer. In classical Forth, thisisthe
variable DP, but does not have to be.
ORG addr —
“ Org"
Set the data space pointer of the current section.

VALUE and VARIABLE

VAL UE defines an initialised variable (size=cell) whose default action isto return its
contents (value). To writeto it, you must precedeit with TO . The address can be found
using ADDR. By definitions, the dataisin the current | DATA section.

VARI ABLE defines a cell-sized variable that always returnsits address. In Forth 6, the
variableisin | DATA space and isinitialised to zero. This prevents errors caused by

forgetting to initialise the variable before use. By legend, this error in a Fortran program
was responsible for the loss of one of the Mars probes.
5 VALUE FOO
FOO . addr FOO @.
6 to FOO FOO .

VARl ABLE BAR
5 BAR! BAR @.

VARIABLE "<gpaces>name" —
“variable’

Skip leading space delimiters. Parse name delimited by a space. Create a definition
for name with the execution semantics defined bel ow. Reserve one cdll of data
space at an aligned address.

nameisreferred to asavariable.
name Execution: (-- a-addr)

a-addr isthe address of thereserved cell. A program isresponsible for initiaizing
the contents of thereserved cell.

115

Allocating memory and variables

116

2VARIABLE "'<gpaces>name" —
“TWO-VARIABLE”

Skip leading space delimiters. Parse name delimited by a space. Create a definition
for name with the execution semantics defined bel ow. Reserve two consecutive
cells of data space.

nameisreferred to asatwo-variable.
name Execution: (-- a-addr)

a-addr is the address of thefirst (lowest address) cell of two consecutive cellsin
data space reserved by 2VARI ABLE when it defined name. A program is
responsible for initializing the contents.

VALUE X "<spaces>name" —
“value”

Skip leading space delimiters. Parse name delimited by a space. Create a definition
for name with the execution semantics defined below, with an initial value equal to
X.

nameisreferred to asavalue.
name Execution: (-- X)

Place x on the stack. The value of x is that given when name was created, until the
phrasex TO nane isexecuted, causing anew value of x to be associated with
name.

BUFFER:

Thisisthe eguivalent with one important exception of the code below:

UDATA CREATE ABUFFER \ -- uaddr
<si ze> ALLOT

<si ze> BUFFER: ABUFFER \ -- uaddr

The big differenceis that BUFFER: |eaves the currently active section alone, whereasthe
first example switches it to UDATA which isatrap for the unwary.

RESERVE

Associated with UDATA sections is second location pointer, which grows down from the
top of the section, allocating space from the top. This can be very useful when careful use
of thel DATA and UDATA spaces isrequired, ans the gap between the top of thel DATA
section and the botton of the UDATA section can be made contiguous if thel DATA and
UDATA sections are themsel ves contiguous.

Compilation in more detalil

RESERVE n —addr
“reserve’

The word RESERVE takes arequired size n, drops the location pointer, and returns
the base address addr.

RESERVE is mostly used to reserve space for stacks and buffersin the form:

<si ze> RESERVE EQU <nane>

UNUSED

Used to find out how much space isléeft in a section. If UNUSED returns a negative val ue,
thisindicates that the upper location counter (see RESERVE) isnow lower than the
normal location pointer, and that you have a problem.

UNUSED --u/n
U/n isthe amount of space remaining in the region addressed by HERE , in address
units.

Local variables
The sequence

c<name>{ nilni2 ...] lvlilv2 ... -- ol 02}

defines named inputs, local variables, and outputs. The named inputs are automatically
copied from the data stack on entry. Named inputs and local variables can be referenced
by name within the word during compilation. The output names are dummiesto alow a
complete stack comment to be generated.

The items between { and | are named inputs.
The items between | and -- arelocal variables.
The items between -- and } are outputs.

Named inputs and local s return their values when referenced, and must be preceded by - >
or TOto perform a store, or by ADDR to return the address.

Arrays may be defined in the form:

arr[n]

117

Local variables

118

Any name ending in the '[' character will be treated as an array, the expression up to the

terminating 'T" will be interpreted asthe size. Arrays only return their base address, all
operators areignored.

In the example below, aand b are named inputs, a+b and a* b arelocal variables, and
arr[isa 10 byte array.

. foo { ab]| atb a*tb arr[10] -- }
ab + ->a+h
ab*->a*b
cr atb . a*b .

The ANS local variable syntax is also supported, but is not recommended on the grounds
of readability and functionality. If you need it the ANS specification isprovided in HTML
format in the DOCS\ANSFORTH directory. Start with DPANS.HTM

Extending the compiler

Compilation in more detalil

The compiler allows the user to extend the compiler itself by controlling where new words
are placed. After cross-compilation is started, all new words are placed by default into the
target image The following directives control where new words are placed.

Directive and
corresponding

Action

*| NTERPRETER

vocabulary

TARGET New words are placed in the target image

*TARGET Conceptual search order: * TARGET

COWPI LER New words are added to the cross-compiler’s compile time
behaviour. These words act like | MVEDI ATE words in

* COWPI LER conventional Forth, but are not available during interpretation. All
memory access words refer to the target.
Conceptual search order: * COVPI LER * HOST

I NTERPRETER | New words are added to the cross-compiler’ sinterpret time

behaviour. These words are not avail able during compilation. All
memory access words refer to the target. See the next section on
defining words for details of the actions for defining words using
CREATE ... DOES> or CREATE ...; CODE.

Conceptual search order: * | NTERPRETER * HOST

ASSEMBLER New words are added to the cross-compiler’ s assembler. This
directive is usually used to add macros to the assembler. Also
*ASSEMBLER | searchesthe | NTERPRETERwords.
Conceptual search order: * ASSEMBLER * | NTERPRETER
* HOST
HOST Exposes the underlying host portion of the cross-compiler so that
utility words can be added that will be used later by words
* HOST

defined using COVPI LER | NTERPRETERor ASSEMBLER Use
of thismode is at your own risk. Finish this mode with TARGET.

Conceptual search order: * HOST

Table 7: Compiler extension directives

119

Defining words

It is aconvenient conceptual model to regard these directives as corresponding to
vocabularies called * TARGET * COWMPI LER *| NTERPRETER * ASSEMBLERand
* HOST. The table shows the conceptual search order generated by the directives.

Defining words

Defining words can be handled in two ways, automatically by the cross-compiler, or
explicitly using the extension mechanism discussed above. The objectives behind the two
mechanisms are different.

The automatic mechanism aims to be trangparent, so that code for the cross-compiler can
be the same asthat for ahosted Forth. This encourages portability and makes the cross-
compiler easier to use for the majority of defining words. The automatic mechanism copes
with the majority of defining words.

The explicit mechanism provides very fine control of the host and target environments,
but can be more confusing to use.

Automatic handling

The cross-compiler will automatically build an anal ogue of the defining word in the host’s
conceptual * | NTERPRETERvocabulary up to the terminating; DOES> or ; CODE. This
istriggered by the word CREATE. Consequently, any code between the: and the
CREATE will not have ahost analogue. The words between CREATE and the terminating
DCES> or ; CODE must either bein the* | NTERPRETER vocabulary or must be target
constants or variables, which allows construction of linked liststhat refer to target
variables.

A target version of the defining portion up to DOES> or ; CODE is built if the target
words has heads.

Therun-time portion of the code is always placed in the target.

Construction of the host analogue is inhibited between the directives TARGET- ONLY
and HOST&TARGET.

Both the defining words bel ow can be handled automatically by the cross-compiler

. CON \'n--; -- n; aconstant
CREATE

DCES>
@
VARI ABLE LI NKI T \ exists in target

. IN-CHAIN \'n--; -- n; constants linked in a chain
CREATE

120

Compilation in more detalil

, \ lay down val ue
HERE LINKIT @, LINKIT! \ link to previous

DCES>
@

Explicit handling

Explicit handling uses the compiler directives discussed in the previous section to control
how defining words are created. Thisis particularly useful for more complex words, and
where no target verson of the defining word isrequired, asis often the case when the
Umbilical Forth target isbeing used.

The examples from the automatic handling section are repeated here using the explicit
mechanism.

I NTERPRETER

CON \'n--3; -- n; aconstant
CREATE

DCES>
@

VARI ABLE LI NKI T \ exists in target

I N-CHAI N \'n--; -- n; constants linked in a chain
CREATE \ only in host
, \ lay down val ue
HERE LINKIT @, LINKIT!! \ link to previous
DOES> \ run time in target

@
HOST
VARI ABLE LI NKI T2 \ exists in host
| NTERPRETER

I N- CHAI N2 \'n--3; --n; link variable in host
CREATE \ in host

HERE LINKIT2 @H) , LINKIT2 I(H)
DOES>
@

TARCET

As can be see from the examples above, the automatic handling mechanism is smpler, but
the explicit handling mechanism permitsfiner control over where code is generated,
which may be useful when defining words are required and the absol ute minumum of
target memory is to be used.

121

IMMEDIATE words

IMMEDIATE words

Aswith defining words, | MMEDI ATE words can be handled in two ways. In thefirst case,
| : can be used to mark that a host analogue is required. In the second case, ahost version
of theword is placed in the * COVPI LER conceptual vocabulary using the COVPI LER
directive. The examples below illustrate the definition of —I F, which actslike | F but
executes the code after —I F if TOS=0.

Automatic handling

I: -1F \ -- ; always produces target version
POSTPONE 0= POSTPONE | F
| MVEDI ATE

The disadvantage of this method isthat there will aways be atarget version, but the only
variation from conventional Forthistheuseof | : .

Explicit handling

Checksums

COWPI LER
-1 F \ -- ; only exists in host

0= I1F \ references *COWILER s 0= and I F
TARGET

Checksums can be calculated over the current CDATA area. To do this, use the word
CHECKSUM

start end | ocation type CHECKSUM

wherest art isthefirst address of the checksum region, end isthe last address, and
| ocat i on iswherethe checksum isto be placed. Thet ype isaconstant identifying
what sort of checksum is required, and may be chosen from the predefined types:

S| MPLES S| MPLE16 SI MPLE32
CaTT CRC16 LRCC16 SDLC

Automatic build numbering

122

The automatic build numbering system allows you to update a build number string every
time that a successful compile takes place. Thisinformation is stored in a separatefilein
the working directory. By default it is called BUILD.NO.

The build file consists of one line of text, which can be any mixture of text and numbers.
At every update, all the digitsin thetext aretreated as a single integer which is updated.
This allows you to incorporate text in the form:

Compilation in more detalil

MPE Power Forth v6.20 [build 0030]

BUILDFILE "<filename>" -- ; set build file name
“puild-file”’

Sets the name of the build file. By default it is BUILD.NO. e.g.

BUI LDFI LE MYBUI LD. NO

MAKE-BUILD \ addr —
“make-build”

Read the build file and copy thetext to the target as a counted string. Use thisto
copy the string to a pre-allocated buffer.

BUILDS, -
“build-dollar”

Read the build file, and lay thetext in the target as a counted string, e.g.

CREATE VERSI ON$ BUI LD$,
only allocates the exact amount of space needed to hold the string.

UPDATE-BUILD --
“update-build”

Update the build number file. Place thisjust before FI NI S so that a successful
build updates the build number.

Macros in text strings

Theword M, isavailable during interpretation to lay down a counted string which
includes macros delimited in the usual way by the ‘%’ character. E.g.

CREATE DESCRI PTI ON \ -- addr
M, Reactor type YRTYPEY boiler %8O LER%

123

17 Forth on the target

This chapter describes how a Forth islaid out on atarget board. It istherefore not
necessary to read this chapter, but this chapter provides more information if you are
interested or if you want to perform more advanced modifications to the cross-compiler or
target.

Inside a ROM target Forth

A standalone ROM target Forth communicates with the host up a serid line. The host
needs to be running a dumb terminal emulator. Theterminal emulator displays any
characters that arrive from the target and sends any characters typed at the host's
keyboard. The target takes input and makes output directly from the serid line, not from a
keyboard and to a display. To do this, the deferred words EM T and KEY have the actions
SER- KEY and SER- EM T respectively.

The Forth memory map

A typical Forth system consists of several areas apart from the code space itself. The
RAM on thetarget system is split into several aress:

auser areafor interrupts
auser area and stacks for eack task
aterminal input buffer (T1B) for sandalone Forth

Theremaining RAM is available for use by the Forth as dictionary space.

RAM initialisation

The ANS standard does not require variables (created by words VARI ABLE or

CVARI ABLE) to be automatically initidised at start up. In MPE PowerForth data created
in | DATA spaceisinitialised to zero within the cross-compiler. Thetable of initial values
isthen copied to the end of the output file when the cross-compiler terminates. The
compiler termination report tells you whereit islocated.

For Umbilical Forth targets, an EQUate | NI T- | DATA? may be present to control
whether the additional start up code to perform initialisation is compiled. This saves code
space when thisfeature isnot required

Two locationsin thetarget, | NI T- RAMand RAM START, point to theinitial valuetable
(in ROM), and to the memory area (in RAM) it should be copied to. The table consists of

125

Register usage

anumber of entries containing four fields: len, addr, pageid, len data. Thisrepeats until
terminated by an entry with len=0.

Cdl: len, a count of the number of bytes to be copied

Cdll: addr, the address to which the data should be copied

Cdll: pageid, the pageid in which the data resides, 0 indicating unpaged memory.
Len bytes: the data to be copied.

The code that performs this copy can be found in theword (I NI T) in
COMMON\KERNEL.FTH.

In addition to using the memory store operatorsC! W and ! , RAM can beinitialised
when spaceis allotted using cross-compiler wordsthat use, or W or C, . It is safest to
explicitly initialise all variables and data areasin COLD or ABORT. This protects the
system from errant behaviour after error recovery or power failure. It isworth
remembering that a Mariner probe was lost because of an uninitialised Fortran variabl el

Register usage

Threading

Forth models

126

The Forth implementation on 32 bit targets uses subroutine threaded code with inlining
for speed, with top-of-stack kept in aregister. The assignment of theregistersisgivenin
more detail in the assembler chapter of the target specific manual.

For speed, MPE PowerForth uses Subroutine Threaded Code (STC) on 32 hit targets, asit
isagood compromise between speed and space. The 16 bit targets may use Direct
Threaded Code (DTC) or Subroutine Threaded Code, depending on whether the processor
isregularly used on systems with limited memory space and the suitability for code
generation. The routine which threads between the Forth words is called NEXT, . NEXT,
isimplemented as a macro, which is described in the assembler chapter. In most system
NEXT, issmply an diasfor the CPU return from subroutine instruction.

When suitable, STC compilers produce inline code for suitable primitives. The optimising
VEX compilersall produce STC code when optimisation is not possible or isturned off,
otherwise they produce native machine code.

Two different targets are provided in the COMMON directory. Thefirst isa sandalone
Forth that can be debugged interactively using a dumb terminal. The Forth provides all the
facilities you need. Source code can be downloaded to the Forth and debugged on the
target. Thetarget Forth provides interpretation and compilation facilities.

Forth on the target

The second isa Forth called Umbilical Forth that istuned for sngle chip applications.
Unlike the Standal one Forth, Umbilical Forth requires the Umbilical Forth message passer
inthe TARGEND.FTH filefor interpretation and compilation, which is provided by a
server on the host PC (see below). Umbilical Forth is a system that contains a fully
interactive Forth kernd in typically less than 4k bytes (32 bit targets), or 2k bytes (16 bit
targets), although these figures will vary between different processors.

All directories use the same implementation model, and so code from one system can be
used by another. Thus an application using Umbilical Forth as abasis can safely use code
from the Standal one Forth. This does not apply on some processors such as the 8051,
where stacks may bein different address spaces in the Standal one and Umbilical models.
In this case there may be a separate set of UMB files that match the ROM model. Note
that all the Umbilical Forth message handling source code isin high-level Forth.

Inside Umbilical Forth

Umbilical Forth interactswith you in the same way as a ROM target Forth, but the
mechanism that provides the interaction with the target istotally different. When you reset
the target and the board signs-on, you are till running the crass-compiler. Umbilical Forth
istherefore an extension of the cross-compiler to provide interactive cross interpretation
and cross-compil ation.

When aword is cross-compiled, the cross-compiler places information in the symbol

table. The symbal table therefore contains the CFA of the word in the target image. By
using a message passing system between the cross-compiler and the target, the CFA of the
word can be passed to the target. Thetarget can then execute the word on the target
passing parametersto and from as appropriate. Therefore, the target does not need any
headers in the target image, nor does the target need any of the code to process the
headers.

127

Inside Umbilical Forth

Target source code

Cross compiler & Symbol table

Target emulator

Message passing system (host)

Message passing system (target)

Target executable code

Figure 5: Umbilical Forth structure

128

18 Optimising development

While developing an application, you cycle through a series of steps:
editing your source code
cross-compiling to generate abinary image file
downloading to an EPROM emulator/programmer
testing and debugging your code

This development cycleisrepeated until all development and debugging is completed.
The faster you can go round this cycle, the sooner your application is finished.

Speeding up the compilation

Every time a cross-compilation is carried out, certain sections of code, which are never
altered, are compiled again and again. Thisis particularily the case for the kernel files
that generate the Forth image. Y ou can use the partial compilation feature of the cross-
compiler to halt the cross-compilation at a strategic position and save the cross-compiler's
state. Y ou can then continue cross-compiling from this saved position. In thisway, you
can dramatically reduce the time the application takesto compile.

Note: Partial compilation cannot be used when directly compiling to an emulator

Saving the compilation state

To stop and save the cross-compilation at arequired place, use SUSPEND-
COVPI LATI ON SUSPEND- COVPI LATI ONis used in the form:

SUSPEND- COVPI LATI ON <f i | enanme>
where <filename> is the name of files the cross-compiler will use to save the state
information. Thefilenameisaname without an extension.

Restarting from a saved state

To restart from a previoudy saved cross-compilation state, use RESTART-
COWPI LATI ON RESTART- COVPI LATI ONis used in the same form as SUSPEND-
COWPI LATI ON

RESTART <fil enane>

129

Speeding up the download

where <filename> is the filename used when saving the compilation state. RESTART-
COVPI LATI ONmusgt be used after the word CROSS- COVPI LE and any macros must be
loaded.

Note: Theimagefile created by the compiler after a SUSPEND- COVPI LATI ONmust
exist in the compilation directory.

An example
An example contral file can be found in the directory ROM\PARTIAL.

Speeding up the download

The cross-compiler has the facility to download the image to the LeBurg emulator while it
iscompiling. This speeds up the turn-around of the edit, compile, download and test cycle
by removing the download step. To download directly to a LeBurg emulator, you need to
tell the cross-compiler:

what size of EPROM it is generating

the bus width (e.g. 8 hit, 16 hit)

which page to put in the emulator

You also need to load the driver TSR for your emulator before running the cross-
compiler, and to set the I/O port address it uses.

Note: Thisfacility cannot be used with partial compilation.

Setting EPROM size and bus width

To set the sze of EPROM to use and the bus width of the target board, use DEFI NE-
EMULATOR. Thisisinthe form:

si ze wi dt h DEFI NE- EMJLATOR

where size and width are given in the following tables.

130

Optimising development

EPROM Size indicator EPROM size
E2764 8k bytes
E27128 16k bytes
E27256 32k bytes
E27512 64k bytes
E27010 128k bytes
E27020 256k bytes
E27040 512k bytes
E27080 1M bytes
Table 8: EPROM size indicators
Bus width indicator Bus width

8BIT 8 bit bus width
16BIT 16 bit bus width
32BIT 32 hit bus width

Table 9: Bus width indicators

For example, if your board uses a 27256 and your target has a 16-bit bus width, code:

E27256 16BI T DEFI NE- EMJLATOR

Thisinstruction must be placed in your control file befor e the CROSS- COVPI LE

directive.

Setting the page

To send apageto an EPROM emulator, use | N- EMULATORIn the form:

xXxX | N- EMULATOR

where xxxx is the base address in the emulator where to place theimage.

131

Speeding up the download

Using the emulator driver

To download to the emulator you first need to load an emulator driver. Which TSR you
use depends on the emulator you have, and selection of the correct driver will be
described in the EPROM emulator manual. One of these emulator drivers should be
loaded before you run the cross-compiler. This should be done by loading the relevant
TSR driver in your AUTOEXEC.BAT file.

Note that if you are using Windows NT/2000 or any other version of Windows that treats
direct port 1/0O as a privileged ingruction, you must install the NTPORT.EXE file from the
COMPILER\XTRA directory as described in the ingtalation section of the manual. You
must also modify your control fileto include the NT- ACCESS- PORTS directive.

132

19

An example control file

The example contral file presented hereistypical for v6.2 cross compilers. It isfor the
MPE ARM Devel opment Kit hardware. Your control filewill be different, but the codeis
commented to show what isimportant.

Standard header

Text macros

The header section contains the copyright notices and a description of thetarget. It aso
contains the change history for the system.

\ Builds a PowerNet systemfor the MPE ARM/ Devel opnent Kit

((

Copyright (c) 2003

M cr oProcessor Engi neering
133 Hi Il Lane

Sout hanpt on SO15 5AF

Engl and

tel: +44 (0)23 8063 1441
fax: +44 (0)23 8033 9691
net: npe@rmel td. denon. co. uk
t ech- support @mpel t d. denon. co. uk
web: www. npel t d. denon. co. uk

From North Anerica, our telephone and fax nunbers are:
011 44 23 8063 1441
011 44 23 8033 9691

The code is set up to run in a 48k section of Flash
$1000000 $100BFFF
The boot code renmaps the chip select unit and segnent mapper to put:
1Mo Fl ash at 0100: 0000 to O10F: FFFF Segment 1, r/w, not cached
512k RAM at 0000: 0000 to 0007: FFFF Segment 2, r/w, cached
2k | ocal SRAM at 0000: 0000 to 6000: 07FF Cache node
1k Et her net at 5000: 0000 to 5000: 03FF Segnment 4, r/w, not cached
The vector table is then copied to address 0

This section handles defining the directory structure of the kernel and application. You
can modify thisif the directories are moved, and you can a so use conditional compilation
if you have a different directory structure on your desktop and your laptop.

133

mailto:mpe@mpeltd.demon.co.uk
mailto:tech-support@mpeltd.demon.co.uk
http://www.mpeltd.demon.co.uk

Cross compiler initialisation

only forth definitions

\ khkkhkkhkhkhkhkkkhkdddhhhkhkhkhkdxkdrdddhhkx*x

\ Define the default directories
\ EEEEEEEEEEEREEEEEEEEEEEEESEESESSE]

..\ conmmon” setmacro CommonDir \ where common code |ives
L setmacro CpubDir \ where CPU specific code |ives
.\ har dwar e\ MpeAr mDevKi t"
setmacro HW\Di r \ board specific code lives
c:\ bui I dki t. dev\ sof t war e\ AddOns\ Power Net \ v30dev"
setnmacro | pStack \ where Power Net code |ives

.. \exanpl es\ Fi | esys"
setmacro Fil eSysDir \ where the File Systemlives

Cross compiler initialisation

Until theword CROSS- COVPI LE has been run, thisisanormal Forth system and the
facilities of the host Forth can be accessed. After this, the system isreconfigured asa
cross compiler. Because of this, extensions such as macros are compiled before CROSS-
COWPI LE.

This section may include some CPU specific directives. These will be documented in the
CPU specific manual. In this case, the ARM version and aignment are specified.
\ EE R R R

\ Turn on the cross conpiler and define CPU and | og options
\ EE R R R

i ncl ude %Cpubi r % nacr os \ conpiler and assenbl er macros
\ file: PROG I og \ uncomment to send log to a file

CROSS- COWPI LE

only forth definitions \ default search order
no-1 og \ uncomment to suppress output |og
r omred \ split ROM RAM t ar get
interactive \ enter interactive node at end
+xrefs \ enabl e cross references
al i gn-1ong \ code is 32bit aligned
ARM? \ Core of Sharp's LH77790
32bi t - node \ running in 32 bit node
0 equ fal se

fal se not equ true

Configure target

134

Thetarget hasto be configured as to memory layout, size of stacks and user areas and so
on.

\ kkkkkhkkhkkhkkkkkkkkk*k

\ Configure target

\ *kkkkkhkkhkkhkkkkkkkkk*k

An example control file

\ What sort of header do we need, default is nenory image with no header
0 equ Al F? \ true for ARMAIF fornmat

\ Kernel conponents

1 equ tasking? \ true if multitasker needed
6 cells equ tch-size \ for internal consistency check
0 equ event-handl er? \ true to include event handler
0 equ nessage-handler? \ true to include nmessage handl er
1 equ senmphores? \ true to include semaphores
1 equ tinebase? \ true for TI MEBASE code
0 equ softfp? \ true for software floating point
0 equ Full Case? \ include ?0F END- CASE NEXTCASE ext ensi ons
0 equ target-local s? \ true if target local variable sources needed
0 equ ronforth? \ true for ROWForth handl er
0 equ bl ocks? \ true if BLOCK needed
$20000 equ si zeof heap \ 0=no heap, nz=size of heap
1 equ heap-di ags? \ true to include diagnostic code
0 equ paged? \ true if ROMor RAMis paged/ banked
0 equ MPE- SET? \ conpatibility with MPE v5 targets
0 equ ENVI RONMENT? \ true if ANS ENVI RONMENT system required
0 equ Col dChai n? \ true if cold chain system needed.

\ Cock, serial and ticker rates

#24000000 equ system speed\ Systemclock rate in HZ
#38400 equ consol e-speed \ Serial port speed in BPS.
#38400 equ consol e0-speed \ Serial port 0 speed in BPS.
#38400 equ consol el-speed \ Serial port 1 speed in BPS.
#38400 equ consol e2-speed \ Serial port 2 speed in BPS.

2 equ consol e-port \ Designate serial port for termnal.
#10 equ tick-ns \ TIMEBASE tick in ms

\ version nunbers

char 6 equ npe-rel \ x in W.yz

char 1 equ npe-ver \'yin W.yz

char 0 equ usrver \ zin W.yz

\ define stack and user area sizes

$0200 equ UP-SI ZE \ size of each task's user area
$0200 equ SP-SI ZE \ size of each task's data stack
$0200 equ RP-SI ZE \ size of each task's return stack
up-si ze rp-size + sp-size +

equ task-size \ size of TASK data area
UP- SI ZE equ | NTRAM \ space used by interrupt page
$0100 equ TIB-LEN \ terminal i/p buffer length
\ define nesting levels for interrupts and SWs
1 equ #I RGs \ nunber of |RQ stacks,

\ shared by all IRQ® (1 nin)

0 equ #SW's \ nunber of SW nestings permtted (0 is ok)

\ *kkkkkhkkhkkhkkkkkkkkkk*k

\ default constants
\ EE R R R R R EEEEEEEEE

cell equ cell \ size of a cell (16 bits)
0 equ fal se
-1 equ true

135

Kernel files

Kernel files

136

\ kkkkkhkkhkkhkhkkkkkkhhhkkk*x

\ Define nenory | ayout
\ kkkkkhkkhkkhkkkkkkkhhhkkk%x

$00000000 equ |ink-address \ for a binary inage
\ - usually starts at zero on the ARM
\ Used by the AlF header
$00000000 $0001FFFF cdata section ADKnet \ 128k program
$01000000 $010FFFFF cdata section PROG \ 1M of Flash
$00020000 $0002FFFF idata section PROGd \ 64k | DATA RAM
$00030000 $0006FFFF udata section PROGu \ 256k UDATA RAM
$00070000 $007FFFFF udata section Vi deoRAM \ 64k vi deo RAM
\' N.B. Change I NI TNET. FTH i f you change this.

Interpreter

prog adknet ; \ synonym for common code
target
PROG PROGd PROGu CDATA \ use Code for HERE , and so on

\ kkkkhkkhkhhkhkhkkhkhkhkhhhhhkhkhkhkkdkddhdhhkkkx*x*

\ USER area and Multi tasker equates

\ khkkkhkkhkhhkhkhkhkhkkhkhhhhkhkhkhkhkkdddhhhhkkkx*x*x

\ Assunme stacks grow down: user area, sp stack, rp-stack

\ Mai n User/Task stack for USKR/ SVC operation

\ The return stack nust be the [owest of RSP, PSP and UP

\ in order to permt fast interrupt nesting. In order for

\ the initialisation code in MIJLTIARM FTH to work, IN T-U0

\ nmust be the highest.

rp-size sp-size + equ TASK- W0 \ initial offset of user area
rp-size sp-size + equ TASK- SO \ initial offset of data stack
rp-size equ TASK- RO \ initial offset of return stack

task-si ze reserve equ INIT-TO \ base of nmin task area
init-t0 task-u0 + equ INIT-U0 \ base of nmin user area
init-t0 task-s0 + equ INIT-SO \ top of main data stack
init-t0 task-r0 + equ INIT-RO \ top of main return stack

task-size #SWs * reserve drop \ space for SW nesting

tib-len reserve equ INIT-TIB \ base of TIB

\ IRQ stacks ; nestable up to #I RQs

0 reserve equ | RQ STACK TOP \ top of IRQ stacks

task-size #I R * reserve \ bottom of |RQ stacks

equ | RQ STACK_BASE

PROGd
sec-top 1+ equ UNUSED TOP \ top of nenory for UNUSED
PROG

This section uses the information defined earlier to pull in therequired files for the Forth
kerndl.

\ *kkkkhkkhkkhkkkkkkx

\ Kernel files
\ *hkkkkhkkkkkkkk

An example control file

i ncl ude %Cpubir % sfr790A \ LH77790A Speci al function registers.
include %Cpubir%init ARM \ Generic startup code (*required*).
i ncl ude %wDi r % Boot\ | ni t Net \ Devkit start up code for boot | oader
i ncl ude %pubi r % codeARM \ low |l evel kernel definitions
i ncl ude %CommonDi r % ker nel 62 \ high level kernel definitions
i ncl ude %Cpubir % i nt ARM \ exception handl ers
include %Cpubir%drivers\Ser790i \ Debug Uart - channel 2
i ncl ude %CommonDi r % devt ool s \ DUWP .S etc devel opnent tools
i ncl ude %CommonDi r % voct ool s \ ORDER VCCS etc
i ncl ude %CommonDi r % net hods \ target support for nethods
i ncl ude %Cpubir%| ocal \ local variables
tasking? [if]
i ncl ude %Cpubir% mul ti ARM \ multi-tasker, MJST be before TI MEBASE
[ELSE]
. pause ;
[then]
timebase? [if]
i ncl ude %CommonDir%ti mebase \ time base common code
include %Cpubir%drivers\Tick790 \ timer tick
[then]
environment? [if]
i ncl ude %CommmonDi r % envi ron \ ENVI RONMVENT?
[then]
S| ZEOFHEAP [i f]
i ncl ude %CommonDi r % heap32 \ nenory allocation set
[then]
sof tfp? [if]
include %CpubDir%softfp \ floating point
i ncl ude %CommonDi r % softcom \ common floating point code
[then]

ronforth? [if]

ncl ude % ComonDi r % RonfFort h\1i nk

ncl ude % ComonDi r % RonFort h\i odef

ncl ude % ComonDi r % RonForth\filetran
ncl ude % ComonDi r % Ronfor t h\ xnodem
ncl ude % ComonDi r % RonfForth\i nt el hex
ncl ude % ComonDi r % RonForth\textfile
\ include %ComonDi r % Ronfort h\ bl ocks
[then]

mpe-set? [if]
i ncl ude %Cpubi r % npe_supp
[then]

\ *kkkkkhkkhkkhkkkkkk*

\ End of kernel

\ *kkkkkhkkhkkhkkkkkk*k

—— - — — —

appl . romlink

link i/o

ascii file upl oader
XMODEM downl oader

I ntel Hex downl oader
XSHELL textfile support
XSHELL bl ocks support

MPE v5 conpatibility word set

137

Application code

i nternal
;. CPU \ -- ; display CPU type
MPE ARM ANS ROM Power Forth v6. 20"
ext er nal
ANS- FORTH \ -- ; marker

Application code

The application code example here is MPE’s PowerNet TCP/IP stack, which usesits own
build file, but requires configuration through anumber of equates and some compiler and
interpreter extensions.

\ kkkkkhkkhkkhkkkkkkkhkhhkkhkhkhkhkkkk*x*

\ Add application code here

\ kkkkkhkkhkkhkkhkkkkkkhkhhkhkhkhkhkkkkkx*

interpreter
const equ ;
\ *G Define this as CONSTANT to get interactive access to the
\ ** constants.
Tar get

Pr ogF
sec- base equ Fl ashbase
Pr og

conpi l er
ForceUncached ; \ addr -- addr'
t ar get
interpreter
ForceUncached ; \ addr -- addr'
t ar get
i ncl ude %Cpubir%drivers\29F040B.fth

create EtherAddress \ -- addr
\ *G Hol ds the Ethernet MAC address (six bytes). Note that you
\ ** nust obtain these fromthe | EEE (ww. i eee.org) or from other
\ ** sources.
$00 c, $10 c, $8B c, $F1l c, $44 c, $20 c,

create | pAddress \ -- addr
\ *G Holds the Ethernet |P address (four bytes).
192 ¢, 168 c, 1 c, 251 c¢c, \ assign these as required
$50000000 equ Et her Base \ -- addr
0 equ SMC16? \ -- flag ; true for 16 bit access code
0 equ fast CPU? \ -- n ; true for fast CPU
0 equ sncDiags? \ -- flag ; true for Ethernet diagnostics
0 equ eepron? \ -- flag ; true for attached EEPROM
1 equ sniff? \ -- flag

include %Cpubir%drivers\snc91c9x.fth
include %MDi r % hware\ Led. fth

138

http://www.ieee.org

An example control file

: reboot \ --
\ *G Reboot the CPU (equivalent to a hardware reset). This word
\ ** is used by NETBOOT. FTH i f present.

$07 $FFFFAC30 ! begin again

*** Define these constants carefully! ***

These assunme that the bottom 128k of Flash is used for the

boot code, the middle is unused, and the final 64k is used

for data storage.

N. B. These constants are affected by the SECTI ON definitions

equ Boot Menu? -- n; nz to conpile boot nenu
| ashbase constant Boot Fl ash base address of boot Flash
after mappi ng

I ength of boot Flash

addr of boot code after napping
-- addr ; base address of user flash
-- n; size of user flash

- - — — — —

$00020000 constant BootLen
$00000000 constant Boot RAM
$01020000 constant userfl ash

$0 constant userfl ashl en
$01070000 constant datafl ash -- addr ; base address of data flash
$00010000 constant datal en -- n; size of data flash

\ Were applications are copied to fromthe user flash

e e e e —

$00010000 constant AppRam \ -- addr ; application area
$00060000 constant Appl en \ -- n; length of application area
1 equ CPU=ARM \ if defined, selects ARM specific code

include %Cpubir%drivers\netcode \ Network order and CPU dependent
i ncl ude %Cpubir%drivers\netboot \ Network boot | oader

\ Power Net configuration and setup
equ et hernet? nz for Ethernet systens

equ di ags?
ncl ude % pSt ack% Power Ne

nz to include diagnostics (recommended)
bl d

1 \
0 equ slip? \ nz to include SLIP
0 equ tftp? \ nz to include TFTP
1 equ tcp? \ nz for TCP as well as UDP
1 equ telnet? \ nz to include Tel net
1 equ echo? \ nz to include Echo
0 equ snmp? \ nz to include SNW
1 \
t.

End of compilation

All the files have been compiled. All that isrequired islibrary file resolution and some
sanity checks.

\ kkkkkhkkhkhkhkkkkkddhhkhkkkx

\ *S End of conpilation

\ kkkkkhkkhkhkhkkkkkddhhkhkkkx

libraries \ to resolve comon forward references
i ncl ude %Cpubir% | i bARM
include “CommonDir%|ibrary

end-1ibs

\ *kkkkkhkkhkkhkkkkkkkkk*k

\ *S Sanity checks

\ *kkkkkhkkhkkhkkkkkkkkk*k

139

End of compilation

140

deci mal
cr ." Required USER size is " next-user @.
cr ." Current USER allocation is: " up-size .

Next -user @up-size > [if]
\ *G Check that the USER area is |arge enough.

cr ." *** |ncrease USER area size UP-SIZE in control file ***
abort
[then]
\ XREF DUP \ where is DUP used
\ XREF- ALL \ full cross reference
\ XREF- UNUSED \ find unused words

\ Xk kkkkk*k

\ Al done

\ Xk kkkkk*k

deci mal

FINI'S

20

Generic 1/0

Multitasker

Converting from v6.0 to v6.2

This chapter details the generic changes between v6.0 and v6.2 and shows you how to
minimise the impact of the changes and how to take advantage of the new features. Note
that all these changes are target source code changes, and you can choose to use your
previous code base if you want to.

Thev6.0 versons of KEY KEY? TYPE EM T and CRwere DEFERred. The new v6.1 code
is not deferred. Instead two new user variables, | PVEC and OPVEC, hold the address of a
vector table which pointsto the action of these words.

This structure makes it much easier to add new 1/O devices.

The v6.2 multitasker is now list driven rather than table driven. This gives faster context
switching. The major differences are indicated below.

The control file uses the equate TASKI NG? which is set true or false to control
compilation. Y ou do not have to specify the maximum number of tasks.

A task isdefined by theword TASK <namne> which allocates the resources for atask,

and returns ataskid at run time. Thisidentifier is user instead of the task number by all
task words.

The separate task control blocks (TCBs) are no longer required. Instead, the multitasker is
controlled by several (currently 6) cells at the start of the USER area.

The execution action of atask isno longer held in the TCB. Instead, theword | NI TI ATE
(xt task --) replaces ACTIVATE to start the task. For symmetry, theword DEACTI VATE
isreplaced by TERM NATE.

Theword START: allows the use of nameless task actions.

User variables

From version 6.1 onwards, the word +USER can be used to add a user variable of a given
size:

<si ze> +USER <nane>

141

Heap

Heap

TIMEBASE

The use of +USER avoids any need to know the offset at which the variable starts. The
v6.2 kernd code relies on +USER and new application code should use +USERIN
preference to USER

All targets now come with heap code. There aretwo versions, HEAP16.FTH and
HEAP32.FTH, which use different control block structures. They are optimised for 16 bit
and 32 bit targets respectively. The application word set isthe same.

Users with betatest versions of this code should note that it now prevents timerids being
recycled except at ridiculoudly long intervals.

Build numbering

142

Now documented and available.

21

Introduction

Moving from v5 to v6/VFX cross
compilers

The process of converting code from a version 5 MPE Forth Cross Compiler to the v6 and
VEX compilersis straightforward. The simplest caseis for code bases from the 8 and 16
bit v5 targets that have 16 bit Forth implementations. The stages for these also apply to
the 32 hit targets for which the v6 targets have VFX code generators, but some additional
work isalso required.

Basic v5to v6 conversion

Memory definitions

The v6 compiler usesthe SECTI ONmodd for memory description. The description of
memory is nearly always in the control file (.CTL extension). Change all thelines of the
form:

<start> <end+1> ROVBASE <nane>

to:

<start> <end> CDATA SECTI ON <nane>

The SECTI ONmodel uses different words to return the start and end of a section, so the
definition of equates such as EMwill need to be changed. See the new v6 control filesin
the CONFIGS directory for examples.

Y ou should define at least one CDATA, | DATA, and UDATA section. The v5 compilers
have no equivalent of a UDATA section, and this can be a dummy definition, but it must
exist.

After al the memory definitions have been made, select a default section of each type and
put in CDATA to make CREATE and friends behave like the v5 compilers.

If your processor requires start-up vectors at the end of the kernel code section (e.g.
68HC11), usethe SAVE- ALL directive after the definition of the code section. This forces
the compiler to save the whole section, rather than just from the start to the current end of
the code.

143

Basic v5 to v6 conversion

144

EPROM emulator

The EPROM emulator directives have changed, but will not affect you if you are not
using an EPROM emulator with the v5 code.

The firgt major changeisthat defining an EPROM emulator does not force any section to
useit. The second isthat thel N- EMULATORdirective can be applied to any code section
defined by SECTI ON or PAGES. It takes a 32-hit offset from the start of the EPROM set,
and tellsthe compiler to place the output of that section starting at that offset from the
beginning of the EPROM set. This allows a bank switched system to be defined with each
page in the bank occupying a different portion of the EPROM.

Assembler changes

The use of the word ASSEMBLERto denote the start of a piece of assembly code is no
longer supported in v6 compilers, and the use of FORTHto end it is now deprecated.
Convert all pieces of code that use these words from the form:

ASSEMBLER
FORTH
To:

ASMCODE

END- CCDE

Bank switched systems

The bank switching code has changed dightly from v5 to v6, especially in that PAGE-
WORD is now called PAGE- EXECUTE, and the parameter passing may be dightly
different. Thisislikely to mean that you cannot produce a byte for byte equivalent system
unless PAGE- EXECUTE is headerless.

Conditional compilation

The previous directives| F() ELSE(and) ENDI F are now replaced by their ANS
equivalents[| F] [ELSE] [THEN] and theextenson [ENDI F] which behaves just
like[THEN] .

Conditional compilation may be nested.

Thewords[DEFI NED] <name> and [UNDEFI NED] <name> can be used toreturn a
flag if the target word <name> has already been defined.

Theword [REQUI RED] <name> returnstrue if aword has been forward referenced but
has not yet been defined. Thisis used with the L1 BRARI ESand END- LI BS directives to

Moving from v5 to v6/VFX cross compilers

allow you to make files whase contents are only compiled if the words have been
referenced but are currently not defined.

Interpreted calculations
These notes only apply to 16-bit targets.

The v6 compilersall usea 32-bit host Forth, whereas the v5 compilers for 16-bit targets
used a 16-bit host Forth. Some cal culations performed at compile time, such as baud rate
calculations, relied on truncation of the 16-bit results. By default, the vé compilers for 16-
bit targets treat numbersin this way. However, the interpreted integer math operators are
all 32-bit. If your calculationsrely on truncation of 16-bit results, it is better to redo them
using 32-bit arithmetic and to use the directives HOST- MATHS and TARGET- MATHS
around the calculation so that large literals are not truncated. This often Smplifies baud
rate cal cul ations where clock frequencies need a 32-bit value, and were represented as
double numbersin the v5 code.

Startup code

The V6 compiler directive MAKE- TURNKEY <name> places the xt of <nane> at |abel
CLD1. The startup code executes thisword. The v5 label STRTUP isno longer needed,
and the v6 entry code should be used in place of the v5 code.

In addition, the structure of the initialised data table header has changed to permit multiple
| DATA sections and banked RAM.

Testing

Unless you have used some particularly clever defining words, the stages above are all
that is needed to convert direct threaded 16-bit Forths from v5 to v6 compilers.

When MPE converts target code from v5, we renamethe image files (.IMG extension) as
.IMO files, and then ensure that the new IMG file is byte-for-byte compatible with the old
one. The DOS FC file utility can used to test this:

FC <i mage>. | MG <i mage>. I MO /B

We suggest that you copy your working target code directory to a new one, and perform
the conversion until you obtain byte-for-byte equivalence of your application.

Converting from DTC to STC and VFX compilers

The version 5 compilers produce what is termed direct threaded code (DTC), which isa
particular implementation strategy for Forth. The 32-bit v6, some 16-bit v6, and the
optimising VFX compilers produce subroutine threaded code (STC) with inlining. The
VEX compilersalso indude the VFX optimising code generatorsthat provide a
substantial improvement in performance over smple STC code generation and very little

145

Converting from DTC to STC and VFX compilers

146

change in code density and sometimes an improvement that depends heavily on coding
style.

The v6 targets are al so based on an ANS Forth model, rather than the Forth-83 model
used with the v5 target code. Converting from Forth-83 to ANS is covered in a separate
chapter of the manual.

Strategy

In order to convert an application from DTC to STC, it is probably easier to start from the
v6 code base, asthiswill provide an easier long term upgrade path. The recommended
stages are:

1) Generateanew v6 kernd for your target
2) Build aconversion harness that provides any missing words
3) Apply all the changes discussed for basic v5 to v6 conversion

4) Convert all code definitionsto the new register model used by v6. See the assembler
chapter in the accompanying processor specific manual for details. Thisusudly
involves switching the data and return stack pointers, and preserving the frame stack
pointer if it is used. Compile and test each filein turn. You will probably need to
revisit dage 2.

5) Compile your application asawhole. At this sage, you will probably have to go back
round through stage 2. Repeat this cycle until you get a clean compile.

6) Test your application asawhole.
Some additional considerations are:

I's the code generator good enough that you can remove many code definitionsin
favour of high level Forth definitions, so enhancing maintainability and portability?

Can coded interrupt routines now be rewritten in high level Forth for maintainability
and portability?

COMPILE, and ,

Theword COVPI LE, (xt--) compilesthe code that calls adefinition. Thisisthe only
portable way to generate a call to aword. Because of the change from DTC to STC and
optimised code, you cannot predict what code will be generated. Any use of the Forth
word , (comma) to lay code rather than data must be replaced by COVPI LE, .

. MYMAG C

[‘] FOO, ['] BAR,

Moving from v5 to v6/VFX cross compilers

| MVEDI ATE

should be relaced by
: MYMAG C
POSTPONE FOO POSTPONE BAR

| MVEDI ATE

or
© MYMAG C
[*] FOO COVPILE, ['] BAR COMPILE,

| MVEDI ATE

Vector tables

In direct threaded code, you could lay down the address of a Forth word by turning the
compiler on. Two forms of this could be found:

CREATE TABLE
] ABCD]

L: MYLABEL
] FOO [

: BAR
... MYLABEL @ EXECUTE ... ;

Thisworked because MPE's DTC code uses the address of the Forth word as the
execution token (xt). However, thisis not a portable technique, and failsif the xt is not
cell sized (e.g. the MPE 32 bit 8086/186 target uses a 16 bit xt) or generates native code
(eg. CALL FOO. Therecommended portable techniqueis

CREATE TABLE

g0 w>

L: MYLABEL
' FOO ,

or:

L: MYLABEL
0,

' FOO MYLABEL ! \ Avoids forward reference

147

CREATE CDATA IDATA UDATA and sections

: BAR
... MYLABEL @ EXECUTE ...

Choice of word names — ANS and Forth-83

The ANS Forth committee (in which MPE participated) were careful not to make changes
that break exigting code. Thus some words whose function varied according to vendor
have had name changes. The v6 compilers still generate the MPE versions, but also
include the ANS versions. For long term portability of both code and programmers, it is
suggested that new code use the ANS versions. The help documentation includes an ANS
draft specification that istechnically identical to theratified ANS/I SO Forth specification.
Note that thisis a standards document, and so is not drafted in the same way as the
glossary for auser manual is drafted.

For more details see the chapter on converting Forth-83 code to ANS.

CREATE CDATA IDATA UDATA and sections

148

When a section nameis interpreted, its action isto make that section the current section
for CREATE and words derived from CREATE. CREATE will return the next addressin
the selected section. The following words are al so affected:

, ALI GN ALI GNED ALLOT C, HERE W UNUSED

Theresult isthat if you have three sections ROM (CDATA), IRAM (1 DATA), and URAM
(UDATA) you must be careful to select the right one before using CREATE. The following
sequence has different effects according to which section is selected:

CREATE FOO
5, 6, 7,
ROM CREATE FOO \ FOO points into ROM
5, 6, 7, \ table cannot be changed
| RAM CREATE FOO \ FOO points into | RAM
5, 6, 7, \ table is initialised
\ and can be changed
URAM CREATE FOO \ FOO points into URAM
5, 6, 7, \ table is invalid!

\ URAM val ues exist only at
\ conpile tine

If you have several sections of atype, and all you wanted to do was to select the current
section of that type, you could use CDATA, | DATA or UDATA instead.

Asaresult of these ANS changes, the technique used in version 5 compilers for selecting
between ROM and RAM datais neither desirable nor efficient. But it will still work if
CDATA has been selected. Y ou may find it worthwhile to rewrite defining words that used

Moving from v5 to v6/VFX cross compilers

to use both HERE THERE, ALLOT and ALLOT- RAM Overall, MPE has found the new
notation to be far more flexible, and it has been well received.

COMPILER, INTERPRETER, HOST, TARGET and ASSEMBLER

In both version 5 and the version 6 and VFX compilers, the use of defining wordsis
mostly handled automatically by the compiler.

For those cases where it is not handled automatically, or because there are compile time
words which are not desirable or needed in the target code, a new mechanism has been
provided for adding words into the compiler. The actions of these directives are discussed
in more detail e sewherein the manual, these examples are more informal.

Thedirective TARGET is used to return to cross compilation into the target, and should be
used to terminate any of the other directives.

The directive | NTERPRETER compiles new definitions into the cross interpreter, and
usestarget referring versions of words such as @and ! . Use TARGET to return to cross
compilation. The following example can be used to add a defining word (that cannot be
handled automatically) to the system without having atarget version. All the code after
DCES> is compiled into the target.

I NTERPRETER

. SEMAPHORE \ -- ; -- addr [child]
| DATA
CREATE
0, \ counter
0, \ task id
CDATA
DCES>

TARCET

The directive COVPI LER compiles new definitions into the cross compiler, creating a
word which isonly found at compiletime, in other wordsitis| MVEDI ATE but is not
found during interpretation.

COWPI LER
o4+ \ n addr - addr’ ; store and step address

TUCK ! CELL +

TARCET

The effect of thisisto add a new word to the compiler, which can reference all the other
compiler words. Thisis effectively a macro. Note that any reference inside such aword to
structure words like | F and ENDI F will be taken asreferences to the compiler’s versions
of | F and ENDI F, and not to thenormal Forth versions.

149

Umbilical Forth

The directive HOST is used to add words to the underlying Forth system. It is useful when
adding words that may be used as factors of other words, and where any variables may
only exist during compilation.

HOST

: FOO .. ;

TARGET

The directive ASSEMBLERs used to add macros to the cross assembler.
ASSEMBLER

. bar

TARCET

Umbilical Forth

The Umbilical Forth protocol has been extended and modified dightly. The
TARGEND.FTH file used must be the one supplied with the v6 compiler if you want
interactive testing. Y ou will not be able to produce a byte for byte equivalent file from a
v6 compiler that will run on your target with the v6 compiler, but you should be able to
test it with the v5 compiler. Recompiling your code with the old TARGEND file on the v6
compiler should produce afile identical with that produced by the v5 compiler, and so you
should be able to run the code and interact with it using the v5 compiler.

The v6 TARGEND code also has facilities for using the multitasker with Umbilical Forth.
Thisis controlled by the conditional compilation facilities.

FLOATS and REALS

150

The word FLQOATS used to enabl e the floating point package conflicts with an ANS word.
Its function is replaced by REALS. The package can be turned off by | NTEGERS.

22 Converting from Forth-83 to ANS

This chapter is not a complete guide to converting applicationsto ANS standard Forth. It
summarises some of the changes that are likely to affect your applications. A copy of the
ANS specification is supplied with the cross compiler.

Where Forth-83 words and MPE extensions do not conflict with the standard, they have
been retained in the cross compiler. Compatibility with previous code generated by the
MPE Forth cross compiler v5 (and v4 in most cases) has been retained to the leve that v5
code for the 16 bit DTC targets can be used with only minor changes to produce byte for
byte identical output.

Choice of word names — ANS and Forth-83

The ANS Forth committee (on which MPE acted as observers) were careful not to make
changes that break existing code. Thus some words whose function varied according to
vendor have had name changes. The v6 compilers still generate the old MPE words, but
also include the ANS versions. For long term portability of both code and programmers, it
is suggested that new code use the ANS versions. The hdp system includes an ANS draft
specification that istechnically identical to theratified ANS/1SO Forth specification. Note
that thisis a gandards document, and so is not drafted in the same way as the glossary for
auser manual is drafted.

INVERT NOT and 0=

Because there was little commonality between Forth systems in the semantics of the word
NOT, it has been excluded from the standard. Some vendors, including MPE, useit to
mean a bitwise inversion (logical NOT), and others use it to mean the inversion of aflag
(Boolean NOT, or 0=). The ANS word for alogical NOT is| NVERT.

EXPECT SPAN and ACCEPT

Because the Forth-83 EXPECT does not return the number of bytes actually read, Forth-83
specifies a (USER) variable SPAN to hold this. ANS Forth defines a word ACCEPT which
returns the length, rendering SPAN redundant. EXPECT and SPAN are declared to be

obsolete, and will be removed during the next revision process, which garted at thetime
this manua wasin preparation.

S” and C”

Traditionally, Forth has represented strings as a count byte followed by that many
characters, in the same way as Pascal has. With the increasing use of zero terminated
stringsin some operating systems, and the increasing use of two-byte (Unicode) and

151

Choice of word names — ANS and Forth-83

152

multi-byte character sets, this description of strings has become less portable.
Consequently the ANS committee accepted the ideathat strings be represented as address
and length pairs. For the most part, it is till true that a character usually has to mean a
byte, but in the next revision the ANS standard will be modified to make
internationalisation easier to handle. In the meantime, it is recommended that new code be
written using address/length pairs.

S’ <string>" compilesastring that returns an address/length pair at run time,
whereas C’ <stri ng>" compilesastring that returns the address of the count byte.
The original MPE definition “ " till existsin the cross compiler, but isnot recommended
for new code.

ASCII CHAR and [CHAR]

The MPE word ASCI | is state smart. When interpreted it returnstheliteral value of the
following ASCII character. When compiled, it compilestheliteral. Because state smart
words areincreasingly perceived as being capable of causing bugs that are hard to find,
the interpretation behaviour is provided by the ANS word CHAR, and the compile time
behaviour is provided by the ANSword [CHAR] .

CHAR A CONSTANT FOO

© BAR
.. [CHAR] AEMT ...

LSHIFT and RSHIFT

The MPE words <<Nand >>Narereplaced by LSHI FT and RSHI FT which have the
same stack action:

x1 u -- x2

FORGET and MARKER

The time-honoured word FORGET <name> is now deprecated because of the variation in
implementations and the portability issues raised by it. The ANS standard specifies the
defining word MARKER <name> such that when <name> is executed, the dictionary is
restored to its state before <name> was created by MARKER.

MARKER FQO \ create a dictionary narker

FOO \ restores state, deleting FOO

Division

Converting from Forth-83 to ANS

The Forth-83 standard introduced floored division. Whatever its merits, thishasincurred a
performance penalty on most CPUs. In ANS Forth the implementer may choose, and

MPE has chosen to return to the usual symmetric division for / and words derived from
it.

In order to retain the ability to perform floored division, the word M MOD has been
replaced by two words, SM REM(symmetric) and FM MOD (floored).

CREATE and friends

Section E.5 of the ANS specification suggests that, for embedded systems, CREATE be
made sensitive to the current memory section. This makesit much easier to control where
dataislaid down, and removes the need for new words to refer to each section of
memory. This proposal caused much controversy, but some vendors have informally
agreed and used a common notation, which isthe basis of the MPE SECTI ON notation.

When a section nameis interpreted, its action isto make that section the current section
for CREATE and words derived from CREATE. CREATE will return the next addressin
the selected section, with the following words also being affected:

, ALI GN ALI GNED ALLOT C, HERE W UNUSED

Theresult isthat if you have three sections ROM(CDATA), | RAM(I DATA), and URAM
(UDATA) you must be careful to select the right one before using CREATE. The following
sequence has different effects according to which section is selected:

CREATE FQOO
5, 6, 7,
ROM CREATE FOO \ FOO points into ROM
5, 6, 7, \ table cannot be changed
| RAM CREATE FOO \ FOO points into | RAM
5, 6, 7, \ table is initialised
\ and can be changed
URAM CREATE FOO \ FOO points into URAM
5, 6, 7, \ table is invalid, URAM val ues

\ exist only at conpile tinme

If you have several sections of atype, and all you wanted to do was to select the current
section of that type, you could use CDATA, | DATA or UDATA instead. Note that the
CDATA | DATA and UDATA directives arenot part of the origina proposal in section E.5
of the ANS specification.

Asaresult of these ANS changes, the technique used in version 5 compilers for selecting

between ROM and RAM dataisneither desirable nor efficient. But it will still work if
CDATA has been selected. Y ou may find it worthwhile to rewrite defining words that used

153

>BODY and friends

to use both HERE, THERE, ALLOT and ALLOT- RAM Overall, MPE has found the new
notation to be far more flexible, and it has been well received.

>BODY and friends

Because of the number of implementation techniques, and because of the impact of
embedded systems, ANS Forth specifies that >BODY is only standard when applied to the
children of CREATE, and to words derived from it.

FLOATS and REALS

The word FLOATS used in v5 to enable the floating point package conflicts with an ANS
word. Itsfunction is replaced by REALS. The package can be turned off by | NTEGERS.

CATCH and THROW

Before the ANS specification, Forth lacked a portable nested exception handler. The
design of CATCH and THROWs excellent, and MPE recommends that they be used to
replace the use of ABORT and ABORT” , which can if necessary be defined in terms of
CATCH and THROW

Description

The following description of the ANS words CATCH and THROWMwas written by Mitch
Bradley:

CATCHisvery similar to EXECUTE except that it saves the stack pointers before
EXECUTEing the guarded word, removes the saved pointers afterwards, and returns aflag
indicating whether or not the guarded word completed normally. In the same way that a
Forth word cannot legally play with anything that its caller may have put on the return
stack, and also is unaffected by how its caller uses thereturn stack, a word guarded by
CATCH isohlivious to the fact that CATCH has put items on the return stack.

Here's the implementation of CATCH and THROWin a mixture of Forth and pseudo- code:
VARl ABLE HANDLER \ Most recent error frane

. CATCH \ cfa -- O|lerror-code
<push paraneter stack pointer on to return stack>
<push contents of HANDLER on to return stack>
<set HANDLER to current return stack pointer>
EXECUTE
<pop return stack into HANDLER>
<pop & drop saved paraneter stack ptr fromreturn stack>
0

. THROW \ error-code --
?DUP

154

Converting from Forth-83 to ANS

<set return stack pointer to contents of HANDLER>
<pop return stack into HANDLER>
<pop saved paraneter stack pointer fromreturn stack>
<back into the paraneter stack pointer>
<return error-code>

THEN

The description as written implies the existence of a parameter stack pointer and areturn
stack pointer. That is actually an implementation detail. The parameter stack pointer need
not actually exist; all that is necessary is the ability to restore the parameter stack to a
known depth. That can be done in a completely standard way, using DEPTH, DROP, and
DUP. Likewise, thereturn stack pointer need not explicitly exist; all that isnecessary isthe
ability to remove things from the top of thereturn stack until its depth isthe sasmeasa
previously-remembered depth. This can't be portably implemented in high levd, but |
neither know of nor can | conceive of a system without some straightforward way of

doing so.

Sample implementation
In most Forth systems, the following code will work:

VARI ABLE HANDLER \ Mbdst recent exception handl er

CATCH \ execution-token -- error# | O
(token) \ Return address already on stack
SP@ >R (token) \ Save data stack pointer
HANDLER @>R (token) \ Previous handl er
RP@HANDLER ! (token) \ Set current handler to this one
EXECUTE () \ Execute the word passed
R> HANDLER ! () \ Restore previous handl er
R> DRCP () \ Discard saved stack pointer
0 (0) \ Signify nornmal conpletion
THROW \ ?? error#| 0 -- 22 error# ;
\ Returns in saved context
?DUP
I F
HANDLER @RP! (err#) \ Back to saved R stack context
R> HANDLER ! (err#) \ Restore previous handler
(err#) \ Remenber error# on return stack
(err#) \ before changing data stack ptr.
R> SWAP >R (saved-sp) \ err# is on return stack
SP! (token) \ swtch stacks back
DROP ()
R> (err#) \ Change stack pointer
THEN

\ This return will return to the caller of catch, because
\ the return stack has been restored to the state that
\ exi sted when CATCH began executi on.

Note the following features:

155

CATCH and THROW

156

Stack

CATCH and THROWdo not restrict the use of the return stack

They areneither | MVEDI ATE nor "state-smart”; they can be used interactively,
compiled into colon definitions, or POSTPONEd without strangeness.

They do not introduce any new syntactic control structures (i.e. words that must be
lexically "paired” like | F and THEN)

To handle the case where thereisno CATCHto handle a THROW it iswise to CATCHthe
main loop of the application. A different solution, if you don't want to modify the loop, is
to add this lineto THROW

HANDLER @ 0= ABORT" Uncaught THROW

rules for CATCH and THROW

Let's suppose that we have the word FOOthat we wish to "guard” with CATCH. FOOs
stack diagram looks like:

FOO \'abc--d

Here'show to CATCH it:

<prepare argunment for FOO> (a b c)
['] FOO CATCH (x1 x2 x3)
I'F

<sone code to execute if FOO caused a THROW
ELSE (d)

<sone code to execute if FOO conpl eted normal |l y>
THEN

Note that, in the case where CATCH returns non-zero (i.e. a THROWoccurred), the stack
depth (denoted by the presence of x1,x2,x3) isthe same as before FOO executed, but the
actual contents of those 3 stack itemsis undefined. N.B. items on the stack
UNDERNEATH those 3 items should not be affected, unless the stack diagram for FOO,
showing 3 inputs, does not truly represent the number of stack items potentially modified
by FOO.

In practice, about the only thing that you can do with those "dummy” stack items x1,x2,x3
isto DROP them. It isimportant, however, that their number be accurately known, so that
you can know how many items to DROP. CATCHand THROWare compl etely predictable
in thisregard; THROMrestores the stack depth to the same depth that existed just prior to
the execution of FOO, and the number of stack itemsthat are potentially garbageisthe
number of inputsto FOQ

Converting from Forth-83 to ANS

Some more features

POSTPONE

THROW(can return any non-zero number to the CATCH point. This allows for selective
error handling. A good way to create unique named error codes is with VARI ABLEs as
they return unique addresses without having to worry about which number to use, e.g.

VARl ABLE ERROR1
VARl ABLE ERROR2

creates 2 words, each of which returns a different unique number. For selective error
handling, it is convenient to follow CATCHwith a CASE statement instead of an | F.
Here's amore complicated example:

BEG N
['] FOO CATCH
CASE
0 OF ." Success; continuing" TRUE ENDOF
ERROR1 OF ." Error #1; continuing" TRUE ENDOF
ERROR2 OF ." Error #2; retrying" FALSE ENDCF
(default) ." Propagating error to another |evel" THROW
ENDCASE (retry?)
UNTI L

Note the use of THROWIn the default branch. After CATCH hasreturned, with either
success or faillure, the error handler context that it created on the return stack has been
removed, so any successive THROW will transfer control to a CATCH handler at a higher
level.

The CATCH and THROWscheme appeal ed to peopl e because it is smpler than most other
schemes, as powerful as any (and more powerful than most), is easy to implement,
introduces no new syntax, has no separate compiling behaviour, and uses the minimum
possible number of words (2).

Thisword was introduced to delay execution of a word without having to know whether
the word isimmediate or not. Insde a colon definition such as BAR below

: BAR
... POSTPONE FQOO ...

will cause FOOto execute when BAR executesif FOOis| MVEDI ATE, or if FOOis non-
| MVEDI ATE, FOOwill be compiled when BAR executes. In most cases thisis what was
required, and thewords COVPI LE and [COVPI LE] can be eiminated. The advantage of
thisisthat the user does not need to know whether the target word is| MVEDI ATE or not.

157

COMPILE, and ,

COMPILE, and ,

Theword COVPI LE, (xt--) compilesthe code that calls adefinition. Thisisthe only
portable way to generate a call to aword. Because of the change from DTC to STC and
optimised code, you cannot predict what code will be generated. Any use of the Forth
word , (comma) to lay code rather than data must be replaced by COVPI LE, .

. MYMAG C
['] FOO, [] BAR,
. | MVEDI ATE
should be relaced by
. MYMAG C
POSTPONE FOO POSTPONE BAR
. | MVEDI ATE
or
. MYMAG C
[‘] FOO COWILE, ['] BAR COWILE,

;| MVEDI ATE

158

23 IRTC and Stamp compiler
differences

IRTC compilers

The IRTC Forth cross compilers are based on the same source code as the Forth 6
compilers except for the AVR compiler, but with the following restrictions:

Only an Umbilical Forth isprovided. An interactive standal one Forth target is not
provided.

Thereis no expansion beyond 64k of code, i.e. the BANK and PAGES directives are not
provided.

Floating point target code is not provided.

Compiler source code isnot provided.

Forth Stamp compilers
Versions supplied with the Forth Stamp boards are further limited:

Code sizeislimited on the Forth Stamp versionsto the sSze of the internal Flash on
the Forth Stamp.

No multitasker is provided on the Forth Stamp versions
The XREF tools are removed on the Forth Stamp versions

Upgrades are available from the IRTC Forth Stamp version to the unlimited IRTC version
and to the full Forth 6 compiler.

Late documentation on al cross compilersisin the DOCS documentation directory. The

file RELEASE.XC6 describes late changes to the generic compiler, while REL EA SE.xxx
describes late changes on the CPU specific code.

159

24

Technical glossary

Compiler log When each label, variable, constant or colon defintition is cross-compiled
the cross-compiler displays a dot or information about the compiled item.

Contral file A filewhich isloaded by the cross-compiler. It contains directives to the
cross-compiler and the names of any additional files to be compiled.

Cross-compiler A program which generates executable code for a processor different to
that on which it isrunning.

Dictionary A list of words defined in a Forth system
Event A non-regular occurence. In the multitasker an event is used to trigger atask.

Glossary A list of forth words with their pronunciation, stack effect and a brief
description of their action.

Host The platform the cross-compiler runson. Normally a PC.

Image file The output of the cross-compiler. It has the extension .IMG by default.
Initialised RAM See RAM table.

Kernel The code required for interactive Forth.

Memory map A description of the gart and end of ROM and RAM in memory

Multitasker A program which allows a processor to run more than onetask by
continuously switching between different tasks.

Paged target A system where thereis more memory available that can be addressed at
one time. Areas of memory can be switched into an addressable range, so simulating a
larger address space than is physically possible.

RAM table An area of memory in the ROM that is copied to RAM at startup. It contains
any initial values of variables.

ROM target forth A Forth which works on aROM/RAM system as opposed to a RAM
system.

ROM/RAM target A target with code executed out of ROM and data kept in RAM.
Scheduler The part of a multitasker which switches to the next task

Screen file A type of file which Forth source was originally developed in.

161

Forth Stamp compilers

162

Serial line driver The words which interface the target code to the serial line. These are
device dependant whereasthe rest of the kernel is generic.

Symbol table Used and generated by the cross-compiler. It containsinformation on each
item compiled.

Target The processor or board that the cross-compiler is generating code for.

Target mode One of XShell's modes that acts as a dumb terminal. It letsyou
communicate with your target board.

Task In amultitasking environment, atask is a stand-alone program that appears to run
simultaneoudly with other tasks.

Task control block Where information about atask is kept. It isused by the scheduler to
switch to the next task.

TCB See task control block
UART Universal Asynchronous Recelver/Transmitter - Sends and receives serial data.

Umbilical Forth A reduced Forth designed for single chip targets. Uses a message
passing system to commicate with the host.

Unr esolved r efer ences Any words which are used in the source code but are not defined.

Vocabulary An independently linked subset of the dictionary

25

Error messages

Error messages are kept in the file X*.ERR in the COMPILER directory, wherethe '*'
denotes the processor type. Error numbers start at zero and each error number referstoa
linein thefile, starting at line zero.

The error messages arelisted in different categories:
general Forth errors
system messages
assembler errors (these arelisted in the accompanying processor specific manual)
binary module errors
sourcefile errors
operating system errors

text file errors

General Forth errors 0..15

These are the basic errors of a Forth system.

Error O - isundefined. The word isnot in thedictionary search order specified, or it was
misspelled.

Error 1 - empty stack, the last operation caused a stack underflow. Usually caused by
using the wrong number of parametersto a word.

Error 2 - dictionary full, thereis no room for more definitions. This error should not arise
within the cross-compiler unless you are extending it.

Error 3 - hasincorrect address mode.

Error 4 - isredefined - the word's name has been used before. Thisisonly a warning, not a
proper error.

Error 5 - is undefined. See error 0.

Error 7 - full stack, there are too many items on the stack. Usually caused by a stack fault
in aloop.

163

System messages 16..31

Error 8 - cannot open USI NGfile. Incorrect file name? Wrong directory?
Error 9 - cannot compile from screen zero.

Error 12 - uninitialised deferred word.

Error 13 - BASE must be DECI VAL.

Error 14 - missing decimal point. Only found when using floating-point extensions.

System messages 16..31

164

These are error messages caused by mistreating Forth.

Error 17 - compilation only, use in definition, not when executing. Usually happens when
a; ismissing from a previous word.

Error 18 - execution only - not alowed during compilation. Usually because a
[COVPI LE] ismissing in front of an immediate word.

Error 19 - conditionals not paired - overlapping control structures.
Error 20 - definition not finished - a control structure needs correction.

Error 21 - in protected dictionary - the word is below the address in FENCE. Not found in

the cross-compiler except when modifying the cross-compiler, or in bizarre circumstances
with Umbilical Forth.

Error 22 - use only when loading, illegal from the keyboard
Error 23 - block number out of range 0..32767 (0..7FFFh).

Error 24 - reset vocabularies - CONTEXT must be the same as CURRENT when using
FORGET.

Error 25 - do not use when loading, only from the keyboard.

Error 26 - initialised RAM size exceeded. Often happens when arrays are defined before
variables. To reduce the size of thistable, dl initialised or preset RAM should be defined
before arrays are used.

Error 27 - forward references areillegal between CREATE ... DOES>and | : ... ; forthe
cross-compiler.

Error 28 - word between CREATE ... DOES>or | ; ...; isnotin host FORTH vocabulary.

Error 29 - illegal interna value - contact MPE.

Error messages

Assembler errors 32..47, 144...159

These are listed in the accompanying processor specific manual.

Binary module errors 48..63
Error 49 - public words table full - max 32 (decima) words/module.

Error 50 - module number out of range 0..31 (decimal).

Error 51 - dot aready occupied - slot must be empty before entry is made.

Error 52 - not enough memory.

Error 53 - can't load module file - DOS can't find it, or can't read it.

Error 54 - can't free memory - DOS won't let go - see DOS function 49H.

Error 55 - module not present - requested module isnot resident.

Error 56 - external referencestable full - max 32 (decimal) words/module.

Error 57 - unresolved external reference - use RESOLVE-ALL before execution.
Error 62 - illegal operation in slave module.

Error 63 - illegal operation in master module.

Source file errors 64..79

These errors are given by the screen filehandlers.

Error 65 - no screen file open. Often aresult of a previous operation failing to open or
reopen afile.

Error 66 - screen file seek error.
Error 67 - screen filewrite error.
Error 68 - path not found. Usually because the file or path name has been misspelled.

Error 69 - sarting screen number |ess than ending screen number.

Operating system errors 80..112
Error 81 - invalid function number - OS doesn't know what to do.

Error 82 - file not found - wrong directory or doesn't exist.

165

Text file errors 112..127

Error 83 - path not found - incorrect spelling? - device not installed?
Error 84 - no handle available - all handlesare in use.

Error 85 - access denied - e.g. attempt to write to read-only file.

Error 86 - invalid handle - file/path not open?

Error 87 - memory control blocks destroyed.

Error 88 - insufficient memory.

Error 89 - invalid memory block address - OS did not all ocate this segment.
Error 90 - invalid environment - previous SET or PATH command bad.
Error 91 - invalid format - ask Microsoft what this one means.

Error 92 - invalid access code.

Error 93 - invalid data.

Error 95 - invalid drive specification.

Error 96 - attempt to remove current directory.

Error 97 - not same device.

Error 98 - no more files to be found.

Text file errors 112..127

166

These errors areissued by thetext filehandler.

Error 113 - cannot allocate memory. Each nested file needs about 9k bytes.
Error 114 - cannot free memory.

Error 115 - cannot open file.

Error 116 - cannot closefile.

Error 117 - cannot seek to byte requested in file.

Error 118 - read-path error. Disk cannot be read, normally seen only from floppy disks, or
failing hard discs.

Error 119 - file nesting depth reached - cannot open another file. Y ou have nested files too
deep.

Error messages

Error 120 - file de-nesting error.

Error 121 - start page number greater than last page number in file.

Overlay load errors 128..143

Error 129 - cannot close overlay file.

Error 130 - overlay file read error.

Error 131 - overlay file write error.

Error 132 - overlay file open error - doesfile exist?

Error 133 - overlay produced on different version of ProForth.

Error 134 - overlay too hig.

Error 135 - overlay must be compiled twicel

Error 136 - overlay length ismod. 256, insert "1 ALLOT' & recompile.
Error 137 - overlay must be longer than 256 bytes.

Error 138 - overlay copies must be the same length.

Error 139 - cannot create overlay file.

167

26 Further information

MPE courses

MicroProcessor Engineering runs the following courses:

Architectual introduction to Forth

A two-day course for those with little or no experience of Forth. It provides an
introduction to the architecture of a Forth system. It shows, by practical example, how
software can be coded, tested and debugged, quickly and efficiently, using Forth's
interactive abilities.

Embedded software for hardware engineers

A three-day course for hardware engineers needing to construct real-time embedded
applications using Forth cross-compilers. Includes multitasking and writing interrupt
handlers.

Quick Start Course

A very hands-on tailored course on your site using your own hardware, and including
installation of atarget Forth on your hardware, approaches to writing device drivers, and
and whatever else you need. The course is usually three days long.

MPE consultancy

MPE isavailable for consultancy covering all aspects of Forth and real-time software and
hardware development. Apart from our Forth experience, MPE has considerable
knowledge of embedded hardware design. Our software orbits the earth, will land on
comets, runs construction companies, laundries, vending machines, payment terminals,
access control systems, theatre and concert rigging, anaesthetic ventilators, art
installations, trains and newspaper presses. We have done projects ranging from afew
days to major international projects covering several years and continents and many
countries.

Projects at MPE cover topics such as custom compiler devel opments, including language
extensions such as SNMP, and new CPU implementations, custom hardware design and
compiler installations, a portable binary system for smart card payment systems, machine
controllers, virtual memory systems, and code porting to new hardware or operating
systems. We can operate to fised price and fixed term contracts.

169

Recommended reading

We have arange of outside consultants covering but not limited to:
Communications protocols

Windows device drivers

All aspects of Linux

Safety critical systems

Project management (including international)

Recommended reading

For an introduction to Forth:

“Starting Forth” by Leo Brodie

“Thinking Forth” by Leo Brodie

For more experienced Forth programmers:

“Object Oriented Forth” by Dick Pountain

“Scientific Forth” by Julian Naoble

Other miscellaneous Forth books:

“Forth Applicationsin Engineering and Industry” by John Matthews
“Stack Machines: The New Wave’ by Philip JKoopman J

All of these books can be supplied by MPE.

170

27

Index

#TASKS, 58
#TIMERS, 65
(EMIT), 19
(INIT), 124
(KEY), 19, 32
(KEY?), 19, 32

,» 112, 136, 138, 148
.HEAP, 69
/COLS, 103

/IDE, 103
/PAGEOFF, 103
/PAUSEOFF, 103
?EVENT, 59
[CHAR], 142
[DEFINED], 97
[ELSE], 96
[ENDIF], 96

[I, 53, 61

[IF], 96
[REQUIRED], 97
[UNDEFINED], 97
+USER, 49, 131, 132
+XREFS, 42, 102
-> 116

0=, 141
2VARIABLE, 114
ABORT, 124
ACCEPT, 141
ACTIVATE, 58
ADDR, 113, 116
AFTER, 65
AIDE, 5

AIDE file server, 87
ALIGN, 112, 138

ALIGNED, 112, 138
ALLOCATE, 68
ALLOT, 112, 113, 138
ASClI, 142
ASSEMBLER, 117, 139
AUTOEXEC.BAT, 130

Automatic build numbering,
121

BANK, 91, 92, 149
bank switched, 91
BIN-DOWN, 84, 87
books, 160
BUFFER:, 90, 115
BUILDS,, 121
BUILDFILE, 121
C,, 112,138

C’, 141

CATCH, 144
CCITT, 121

CDATA, 16, 28, 90, 111,
138

CHAR, 142
CHECKSUM, 120
Checksums, 120
CHERE, 113
CLEAR-EVENT, 52
CLR-EVENT-RUN, 59
CLS, 87

COLD, 124
COMPILE,, 136, 148
COMPILER, 100, 117, 139
COMPILERS, 103, 107
constants, 42

control file, 15, 27

171

Index

172

CORG, 113

courses, 159

CR, 45, 131

CRC16, 121

CREATE, 138, 143

cross compiler log, 22, 34
CROSS-COMPILE, 11, 89
D>F, 75

DASM, 101
DEACTIVATE, 58, 131
DEFINE-EMULTOR, 128
Defining words, 118
DEG>RAD, 75
DEGREES, 75

DI, 52,59

DINT, 74

directory structure, 5

DIS, 101

Division, 143

DNORM, 75
DO-TIMERS, 65
download, 128
Downloading, 23, 35

DP, 113

E., 76

El, 52, 59

EMIT, 19, 45, 123, 131
emulator driver, 130
END-LIBS, 97
END-STRUCT, 110
EPROM emulator, 1, 7, 128
EPROM emulator,, 30
equates, 42

EQUATES, 102

Error messages, 153
ESCAPE, 102

EVENT?, 59

events, 51
Initialising, 51

Triggering, 51
EVERY, 65
EXIT, 99
EXPECT, 141
EXPIRED, 66
Extending the compiler, 117
EXTERNAL, 42
F-, 76
F!, 76
F#, 77
F#IN, 77
F*, 76
F., 76
F/, 76
F@, 77
F+, 76
F<, 76
F<0, 76
F=, 77
F>, 77
F>0, 77
F>D, 74,77
F>S, 74, 77
FO=, 77
F10"X, 78
FABS, 78
FACOS, 78
Factoring, 42
FARRAY, 78
FASIN, 78
FATAN, 78
FCONSTANT, 72,78
FCOS, 78
FDROP, 78
FDUP, 79
FE~X, 79
FFRAC, 79
FIELD, 110, 111
FIELD-TYPE, 110, 111

FILE:, 21, 34
FINIS, 89

FINT, 79
FLITERAL, 79
FLN, 79

floating point, 71
FLOATS, 74, 144
FLOG, 79
FMAX, 79
FMIN, 79
FNEGATE, 80
FNUMBER?, 80
FORGET, 142
FOVER, 80
F-PACK, 74
FREE, 68
FROM-FILE, 11
FROT, 80
FSEPARATE, 80
FSIGN, 80

FSIN, 80

FSQR, 80
FSWAP, 80
FTAN, 81
FVARIABLE, 72, 81
FX~N, 81

FXMY, 81
Generic 1/0, 45
GET, 83, 87
GET-MESSAGE, 51, 59
HALT, 50, 59
HEAP16, 67
HEAP32, 68
HEAPOK?, 69
HELP, 102, 107
HERE, 113, 138
HEX-DOWN, 87
HOST, 117, 139
HOST&TARGET, 118

Index

HOST-MATH, 95

11, 53, 62

IDATA, 17, 28, 90, 111, 138
IDE, 11

IHERE, 113

| MVEDI ATE words, 120
INCLUDE, 11, 83, 88
IN-EMULATOR, 91, 129
INIT-HEAP, 68
initialised RAM, 16
INITIATE, 50, 58, 59, 131
INIT-IDATA?, 123
INIT-MULTI, 47, 56, 59
INIT-RAM, 123
INIT-SER, 18, 31
INLINE-ALWAYS, 100
INLINE-NEVER, 100
INLINING, 99
ingtalation, 1
INTEGERS, 81
INTERACTIVE, 42, 101
INTERNAL, 42
INTERPRETER, 117, 139
INTERPRETERS, 103, 107
INVERT, 141

IORG, 113

IPVEC, 45, 131

IRTC, 149

KEY, 19, 20, 32, 45, 123,
131

KEY?, 32, 45, 131
LABELS, 102

LATER, 66
LIBRARIES, 97

library files, 97
Licenceterms, i

local arrays, 116

local variables, 116

Local variables, 115

173

Index

LOCATE, 101 RADIANS, 81
LOG, 21, 34 RAM Initialisation, 123
LRCC16, 121 RAM-START, 123
LSHIFT, 142 REALS, 74, 81, 95, 140, 144
M”,, 121 RECURSE, 99
macros, 11, 12 registration, i
Macros, 121 Removing headers, 41
MAIN, 47,59 REQUEST, 53
MAKE-BUILD, 121 RESERVE, 90, 115
MAKE-TURNKEY, 26 RESIZE, 68
MARKER, 142 RESTART, 50, 60
memory allocation, 67 RESTART-
memory map, 16, 123 COMPILATION, 127
message RESTORE-INT, 53, 60

Receiving, 51 ROM, 16

Sending, 50 ROM PowerForth
messages, 50 compiling text, 83
MS, 58, 60, 66 Types of board, 85
MSG?, 60 ROM PowerForth, 83
MULTI, 48, 52, 60 Intel hex, 84
multitasker, 47 RSHIFT, 142

example, 55 S, 141

Initialising, 47 SSF, 81

internals, 54 SAVE-INT, 52, 60

Starting, 47 SDLC, 121

task control block, 54 SECTION, 16, 17, 28, 89, 91
NEXT,, 124 sections, 138
NO-HEADS, 26, 41 SELF, 60
NO-LOG, 21, 34 SEMAPHORE, 53
NOT, 141 SEND-MESSAGE, 50, 61
NT-ACCESS-PORTS, 98 SER-EMIT, 123
OPVEC, 45, 131 serial drivers, 18, 30
ORG, 113 Initialising, 18
Paged memory, 91 Interrupt driven, 18, 31
PAGES, 91, 92, 149 Polled, 18, 31
PAUSE, 48, 59, 60, 65, 66 SER-KEY, 123
PLACES, 74 SET-EVENT, 51
POSTPONE, 148 SETMACRO, 11
RAD>DEG, 81 SETUP, 86

174

SIGNAL, 53

sign-on, 24
SIMPLE16, 121
SIMPLE32, 121
SIMPLES, 121
SINGLE, 36, 48, 52, 57, 61
SINT, 74

SIZE, 68
SIZEOFHEAP, 67
SPAN, 141

stack fault, 57

Stamp, 149

START:, 131
STARTOFHEAP, 67
START-TIMERS, 66
STATUS, 61

STOP, 50, 61
STOP-TIMERS, 66
STRUCT, 110
Structures, 110
Support, i

SUSPEND-
COMPILATION, 127
System requirements, 1
TARGET, 117, 139
TARGET-MATH, 95
TARGET-ONLY, 118

task
Controlling, 49

initialising, 49

Starting, 50

Stopping, 50
TASK, 48, 131
TASKING?, 47, 58, 65, 131
TCB, 54
TERMINATE, 58, 61, 131
text macros, 11
Threading, 124
THROW, 144

Index

TICKS, 66
TIMEBASE, 63
TIMEDOUT?, 66
TO, 113, 116
TO-EVENT, 61
TSTOP, 65
TYPE, 45, 131
UART, 18

UDATA, 17, 28, 90, 111,
138

UHERE, 113

Umbilical Forth, 27, 57, 125,
140

UMBILICAL-FORTH, 89
uninitialised RAM, 17
UNUSED, 115, 138
UORG, 113
UPDATE-BUILD, 121
USER, 49, 132

user variable, 49

USES, 101

VALUE, 90, 113
VARIABLE, 90, 113
VFX, 99

VIA-LINK, 91

Ww,, 112, 138

WAIT, 58
WAIT-EVENT/M SG, 61
Warranties, i

WORDS, 102
WRITE-IGNORE, 90
WRITE-INVALID, 90
XDASM, 101
XMODEM, 84

XREF, 102, 149
XREF-ALL, 102
—XREFS, 42, 102
XREF-UNUSED, 102

175

176

