
MPE Forth 6 Cross Compiler

User Manual

MPE Forth 6 Cross Compiler

User manual
Manual revision 1.620

Date 17 December 2003

Software
Software version 6.20

Package Number:

For technical support
Please contact your supplier

For further information
MicroProcessor Engineering Limited
133 Hill Lane, Southampton
SO15 5AF, UK
Tel: +44 (0)23 8063 1441 from USA: 011 44 23 8063 1441
Fax: +44 (0)23 8033 9691 from USA: 011 44 23 8033 9691

e-mail: mpe@mpeltd.demon.co.uk
tech-support@mpeltd.demon.co.uk

web: www.mpeltd.demon.co.uk

mailto:mpe@mpeltd.demon.co.uk
mailto:tech-support@mpeltd.demon.co.uk
http://www.mpeltd.demon.co.uk

Acknowledgements
MPE would like to thank the following people for their involvement in the production of this
product:

Mark Davis, Stephen Pelc, Matthew Purvis, Paul Richards

MPE Forth 6 Cross Compiler
Copyright © 1993-2003 MicroProcessor Engineering Limited

i

Licence terms

Distribution of application programs
Providing that the end user has no access to the underlying Forth and its text interpreter except for
engineering and maintenance access only, applications compiled with the Forth 6 cross-compiler
may be distributed without royalty. An acknowledgement will be gratefully appreciated. No part
of the cross-compiler or the target source code may be further distributed without permission from
MicroProcessor Engineering.

If you need to ship applications with an open Forth system, or wish to check what constitutes
engineering and maintenance access, please contact MPE. An OEM version of ROM PowerForth
is available for distribution with your products, and includes documentation on disc.

Warranties and support
We try to make our products as reliable and bug free as we possibly can. We support our
products. If you find a bug in this product and its associated programs we will do our best to fix it.
Please check first by fax or email to see if the problem has already been fixed. Please send us
enough information including source code on disc or by email to us, so that we can replicate the
problem and then fix it. Please also let us know the serial number of your system and its version
number. We will then send you an update when we have fixed the problem. The level of technical
support that we can offer may depend on the Support Policy bought with the product.

Technical support will only be available on the current version of the product.

Make as many copies as you need for backup and security. The issue discs or CD are not copy
protected. The code is copyrighted material and only ONE copy of it should be use at any one
time. Contact MPE or your vendor for details of multiple copy terms and site licensing.

As this copy is sold direct and through dealers and purchasing departments, we cannot keep track
of all our users. If you fill out the registration form enclosed and send it back to us, we will put
you on our mailing list. This way we will be able to keep you informed of updates and new
extensions, as they become available. If you need technical support from us we will need these
details in order to respond to you. You will find the serial number of the system on the original
issue discs.

iii

Table of Contents

Licence terms i
Distribution of application programs i
Warranties and support i

1 Installing the system 1
System requirements 1
Running the installer 1
Release notes 1
EPROM emulator drivers 1
Port access under Windows 2000/NT 1

2 The system components 3
MPE Forth cross-compiler 4
Standalone target Forth 4
Umbilical Forth 5
Leburg EPROM emulator drivers 5
Documentation directory 5
Control files 5
Changes from v6.0 to v6.1 5
Changes from v6.1 to v6.2 6
Learning Forth 7

3 Configuring with macros 9
Text macros 9
Compiler macros 9
Directory structures 10

4 Generating a standalone Forth 13
Is your target already supported? 13
The control file 13
The memory map 13

Setting the memory map 13
Setting the start and end of ROM 14
Setting the start and end of initialised RAM 14
Setting the start and end of uninitialised RAM 14
Setting the compilation areas 15
An example 15

Modifying the serial line drivers 15
Interrupt driven 15
Polled 16
Initialising the serial line 16
Sending a character to the host 16
Receiving a character from the host 16
Detecting a received character 17

Licence terms

iv

Setting up the system 17
Setting up the hardware 17
Setting up the software 17

Cross-compiling 17
Creating an image 17
The cross-compile log 17
The compilation summary 18

The created image 19
Problems, problems ... 19
Downloading the compiled image 19

Downloading to a LeBurg EPROM emulator 19
Downloading to a different emulator or programmer 19

Running the target Forth 19
Switching to target mode 20
Resetting the target board 20
The sign-on 20

Cross-compiling an application 21
Modifying the control file 21
Running your application 21
Generating a turnkey application 21

5 Generating an Umbilical target 23
Requirements for Umbilical Forth 23
Is your target already supported? 23
The control file 23

Creating a control file 24
The memory map 24

Setting the memory map 24
Setting the start and end of ROM 24
Setting the start and end of initialised RAM 24
Setting the start and end of uninitialised RAM 25
Setting the compilation areas 25
An example 25

Modifying the serial line drivers 25
Interrupt driven 26
Polled 26
Initialising the serial line 26
Sending a character to the host 26
Receiving a character from the host 27
Detecting a received character 27
Exporting the names 27

Setting up the system 27
Setting up the hardware 27
Setting up the software 28

Cross-compiling 28
Creating an image 28
The cross-compile log 28
The compilation summary 29

Problems, problems ... 30
Downloading the compiled image 30

Downloading to a LeBurg EPROM emulator 30
Downloading to a different emulator or programmer 30

Licence terms

v

Running the target Forth 30
Resetting the target board 30
The sign-on 30

Cross-compiling an application 31
Modifying the control file 31
Running your application 31
Debugging and developing your application 32
Generating a turnkey application 32

Debugging the serial link 32
Using other link drivers 33

6 Optimising your target Forth 35
Reducing the size of your image 35
Removing headers 35

Removing all headers 35
Selectively removing headers 35
Factoring your code 35
Removing excess code 36
Using equates instead of constants 36
Removing forward references 36
Using Umbilical Forth 37

Speeding up your code 37

7 Generic I/O 39
About Generic I/O 39
Creating a new device 39
Selecting a device 39

8 Multitasker 41
Initialising the multitasker 41

Selecting the multi-tasker 41
Starting the multitasker 41
Stopping the multitasker 41

Writing a task 41
Using the scheduler 42
An example 42
Task dependent variables 42

Initialising a task 43
Controlling tasks 43

Starting a task 43
Stopping a task 43

Handling messages 44
Sending a message 44
Receiving a message 44

Creating events 44
Writing an event 44
Initialising an event 44
Triggering an event 44
Clearing an event 45

Interrupts and critical sections 45
Semaphores 46

Licence terms

vi

The multitasker internals 46
The scheduler's data structure 47

A simple example 47
Defining a simple task 47
Initialising the multitasker 48
Activating the example task 48
Controlling the example task 48

Troubleshooting tasks 49
Single chip tasking 49
Converting to the v6.x multitasker 49

Configuration 49
Task identifiers and TASK 50
WAIT and MS 50
INITIATE and ACTIVATE 50
?EVENT 50

Glossary 50

9 TIMEBASE 53
Periodic timers and TIMEBASE 53
The basics of timers 53
Considerations when using timers 53
Implementation issues 54
Timebase glossary 54

10 Heap and memory allocation 57
ANS Standard 57
Source code 57

HEAP16 57
HEAP32 57
Common 57

Glossary 58

11 Software floating-point 59
Source code 59
Entering floating-point numbers 59
The form of floating-point numbers 59
Creating variables 59

Accessing variables 60
Creating constants 60
Using the supplied words 60

Calculating sines, cosines and tangents 60
Calculating arc sines, cosines and tangents. 60
Calculating logarithms 60
Calculating powers 60

Setting degrees or radians 61
Converting between degrees and radians 61

Displaying floating-point numbers 61
Changes from v6.0 61

32 bit targets: software floating point 62
16 bit targets: software floating point 62

Glossary 62

Licence terms

vii

12 ROM PowerForth utilities 69
Compiling text files 69

The required files 69
Compiling a specified text file 69

Downloading a binary image 69
XMODEM binary image download 70
Intel hex download 70

ROM PowerForth 70
Hardware requirements 70
Types of board 71
Making your application turnkey 72

AIDE file server protocols 72
Glossary 72

13 Controlling compilation 75
Starting the cross-compiler 75
Stopping the cross-compiler 75
Defining memory - Sections and the xDATA directives 75

Selecting section I/O 76
An example 76
Section toOLS 77

Defining memory – Bank switched systems 77
Defining banks and pages 77
Use of CDATA pages 78
IDATA and UDATA pages 80

Aligning generated code 80
Numbers and 16 bit targets 80
Enabling floating-point 80
Turning the log on and off 80
Conditional compilation 81

An example 81
[DEFINED] and [UNDEFINED] 81
[REQUIRED] 82

Library files 82
Loading binary data 82
Test code 82
C header files 83
Direct port access under Windows NT/2000 83

14 The VFX code generator 85
Inlining 85
Colon definitions 85
Code definitions 86
COMPILER directives 86

15 Debugging tools 87
INTERACTIVE 87
XDASM, DASM, DIS 87
LOCATE 87
USES 87

Licence terms

viii

XREF, XREF-ALL, XREF-UNUSED 87
WORDS 88
LABELS 88
EQUATES 88
ESCAPE 88
HELP 88
INTERPRETERS 88
COMPILERS 88
Command line switches 88

16 Compilation in more detail 91
Special compilation behaviour 91

Code generator 91
Immediate 91
Strings 92
Comments 92
Control structures 92
Special case in defining words 92

Special interpretation/compilation behaviour 92
Compiler directives 92
Host referring words 93
Defining words 93
Assembler control 93
Target memory and interpretable 94

Structures 95
Allocating memory and variables 96

CREATE 96
Commas: , C, W, 96
ALIGN and ALIGNED 96
ALLOT 97
HERE (CHERE IHERE UHERE) 97
ORG (CORG IORG UORG) 97
VALUE and VARIABLE 97
BUFFER: 98
RESERVE 99
UNUSED 99

Local variables 99
Extending the compiler 101
Defining words 101

Automatic handling 102
Explicit handling 102

IMMEDIATE words 103
Automatic handling 103
Explicit handling 103

Checksums 103
Automatic build numbering 104
Macros in text strings 104

17 Forth on the target 105
Inside a ROM target Forth 105
The Forth memory map 105

Licence terms

ix

RAM initialisation 105
Register usage 106
Threading 106
Forth models 106
Inside Umbilical Forth 106

18 Optimising development 109
Speeding up the compilation 109

Saving the compilation state 109
Restarting from a saved state 109
An example 109

Speeding up the download 110
Setting EPROM size and bus width 110
Setting the page 111
Using the emulator driver 111

19 An example control file 113
Standard header 113
Text macros 113
Cross compiler initialisation 114
Configure target 114
Kernel files 116
Application code 117
End of compilation 118

20 Converting from v6.0 to v6.2 121
Generic I/O 121
Multitasker 121
User variables 121
Heap 121
TIMEBASE 122
Build numbering 122

21 Moving from v5 to v6/VFX cross compilers 123
Introduction 123
Basic v5 to v6 conversion 123

Memory definitions 123
EPROM emulator 123
Assembler changes 124
Bank switched systems 124
Conditional compilation 124
Interpreted calculations 124
Startup code 124
Testing 125

Converting from DTC to STC and VFX compilers 125
Strategy 125
COMPILE, and , 126
Vector tables 126
Choice of word names – ANS and Forth-83 127

CREATE CDATA IDATA UDATA and sections 127
COMPILER, INTERPRETER, HOST, TARGET and ASSEMBLER 127

Licence terms

x

Umbilical Forth 128
FLOATS and REALS 129

22 Converting from Forth-83 to ANS 131
Choice of word names – ANS and Forth-83 131

INVERT NOT and 0= 131
EXPECT SPAN and ACCEPT 131
S” and C” 131
ASCII CHAR and [CHAR] 132
LSHIFT and RSHIFT 132
FORGET and MARKER 132

Division 132
CREATE and friends 132
>BODY and friends 133
FLOATS and REALS 133
CATCH and THROW 133

Description 133
Sample implementation 134
Stack rules for CATCH and THROW 135
Some more features 135

POSTPONE 136
COMPILE, and , 136

23 IRTC and Stamp compiler differences 137
IRTC compilers 137
Forth Stamp compilers 137

24 Technical glossary 139

25 Error messages 141
General Forth errors 0..15 141
System messages 16..31 142
Assembler errors 32..47, 144...159 142
Binary module errors 48..63 142
Source file errors 64..79 143
Operating system errors 80..112 143
Text file errors 112..127 144
Overlay load errors 128..143 144

26 Further information 145
MPE courses 145

Architectual introduction to Forth 145
Embedded software for hardware engineers 145
Quick Start Course 145

MPE consultancy 145
Recommended reading 146

27 Index 147

Licence terms

xi

List of Figures
Figure 1: Directory structure .. 4
Figure 2: Target sign-on... 20
Figure 3: Example turnkey application... 22
Figure 4: Umbilical Forth turnkey application .. 32
Figure 5: Umbilical Forth structure .. 107

List of Tables
Table 1: Standard control file text macros .. 10
Table 2: Cross-compiler directory structure in detail .. 11
Table 3: Key to cross-compiler log... 19
Table 4: Key to cross-compiler log... 29
Table 5: Task control block.. 47
Table 6: Task status byte.. 47
Table 7: Compiler extension directives... 101
Table 8: EPROM size indicators .. 110
Table 9: Bus width indicators... 110

1

1 Installing the system

The installer helps you through the installation process and will make sure you have all the files
you need.

System requirements
To install and use the development system you need:

• PC with Windows 95 or NT or higher with 32 Mb or more of RAM.

• At least 8-20 Mbytes of free disc space, depending on the amount of CPU specific
documentation provided.

Running the installer
The software is supplied on a CD. Use the Windows Explorer or ‘My Computer’ shortcut to
navigate to your CD drive. To install the development system, double-click the file SETUP.EXE

The installer will prompt you for all the information it needs, offering defaults. The installer will
also create a new start menu program group for you that contains shortcuts to tools and help files.

Everything you need can be accessed throught the AIDE shell. Many people find it useful to put a
shortcut to AIDE\AIDE.EXE on the desktop.

Release notes
Late changes to the compiler and target code are documented in release note files. These are
called RELEASE.xxx.TXT and will be found in the relevant directories. They are of particular
value when upgrading from one version of the compiler to the next. Please read them!

The most important of these are the compiler and target CPU release notes which are kept in the
DOC directory. They will be called RELEASE.XC6 and RELEASE.cpu, where for example
RELEASE.51 refers to the 8051 compiler and RELEASE.ARM refers to the ARM/StrongARM
compiler.

EPROM emulator drivers
The development system is supplied with facilities for the LeBurg EPROM emulator, series two.
If you have the earlier series, please contact MPE if you do not have the TSR021 or TSR041
drivers. All the necessary drivers are supplied with the EPROM emulators.

The installer needs to know what PC port address to map the emulator driver to. Note that for use
with Windows 95, the DOS driver must be included in your AUTOEXEC.BAT file.

Later versions will support the MPE PowerROM Target Access Systems over Ethernet.

Port access under Windows 2000/NT
Direct access to I/O ports is required for the Leburg EPROM emulator drivers, the SPI parallel
port drivers, and other target access drivers. If you are using Windows 2000/NT (any version) or
later, direct port I/O requires a driver that permits this access, otherwise you will trigger a
Windows exception with an error message such as "Cannot run privileged instruction".

Port access under Windows 2000/NT

2

The directory COMPILER\XTRA contains NTPORT.EXE, which permits an application to use
any I/O port. Note that this completely bypasses the normal Windows NT I/O port protection
mechanism. If you want something more secure there are several utilities available from the
Internet.

To install NTPORT perform the following procedure. Our thanks go to Graham Gollings of LMS
bv for this description of the process.

Run the NTPORT utility located in your COMPILER\XTRA folder. This puts various files in the
right places, but does not install the driver itself. Loading a driver is performed by the
LOADDRV utility.

Run LOADDRV.EXE from your COMPILER\XTRA folder. In the window "Full pathname of
driver" to point to GIVIO.SYS

• Tick on INSTALL (It should say operation was successful)

• Tick on RUN (It should say operation was successful)

• Now run TSTIO.exe (and a tune should play)

At this point GIVEIO.SYS is running, but the next time the system is started from cold it will be
loaded at system start up but will not run, as it is configured as manual. We need it to be loaded
and running from cold start. In order to set this up, run REGEDIT

• Look to path:
HKEY_LOCAL_MACHINE | SYSTEM | CURRENT CONTROL SET | SERVICES |
GIVEIO

• Right click on GIVEIO, and change the START REG_DWORD from 3 (manual) to 2
(automatic)

To test the installation, run the compiler directly from the COMPILER directory with no
command line. In the console, type the following incantation:

ALSO C-C \ add C-C vocabulary to search order
PIO-INIT \ initialise driver access
PIO-TEST \ should play a tune
PREVIOUS \ remove C-C from search order
BYE \ exit from compiler

When using the compiler, you must add the directive NT-ACCESS-PORTS to your control file
before any direct access to hardware is required. A good place to add it is in the section after the
CROSS-COMPILE directive in which the compiler is configured.

3

2 The system components

Now that you have installed the development system, you may be wondering what you have got.
The development system consists of:

• MPE Forth 6 cross-compiler with source code. Note that VFX compilers are only supplied
with source code after a non-disclosure agreement has been signed.

• Source code for generating a target Forth that includes a standalone Forth interpreter useful
for debugging with a terminal. Treat the target code as a resource for you to read and extend.

• Source code for generating an Umbilical Forth that needs the cross-compiler for debugging,
but is smaller than the standalone Forth. Treat the target code as a resource for you to read
and extend.

• Drivers for the LeBurg EPROM emulators

• The AIDE development environment AIDE is documented in a separate on-line manual.

• Tools directory. This includes file format converters from the memory images generated by
the MPE Forth 6 compilers to Motorola S-record format and Intel Hex format. The OMAKE
make utility is also included.

• Documentation directory. This directory includes much useful documentation, including the
ANS Forth specification for target code reference. There are many CPU specific files taken
from manufacturers’ web sites. You will find here the RELEASE.XC6.TXT and
RELEASE.cpu.TXT text files which document late changes since this manual was generated.
You will also find PDF files for the latest available version of this manual
(XC620MAN.PDF) and the CPU specific manual.

• Target Code manuals. From v6.2 onwards, target code code is documented using MPE’s
DOCGEN system supplied with VFX Forth for Windows. The manual for the common code
may be found in COMMON\MANUAL\COMMONCODE.PDF and the CPU specific code
manual may be found in CPU\MANUAL\CPUCODE.PDF where CPU is replaced by a CPU
specific reference.

By default the installer creates the directory structure shown in the figure below. Note that the
AIDE directory is not shown as this can be installed to anywhere on your system.

MPE Forth cross-compiler

4

<root> CPU HARDWARE

COMPILER

COMMON ROMFORTH

EXAMPLES

CONFIGS

DRIVERS

...

...

...

DOC

Figure 1: Directory structure

MPE Forth cross-compiler
The cross-compiler can generate either a ROM target Forth or an Umbilical Forth from your
source code. The source code for the cross-compiler is supplied for non-VFX compilers, so that
you can extend the compiler and rebuild it from scratch if required. Source code for VFX
compilers is available under special terms which include a non-disclosure agreement.

The compiler can automate the generation of paged targets and also has a built-in cross-
assembler. The compiler executable and associated files are in the directory COMPILER and the
source is in the directory COMPILER\SOURCE if provided.

Standalone target Forth
A standalone target Forth is supplied with the full compiler, and not with the IRTC and Stamp
verions.

Source code is supplied for developing a standalone target Forth. The Forth generated can have a
multitasker and software floating-point. The standalone Forth can be debugged through a serial
port or other link using a terminal or terminal emulator. This makes onsite debugging without the
cross-compiler very easy, and the Forth can be used for debugging, maintenance, and terminal
configuration.

It also has a bigger wordset than an Umbilical Forth target, and consequently requires more
memory. If you require the multitasker and don’t want to change any of the supplied code, you
must generate a standalone target Forth. The installer places the target source code in the
directories COMMON and CPU. See the chapter on Generating a standalone Forth for details.

Optimizing development

5

Umbilical Forth
Source code is supplied to generate an Umbilical Forth. Umbilical Forth is a significantly smaller
Forth than the standalone target Forth, so that an interactive Forth can be generated which has a
minimimal memory footprint. Umbilical Forth does not have all words defined in the standalone
target Forth, but is useful if ROM space is at a premium. The Umbilical Forth source code is in
the directories COMMON and CPU.

In most cases (except for 8051, Z8…) the code for Umbilical Forth systems is compatible with
the standalone Forth source code, so additional words required can be taken from the standalone
Forth code base.

Leburg EPROM emulator drivers
The cross-compiler can directly download code, as it is generated, to a LeBurg EPROM emulator.
This is done by a TSR in the COMPILER directory.

Note that if you are using Windows NT/2000 or any other version of Windows that treats direct
port I/O as a privileged instruction, you must install the NTPORT.EXE file from the
COMPILER\XTRA directory as described in the installation section of the manual and modify
your control fileto include the NT-ACCESS-PORTS directive.

Documentation directory
Much of the documentation is available on-line from the DOCS directory. In particular note the
ANSFORTH directory. If you need it the ANS specification is provided in HTML format in the
DOCS\ANSFORTH directory. Start with DPANS.HTM

The generic cross compiler and CPU specific manuals are supplied as PDF files. These may have
been updated since the printed manuals. The use of PDF manuals enables us to update our
manuals on a regular basis to incorporate suggestions made by you the users.

A number of CPU manuals are also provided in PDF form to avoid you having to download them.

Control files
In nearly all cases, the cross compilation process is controlled by a “control” file, which defines
the characteristics of the target hardware and memory layout and specifies which files to compile.
You will find several in the CPU\CONFIGS directory/folder. For your job, copy one of the
existing files and modify as required.

You can make your life much easier, especially when you go on site with a laptop, if you use the
text macro system described in the next chapter to handle the directory structure for your
applcation code and the MPE kernel code.

Changes from v6.0 to v6.1
The following are the major changes from the previous release of the cross compiler.

Inproved target performance. The VFX compilers have been improved since v6.0, and the 16 bit
targets have been changed from direct threaded code (DTC) to subroutine threaded code (STC)
and some optimisation. On an 8051, the v6.1 target can be twice as fast with no increase in code
size. On other 16 bit targets, such as the 68HC12, the improvement is considerably more. VFX
targets are ten to fifteen times faster than their DTC predecessors.

Changes from v6.1 to v6.2

6

Target code disassembler. You can now disassemble any definition, whether Forth or code. You
can also see some of the new code generation optimisations.

Generic I/O permits you to add new I/O devices very easily and to use the standard I/O words
such as KEY and EMIT with them. Each task may access a different default device, and the
default can be changed at any time.

Enhanced multitasker. The v6.1 target multitasker is fully list driven, which reduces the RAM and
code space needed. There is a lso a stripped down version for use with the single chip model. The
source code for these taskers is in the files MULTIxxEXT.FTH and MULTIxxINT.FTH.

TIMEBASE time and delay management system. Using a single periodic clock interrupt, you can
generate delays, timeouts, and periodic execution very simply, using phrases such as:

 ’ <action> <ms> AFTER \ once after <ms> ms
 ’ <action> <ms> EVERY \ every <ms> ms

Enhanced Umbilical Forth. Previous versions of the compiler only supported Umbilical Forth
with a serial line and an EPROM emulator. From 6.1 onwards, Umbilical Forth also supports
other protocols, such as SPI access for the Atmel 89S8252 and BDM access for Motorola CPU32
cores. This allows fully interactive programming and debugging through the PC parallel port and
frees up the target serial port.

Heap code is now provided with all targets, not just the VFX compilers.

Automatic build numbering system. You can embed a build version string into the application.
This string can be automatically updated after each successful build of your project.

More examples.

Enhanced documentation. The manual has been revised, incorporating many comments
suggestions from users since the introduction of the Forth 6 compilers.

This compiler is now available in three versions, Professional, IRTC, and Forth Stamp.

Professional. The full compiler with all tools, compiler source code, all target source code,
floating point, multitasker(s), TIMEBASE system, heap, automated test code, Umbilical Forth
and Forth Stamp hardware (if available).

IRTC. The same compiler and hardware but without compiler source code, and with Umbilical
Forth only. TIMEBASE, floating point, automated test code, and bank switched targets are not
supported.

Forth Stamp. As the IRTC compiler, but with code space restricted to 8k bytes. No cross
reference facilities are available. No multitasker is provided.

Changes from v6.1 to v6.2
Examples. The EXAMPLES directory includes target code for a State Machine compiler, PID
loop controllers, and a complete file system. The I2C support has been overhauled and new
devices added.

Kernel. Numerous detail changes for efficiency and to support extensions such as the PowerNet
v3.0 TCP/IP stack. The 32 bit heap code has been overhauled for speed and size. The
ROMFORTH facilities have been extended with XMODEM in both directions.

Compiler. The following INTERPRETER directives are new:

Optimizing development

7

[REQUIRED] IT HIDE REVEAL KB MB TESTING [TEST TEST]
.FORWARDS

The use of structure fields in COMPILER ... TARGET definitions produces optimised code in
VFX compilers.

Documentation. The high level kernel code in the COMMON directory now has separate
documentation.

AIDE shell. LOCATE supports external editors as well as ForthEd.

Learning Forth
If you are unfamiliar with Forth, MPE can supply a range of books and training courses. For
further details, please contact our office or look at our website (URL at start of manual). See also
the “Further Information” chapter of this manual.

9

3 Configuring with macros

Both the compiler and the IDE can be configured using text macros, which are mostly used to
define directory, file and path names. The IDE and the cross compiler each have their own
independent sets of macros.

The macro system gives you great flexibility in managing your source code. For example, you can
establish projects in which your source code is held quite separately from the issued MPE code.

When a project is moved from one machine to another, the directory structure may need to
change. With macros this is easy to do by redefining the macros.

Text macros
Text macros allow a similar function to the role of constructs such as %PATH% in MSDOS batch
files. In particular, the expansion of these macros are performed on file names submitted to
FROM-FILE or INCLUDE, so something like the following piece of code can be included in a
control file before the CROSS-COMPILE directive:

"" C:\MSD\SRC" SETMACRO ROOT
...
INCLUDE %ROOT%\FILEA
INCLUDE %ROOT%\FILEB
INCLUDE %ROOT%\FILEC

When the file name is scanned, the compiler attempts to subsitute text between the ‘%’ characters.
If a predefined macro cannot be found, the compiler will look for an environment variable of the
same name. The ‘%’ characters are not part of the macro name. Note that “” <text>”
SETMACRO <name> can be placed on the cross compiler command-line and thus you can
specify a root directory in a Windows short-cut.

If you need macros that are common to both the IDE and the cross compiler, use environment
variables.

Compiler macros
The compiler can be used independently of the IDE. However, the IDE supplies the compiler
with a set of text macros that define the names of the various source directories. Some installers
provide the IDE with the names of the compiler directories via a Forth source file, DIRS.FTH,
which is always placed into the <root> directory. When the user invokes a cross-compiler, the
IDE includes this file before your control file on the compiler's command-line. Hence, you don’t
have to do anything to obtain this information.

If the IDE is not used, then this information will have to be provided to the compiler some other
way. There are basically three ways of doing this:

• Include the file DIRS.FTH (if it exists) yourself via the compiler's command-line, perhaps in
a short cut, or by including it in the control file.

• Define the required set of text macros as environment variables - just take DIRS.FTH and use
a text editor to convert it into a number of SET commands. In this case, no "alien" source
files need be included before your control file. Note that the names are fixed, so this approach
will only work if you are using a single cross-compiler.

• Include the relevant macros in your control file.

Directory structures

10

The text macros required by the standard control files are as follows:

Macro Name Default Setting

Always present:

CpuDIR <root>\cpu

CommonDIR <root>\common

May be present:

DIRROMHOM <root>\cpu

DIRROMCFG <root>\cpu\configs

DIRROMDRV <root>\cpu\drivers

DIRROMCOM <root>\common

DIRROMFTH <root>\common\romforth

DIRROMEXA <root>\examples

Table 1: Standard control file text macros

Directory structures
For reference, the directory structure of the cross-compiler is listed below with a description of
each directory’s contents.

Configuring with macros

11

Directory Contains

<root> Installer files and DIRS.FTH

 CPU
 (e.g. 8051)

CPU-specific kernel source files

 CONFIGS Example control source files

 DRIVERS Serial and other driver source files

 COMPILER Compiler .EXE and error messages files

 CPU
 (e.g. 8051)

CPU specific cross compiler source code

 COMMON Cross compiler common source code

 PFW Host Forth for the cross compiler

 DOC Help files and other documentation

 COMMON Non CPU-specific kernel source files

 DRIVERS Serial and LED driver source files

 EXAMPLES Chip-independent test and example source

 ROMFORTH Chip-independent ROMFORTH source files

 AIDE AIDE executables, data, configuration files

Table 2: Cross-compiler directory structure in detail

Note that the <root> directory name is selected by the user. Note that because AIDE's
configuration file contains all the required information to run a given compiler and that all of the
other files are common, several cross-compilers can share the same AIDE directory.

13

4 Generating a standalone Forth

This chapter describes how to generate a ROMmable target ANS Forth for your target board. It
guides you through:

• setting up your hardware and software

• writing the serial line drivers

• modifying the memory map for your board

• compiling and running a target Forth

Is your target already supported?
Supplied with the cross-compiler are configurations for a number of boards and terminals. If one
of the supplied control files matches your hardware, use it. By using these files, the installation of
a ROM target Forth for your board will be greatly simplified.

If you do not have one of the supported targets you will have to modify a control file and write
serial line drivers for your board.

The control file
The control file contains all the details of your board that the cross-compiler needs to know.
These include:

• the memory map of your board

• whether you wish a log to be displayed

• the number of tasks in your system

• the clock rate of your board

As well as containing configuration information, the control file contains compiler directives and
a list of files that are to be cross-compiled. Once the cross-compiler knows these items, it can
generate a correct binary image from your source code. An example control file is shown in the
chapter on Controlling compilation.

To create a new control file, copy an existing one and then modify it to match your target. This is
normally easier than generating one from scratch. Example control files are in the directory
CPU\CONFIGS.

The memory map
The memory map describes the addresses where the ROM and RAM areas start and end in your
target system.

Setting the memory map
The memory map is described in your control file, so once the file has been created, you can
change the memory map definition to match your target. The memory map is described in three
parts:

The memory map

14

• the start and end of ROM - where the code is.

• the start and end of initialised RAM

• the start and end of uninitialised RAM

Setting the start and end of ROM
The start and end of ROM (and any other memory area) is defined by using the compiler directive
SECTION in the form:

rom-start rom-end CDATA SECTION <name>

where rom-start is the address of the start of ROM used for code, rom-end is the address of the
end of ROM used for code, and <name> is the name of the output file. The compiler
automatically gives the filename <name> an extension .IMG so <name> must be just a name
without an extension. The numbers rom-start and rom-end are, by default, in decimal, but can be
entered in hex by preceding them with a $, e.g

$0100

This area also contains any data defined by CDATA during the cross-compilation. This directive is
discussed elsewhere in the manual.

Setting the start and end of initialised RAM
The start and end of the initialised RAM area is defined by using the compiler directive
SECTION, i.e.

ram-start ram-end IDATA SECTION <name>

where ram-start is the address of the start of RAM, ram-end is the address of the end of RAM and
<name> is the name for this area of memory. The numbers ram-start and ram-end are, by default,
in decimal, but can be entered in hex by preceding them with a $. <name> is not actually used but
must be stated.

The initialised RAM area contains any data defined by VARIABLE or VALUE or IDATA during
the cross-compilation. These directives are discussed elsewhere in this manual. If an interactive
Forth is compiled for the target then definitions entered interactively are placed in this section.

Setting the start and end of uninitialised RAM
The start and end of the uninitialised RAM area is defined by using the compiler directive
SECTION, used in the form:

ram-start ram-end UDATA SECTION <name>

where ram-start is the address of the start of uninitialised RAM, ram-end is the address of the end
of RAM and <name> is the name for this area of memory. The numbers ram-start and ram-end
are, by default, in decimal, but can be entered in hex by preceding them with a $. <name> is not
actually used but must be stated.

The uninitialised RAM area contains data areas allocated by BUFFER: or UDATA during the
cross-compilation.

Generating a standalone Forth

15

Setting the compilation areas
The compiler must be instructed to compile into the areas defined by SECTION. Therefore, after
the memory map is defined you must code:

<name1>
<name2>
<name3>

where <name1> is the name of the ROM area, <name2> is the initiialised RAM area, and
<name3> is the uninitialised RAM area.

An example
If your target board has a memory map as in the figure above, your control file should be
modified so that it reads:

$00000 $07FFF CDATA SECTION Kern
$08000 $0FFFF IDATA SECTION KernI
$10000 $1FFFF UDATA SECTION KernU
Kern KernI KernU
CDATA

This indicates three areas of memory with names Kern and KernI and KernU. With this setup,
your kernel will have 32k of ROM and 32K for variables and interactive development, plus 64k
of uninitialised RAM that is not affected at power up.

Modifying the serial line drivers
Your target board communicates with the external world via a UART. Drivers are supplied for the
supported targets. If you are using one of these, the appropriate supplied serial driver code can be
used. This is located in the directory ROM\DRIVERS. Look here first, as new drivers may have
been added since the manual was written.

If you are using a UART for which driver code is not supplied, you will need to write all the
words required to:

• initialise the UART

• send a character

• receive a character

• test if a character has been received

All four words will normally be Forth CODE definitions. This is required so that the send and
receive words are as fast as possible. Example serial line drivers in the files ROM\DRIVERS can
be used as a template. As with the control file it is normally easier to modify an existing serial line
driver file rather than creating your own from scratch.

Two types of serial driver can be written:

• interrupt driven

• polled

Interrupt driven
An interrupt driven serial line can only be used if the UART generates interrupt signals when
characters are received. An interrupt driven driver will allow buffered serial communications to

Modifying the serial line drivers

16

be implemented with least processor overhead. Interrupt-driven drivers are a little more difficult
to write than polled drivers.

Polled
A polled driver will continuously poll a status bit in the UART to detect when the UART has
either transmitted or received a character.

Initialising the serial line
The word INIT-SER must perform all the UART initialisation required. This includes setting:

• the baud rate

• any handshaking required

• the number of data bits

• the number of stop bits

• the parity to be used

It is recommended that the baud rate is initially set to 9600 baud until the target board is working.
It can then be raised to make a more responsive target.

Sending a character to the host
The target code needs to be able to send a character to the host for display. Therefore, you need to
write a word which:

• waits for the transmit line to become available

• transmits a character to the host

• increments the USER variable OUT

The method used can be either a polled or interrupt driven driver but must be called (EMIT).
Once (EMIT) is written, it must be assigned to the defered word EMIT. The stack effect of
(EMIT) is:

(EMIT) \ char -- ; send char to host

Receiving a character from the host
The target code needs the ability to receive a character from the host. To do this it needs to:

• wait for a character to be received

• place the character on the Forth stack

The method used can be polled or interrupt driven but the word must be called (KEY). Once
(KEY) has been written, it must be assigned to the deferred word KEY. The stack effect of
(KEY) is:

(KEY) \ -- char ; wait for char to be received

Generating a standalone Forth

17

Detecting a received character
The target needs (KEY?) to detect if a character has been received. This can be used as part of
(KEY). (KEY?) needs to:

• return true on the Forth stack if a character is available (-1)

• return false on the Forth stack if a character is not available (0)

Once (KEY?) is written, it must be assigned to the defered word KEY. The stack effect of
(KEY?) is:

(KEY?) \ -- t/f ; true if character received

Setting up the system
Setting up the system involves both hardware and software. The target hardware, PC, EPROM
emulator/programmer and serial line have to be connected as well as configuring a terminal
program to run the cross-compiler.

Setting up the hardware
To generate an interactive Forth target you need:

• A PC

• A serial cable

• A target

• An EPROM/Flash emulator or programmer

Your PC needs to have at least one serial port for connecting to the target, so making the Forth
interactive. The default serial port is set in the umbilical control file. The PowerTerm terminal
emulator defaults to COM1.

Setting up the software
To compile source code that generates a standalone Forth target, you need to configure the cross-
compiler to use the control file you have just selected or created. The easiest way to do this is to
modify the APP and APPDIR macros so that the cross-compiler knows where your files are
located. This can be done from within the IDE.

Cross-compiling
Now the hardware and software have been setup, you can now cross-compile the source code to
generate an executable image.

Creating an image
To cross-compile the source, ensure that the cross-compiler macros are set up correctly and point
to your control file. Press the cross-compile toolbar button to begin compilation. The compiler
displays its sign-on message and then compiles the source code.

The cross-compile log
Following the compiler sign-on, depending on the compiler settings, you should see the cross-
compile-log. As each word is compiled the compiler displays the word's address, its type and its

Cross-compiling

18

shortened name. The type of item is coded as two characters as Table 3: Key to cross-compiler
log.

The output can be sent to a file or to the printer. Note that turning the log on to the screen slows
down the compiler considerably, but is useful when you have a lot of compilation errors or debug
information to display. The scroll bars allow the log to be reviewed before the compiler finishes,
and portions of the text can be sent to the printer using the File menu.

Turning the log on and off

Instead of having the data displayed for each compiled item, the log can be turned off. The
advantage of this is that the compiler spends less time displaying data and so the cross-
compilation is quicker. To do this, change the compiler directive in the control file from LOG to
NO-LOG. The log can be turned on again by replacing LOG with NO-LOG in the control file.

Sending the log to a file

The cross-compiler can redirect the log to a file instead of the display. To do this, use:

FILE: <name>

where <name> is the filename to generate. This directive must be placed before the command
CROSS-COMPILE. A macro is provided that can be set from within the IDE to turn the log on or
off.

Sending the log to a printer

The cross-compiler will send the log to a printer. To do this, use:

PRN:

before the command CROSS-COMPILE.

The compilation summary
Once the cross-compiler has finished cross-compiling the source code, it displays information
about the compilation. This includes:

• any unresolved references

• the number of forward references made and the number of unresolved (outstanding) forward
references

• the size of the compiled image

• the initialised RAM table address and length

• section information

• the compilation time

Unresolved references are words that are referenced in the source code but are not defined. These
can be due to spelling mistakes or not compiling some of your code.

If there are any unresolved forward references, your target may not work, and the compiler tells
you so.

The size of the compiled image is the amount of actual code output into the file. The actual file
size will be the size of the ROM indicated by the memory map.

Generating a standalone Forth

19

The RAM table is the place in ROM where initial data for the initialised RAM section is stored.
When the target board is reset, the initialisation code copies this table into the initialised RAM
areas. These initial values of variables will be modified in RAM when you store into a variable.

Code Compiled type Code Compiled type

VR Variable FV Floating-point variable

CN Constant FC Floating-point constant

LB Label FA Floating-point array

: Colon definition EQ Equate

CD Code definition CR Child of CREATE … DOES>

DF Deferred word US USER variable

VC Vocabulary

Table 3: Key to cross-compiler log

The created image
The image created by the cross-compiler is a straight binary executable. It can be downloaded to a
suitable EPROM emulator or programmer. The file has the name given when defining the
memory map using the compiler directive SECTION. It has the extension .IMG, which cannot be
changed.

Problems, problems ...
If an error occurs during compilation, the compiler will stop and display the line on which the
error occurred. The cross-compiler shows the line number and the file name where the error
occurred as well as the type of error that has occurred.

Downloading the compiled image
Once the source code has been compiled the image needs to be downloaded to an EPROM
emulator or programmer.

Downloading to a LeBurg EPROM emulator
The MPE cross-compiler supports direct compilation into the LeBurg EPROM emulators (series 2
onwards). If you have a LeBurg EPROM emulator, you can make a short cut to the EPEM4.COM
program by adding an external tool to AIDE.

Downloading to a different emulator or programmer
The binary image can be downloaded to any EPROM/Flash emulator as long as the emulator's
software supports binary image files.

Running the target Forth
The image generated by the compiler has been downloaded to the target, it is ready to be reset and
the Forth tested.

Running the target Forth

20

Switching to target mode
To receive characters from the target, run and configure your terminal program. All versions of
Windows are supplied with terminal emulation programs. The cross-compiler IDE also comes
supplied with its own terminal emulator ‘PowerTerm’.

Resetting the target board
Once the image has been downloaded, you can reset the target board. You can either use the reset
supplied on the board or if no reset is on the board, turn the board's power off and on again.

The sign-on
Once the board has been reset, the target should sign-on. You should see a message similar to that
in figure below. The version number and the number of bytes free will depend on your system.
You now should have a working Forth. If the target did not show the message, then you may have
a problem with:

• the serial line drivers

• the memory map definition

• your target board

• your EPROM emulator/programmer

• Direct port access under Windows NT/2000

Each of these should be checked.

Figure 2: Target sign-on

The serial line drivers

If you do not get the sign on message, your transmit word might not be working correctly. You
can check that you can transmit a character up the serial line, by appending code for emitting a
character up the serial line, onto the end of the initialisation word INIT-SER. Therefore a
character can be transmitted and seen early in the initialisation sequence.

The memory map definition.

If the memory map for the ROM definition is wrong. The target may not sign-on at all. If the
definition of the RAM memory map is wrong, the target may sign-on but may display `garbage'.

Your target board

It is always necessary to check the obvious. Is the serial line connected? Has your target board got
power? EPROMs/RAM plugged in correctly? Are jumpers set correctly?

Your EPROM/Flash emulator/programmer

Check to see if your emulator is emulating an EPROM/Flash that your target board is expecting.
If you have the wrong EPROM set, your target will not sign on.

MPE Hitachi H8/300H ANS ROM PowerForth v3.00
16383 bytes free

ok

Generating a standalone Forth

21

Testing the Forth - an example

Once the Forth has signed-on, you need to test that it's working properly. Type WORDS, this will
display all the Forth words available.

If this works then type in,

: FORTH-TEST \ -- ; A quick test for forth
 ." HELLO"
;

FORTH-TEST

This should display:

HELLO

followed by the ok prompt.

Cross-compiling an application
Once your Forth is working on your target board, you will now want to compile your application
code.

Modifying the control file
Once new code has been written, you can add it to the control file. Near the bottom of the control
file, there is a list of commands in the form:

INCLUDE <name>

To compile your application files you add them to the end of the list, although normally before the
line that reads similar to:

INCLUDE ...\LIBRARY

This file contains some useful words for cross-compiled targets, but is not essential.

Running your application
To compile the application you need to:

• run the cross-compiler

• download to the EPROM emulator/programmer

• apply power and reset the target

The target board signs-on. You can now test your application.

Generating a turnkey application
Once you have written your application, you will want to make it start when the target board is
reset. This is known as a turnkey or autostarting application. Your application does not
necessarily need to be interactive, so the compiler directive NO-HEADS can be used. This
removes all the word headers, so making the final image more compact.

To make an application turnkey, use the directive MAKE-TURNKEY in the form:

MAKE-TURNKEY <name>

Cross-compiling an application

22

where <name> is the name of the word to run at startup. The word <name> must be defined
before using this directive. The example in Figure 3 generates a simple turnkey application when
cross-compiled. If you require the use of serial communications, the multitasker, the heap, or leds,
you must initialise them in your application. To initialise the serial communications use the word
INIT-SER. To initialise the multitasker use INIT-MULTI. Note that (INIT) must be called so
that initialised data can be copied into RAM etc.

Figure 3: Example turnkey application

: RUN
 (INIT) \ Init. system (Mandatory!)
 INIT-SER \ Init. the serial line
 INIT-MULTI \ If multitasking
 INIT-HEAP \ If using the heap
 0 \ counter
 BEGIN
 CR “ Hello world!” dup .
 1+
 AGAIN \ Application never ends
;

MAKE-TURNKEY RUN

23

5 Generating an Umbilical target

This chapter describes how to generate an Umbilical Forth target for your target board. It guides
you through:

• setting up your hardware and software

• writing the serial line drivers

• modifying the memory map for your board

• compiling and running a target Forth

Requirements for Umbilical Forth
To generate an interactive target you require:

• a LeBurg EPROM emulator for fast download

• interrupt driven serial drivers

If you want to define new words interactively, you need to use a LeBurg EPROM emulator. When
the cross-compiler generates code, it will write to the emulator. This normally `upsets' the
processor so the processor should be put to sleep while waiting for serial communications. Once
the UART becomes available, the processor will be taken out of sleep mode and will continue
processing.

Is your target already supported?
The cross-compiler ships with at least one, usually more, control files for various commercial
target boards. By using one of these control files, the installation of an Umbilical Forth target for
your board will be greatly simplified.

If you do not have one of these boards you will have to create a control file and serial line drivers
for your board.

The control file
The control file contains all the details of your board that the cross-compiler needs to know.
These include:

• the memory map of your board

• whether you wish a log to be displayed

• the clock rate of your board's crystal

As well as containing configuration information, the control file contains a list of files that are to
be cross-compiled.

Once the cross-compiler knows these items, it can generate a correct binary image from your
source code.

The memory map

24

Creating a control file
To create a new control file, copy an existing one and then modify it to match your board. This is
normally easier than generating one from scratch. Example control files are in the directory
CHIP\CONFIGS.

The memory map
The memory map describes the addresses where ROM and RAM start and end in your target
system. The word SECTION defines an area of memory that will become the current memory
area of its type when used. Three memory types are defined:

• CDATA - Code – where code is compiled

• IDATA - Initialised data – where data that must be initialised is placed

• UDATA - data that should not be initialised such as battery backed RAM or EEPROM.

The directives CDATA IDATA and UDATA select which type of memory the Forth words below
affect:

, ALIGN ALIGNED ALLOT C, CREATE HERE UNUSED W,

Setting the memory map
The memory map is described in your control file, so once the file has been created, you can
change the memory map definition to match your board.

The memory map is described in three parts:

• the start and end of code ROM

• the start and end of initialised RAM

• the start and end of uninitialised RAM

Setting the start and end of ROM
The start and end of ROM are defined by using the compiler directive SECTION used in the
form:

rom-start rom-end CDATA SECTION <name>

where rom-start is the address of the start of ROM, rom-end is the address of the end of ROM and
<name> is the name of the output file. The compiler automatically gives the filename <name> an
extension .IMG so <name> must be just a name without an extension. The numbers rom-
start and rom-end are, by default, in decimal, but can be entered in hex by preceding them
by a $.

This area also contains any data defined by CDATA during the cross-compilation. This directive is
discussed elsewhere in the manual.

Setting the start and end of initialised RAM
The start and end of initialised RAM are defined by using the compiler directive SECTION used
in the form:

ram-start ram-end IDATA SECTION <name>

Generating an Umbilical target

25

where ram-start is the address of the start of RAM, ram-end is the address of the end of
RAM and <name> is the name for this area of memory. The numbers ram-start and ram-end are,
by default, in decimal, but can be entered in hex by preceding then by a $.

The initialised RAM area contains any data defined by VARIABLE or VALUE or IDATA during
the cross-compilation. These directives are discussed elsewhere in this manual.

Setting the start and end of uninitialised RAM
The start and end of this RAM is defined by using the compiler directive SECTION, used in the
form:

ram-start ram-end UDATA SECTION <name>

where ram-start is the address of the start of RAM, ram-end is the address of the end of
RAM and <name> is the name for this area of memory. The numbers ram-start and ram-end are,
by default, in decimal, but can be entered in hex by preceding them by a $. <name> is not
actually used but must be stated.

The unitialised RAM areas contain data space allocated by BUFFER: or UDATA during the cross-
compilation.

Setting the compilation areas
The compiler must be instructed to compile into the pages defined by SECTION. Therefore, after
the memory map is defined you must code:

<name1> <name2> xDATA

where <name1> is the name of the ROM area, <name2> is the RAM area, and xDATA is one of
CDATA IDATA and UDATA (normally CDATA).

An example
If your target board has a memory map as in the figure, your control file should be modified so
that it reads,

$00000 $07FFF CDATA SECTION Kern
$08000 $0FFFF IDATA SECTION Kern-data
$10000 $1FFFF UDATA SECTION Kern-uram
Kern Kern-data Kern-uram CDATA

This indicates two areas of memory with names Kern and Kern-data. With this setup, your kernel
will have 32k of ROM and 32K for variables and interactive development, plus 64k of unitialised
RAM that is not affected at power up.

Modifying the serial line drivers
Your target board communicates with the external world via a UART. Drivers are supplied for the
supported targets. If you are using one of these, the appropriate supplied serial driver code can be
used. This is in the directory CHIP\DRIVERS. Look here first, as new drivers may have been
added since the manual was written.

For interactive compilation with Umbilical Forth through the EPROM emulator, the processor
must be put to sleep while compilation is in progress. In practice, this means that the processor is
put to sleep while waiting for a character, and is restarted by the receiver interrupt. If the
processor cannot be put to sleep, interactive compilation can be achieved by placing the receiver-
polling loop in RAM, so that the EPROM is not used while the CPU is polling for keyboard input.

Modifying the serial line drivers

26

If you are using a UART for which driver code is not supplied, you will need to write all the
words required to:

• Initialise the UART

• Send a character

• Receive a character

• Test if a character has been received

• Export the names to the link driver

All four words will normally be Forth CODE definitions. This is required so that the send and
receive words are as fast as possible. Example serial line drivers in the files in the DRIVERS
directory can be used as a template. As with the control file it is normally easier to modify an
existing serial line driver file rather than creating your own from scratch.

Two types of serial driver can be written:

• interrupt driven

• polled

Interrupt driven
An interrupt driven serial line can only be used if the UART generates interrupt signals when
characters are received. For interactive use, the processor must also be capable of being put to
sleep. An interrupt driven driver will allow buffered serial communications to be implemented
with least processor overhead. Interrupt-driven drivers are a little more difficult to write than
polled drivers.

Polled
A polled driver will continuously poll a status bit in the UART to detect when the UART has
either transmitted or received a character.

Initialising the serial line
The word INIT-SER must perform all the UART initialisation required. This includes setting:

• the baud rate

• any handshaking required

• the number of data bits

• the number of stop bits

• the parity to be used

It is recommended that the baud rate is initially set to 9600 baud until the target board is working.
It can then be raised to make a more responsive target.

Sending a character to the host
The target code needs to be able to send a character to the host for display. Therefore, you need to
write a word which:

Generating an Umbilical target

27

• waits for the transmit line to become available

• transmits a character to the host

The method used can be either a polled or interrupt driven driver. The stack effect of (EMIT) is:

(EMIT) \ char -- ; send char to host

Receiving a character from the host
The target code needs the ability to receive a character from the host. To do this it needs to:

• wait for a character to be received

• place the character on the Forth stack

The method used can be polled or interrupt driven. Once (KEY) has been written, it must be
assigned to the deferred word KEY. The stack effect of (KEY) is:

(KEY) \ -- char ; wait for char to be received

Note that the version of KEY that you export to the link driver must not call the multitasker, and
must put the CPU to sleep if an EPROM emulator is being used.

Detecting a received character
The target needs (KEY?) to detect if a character has been received. This can be used as part of
(KEY). (KEY?) needs to:

• return true on the Forth stack if a character is available (-1)

• return false on the Forth stack if a character is not available (0)

Once (KEY?) is written, it must be assigned to the defered word KEY?. The stack effect of
(KEY?) is:

(KEY?) \ -- t/f ; true if character received

Exporting the names
The Umbilical Forth link uses standard names for its link drivers. These must be associated with
your words. Note that the version of KEY that you export to the link driver must not call the
multitasker, and must put the CPU to sleep if an EPROM emulator is being used. The standard
way to export the names is to use the SYNONYM <new> <old> notation, which creates a new
name for an existing word. This is usually done in the control file just before compiling the files
MESSAGES.FTH and TARGEND.FTH.

 Synonym wait-byte (serkey)
 Synonym send-byte (seremit)
 Synonym Wait-Byte? (serkey?)
 Synonym Init-XTL Init-Ser

Setting up the system

Setting up the hardware
To generate an interactive Forth target you need:

• A PC

Cross-compiling

28

• A serial line

• A target board

• An EPROM emulator or programmer

Your PC needs to have at least one serial line port for connecting to the target board, so making
the Forth interactive. The default serial port is set in the umbilical control file. The PowerTerm
terminal emulator defaults to COM1.

If the Leburg EPROM emulator is being used, you will also need to connect the emulator to the
digital I/O card installed in your PC.

Setting up the software
To compile source code that generates a standalone Forth target, you need to configure the cross-
compiler to use the control file you have just selected or created. The easiest way to do this is to
modify the APP and APPDIR macros so that the cross-compiler knows where your files are
located. This can be done from within the IDE.

Cross-compiling
Now the hardware and software have been setup, you can now cross-compile the source code
which is automatically compiled down to your EPROM emulator.

Creating an image
To cross-compile the source, ensure that the cross-compiler macros are set up correctly and point
to your control file. Press the cross-compile toolbar button to begin compilation. The compiler
displays its sign-on message and then compiles the source code.

The cross-compile log
Following the compiler sign-on you see the cross-compile log. As each word is compiled the
compiler displays the word's address, its type and its shortened name. The type of item is coded as
two characters as in Table 4.

The output can be sent to a file or to the printer. Note that turning the log on to the screen slows
down the compiler considerably, but is useful when you have a lot of compilation errors or debug
information to display. The scroll bars allow the log to be reviewed before the compiler finishes,
and portions of the text can be sent to the printer using the File menu.

Generating an Umbilical target

29

Code Compiled type Code Compiled type

VR Variable FV Floating-point variable

CN Constant FC Floating-point constant

LB Label FA Floating-point array

: Colon definition EQ Equate

CD Code definition CR Child of CREATE … DOES>

DF Deferred word US USER variable

VC Vocabulary

Table 4: Key to cross-compiler log

Turning the log on and off

Instead of having the data displayed for each compiled item, the log can be turned off. The
advantage of this is that the compiler spends less time displaying data and so the cross-
compilation is quicker. To do this, change the compiler directive in the control file from LOG to
NO-LOG. The log can be turned on again by replacing LOG with NO-LOG in the control file.

Sending the log to a file

The cross-compiler can redirect the log to a file instead of the display. To do this, use:

FILE: <name>

where <name> is the filename to generate. This directive must be placed before the command
CROSS-COMPILE. A macro is provided that can be set from within the IDE to turn the log on or
off.

Sending the log to a printer

The cross-compiler will send the log to a printer. To do this, use:

PRN:

before the command CROSS-COMPILE.

The compilation summary
Once the cross-compiler has finished cross-compiling the source code, it displays information
about the compilation. This includes:

• any unresolved references

• the number of forward references made and the number of unresolved (outstanding) forward
references

• the size of the compiled image

• the initialised RAM table address and length

• section information

Problems, problems ...

30

• the compilation time

Unresolved references are words that are referenced in the source code but are not defined. These
can be due to spelling mistakes or not compiling some of your code.

If there are any unresolved forward references, your target may not work, and the compiler tells
you so.

The size of the compiled image is the amount of actual code output into the file. The actual file
size will be the size of the ROM indicated by the memory map.

The RAM table is the place in ROM where initial data for the initialised RAM section is stored.
When the target board is reset, the initialisation code copies this table into the initialised RAM
areas. These initial values of variables will be modified in RAM when you store into a variable.

Problems, problems ...
If an error occurs during compilation, the compiler will stop and display the line on which the
error occurred. The cross-compiler shows the line number and the file name where the error
occurred as well as the type of error that has occurred.

Downloading the compiled image
Once the source code has been compiled the image needs to be downloaded to an EPROM
emulator or programmer.

Downloading to a LeBurg EPROM emulator
The MPE cross-compiler supports direct compilation into the LeBurg EPROM emulators (series 2
onwards). If you have a LeBurg EPROM emulator, you can make a short cut to the EPEM4.COM
program by adding an external tool to AIDE.

Downloading to a different emulator or programmer
The binary image can be downloaded to any EPROM emulator as long as the emulator's software
supports binary image files.

Running the target Forth
The image generated by the compiler has been downloaded to the target, it is ready to be reset and
the Forth tested. If you are not using the EPROM emulator you must transfer the code to the
target yourself. If the target is using an Umbilical Forth monitor in EPROM, you will be able to
download the code to the target across the target link during the Umbilical Forth startup
procedure.

Resetting the target board
Once the source code has been compiled and downloaded to the target you can reset the target
board. Follow the instructions given by the cross-compiler.

The sign-on
You will see a message displaying information such as the version number, copyright details etc.
The cross-compiler itself displays this message, so the target is not necessarily up and working.

To test the target board, you need to create a definition. Therefore if you type:

Generating an Umbilical target

31

: FORTH-TEST \ -- ; A quick test
 ." HELLO"
;

FORTH-TEST

This should display:

HELLO

followed by the ok prompt. Note that if you have compiled the multitasker and are using an
EPROM emulator, it must be disabled with SINGLE before any compilation takes place. This has
to be done because the tasker never permits the CPU to go to sleep.

If you didn't get this response, then you may have a problem with:

• the serial line drivers

• the memory map definition

• your target board

• your serial line

• your EPROM emulator/programmer

• Direct port access under Windows NT/2000.

• multitasking being enabled and an EPROM emulator is in use.

Each of these should be checked.

Cross-compiling an application
Once your Forth is working on your target board, you will now want to compile your application
code.

Modifying the control file
Once new code has been written, you can add it to the control file. Near the bottom of the control
file, there is a list of commands in the form:

ALL FROM-FILE <name>

To compile your application files you add them to the end of the list.

Running your application
To compile the application you need to:

• run the cross-compiler

• download to the EPROM emulator/programmer

• apply power and reset the target

The target board signs-on. You can now test your application.

Debugging the serial link

32

Debugging and developing your application
Forth is an interactive language, use this to your advantage by writing small sections of code and
testing as you go. Within Umbilical Forth you can compile one file at a time, or enter definitions
at the keyboard. They will be compiled and immediately downloaded to the target, where they can
be tested, just as with any other interactive Forth. You can use the assembler, and refer to LABELs
and EQUates by name.

Generating a turnkey application
Once you have written your application, you will want to make it start when the target board is
reset. This is known as a turnkey or autostarting application. Your application does not
necessarily need to be interactive, so the compiler directive NO-HEADS can be used. This
removes all the word headers, so making the final image more compact.

To make an application turnkey, use the directive MAKE-TURNKEY in the form:

MAKE-TURNKEY <name>

where <name> is the name of the word to run at startup. The word <name> must be defined
before using this directive. The example in the figure generates a simple turnkey application when
cross-compiled. If you require the use of serial communications or the multitasker, you must
initialise them in your application. To initialise the serial communications use the word INIT-
SER. To initialise the multitasker use INIT-MULTI. Note that (INIT) must be called so that
initialised data can be copied into RAM etc.

Also turn off the EQUate UMBILICAL? in the control file to remove the Umbilical Forth drivers
from the code.

Figure 4: Umbilical Forth turnkey application

Debugging the serial link
If the serial link is being seriously stubborn, you can display the serial traffic. When serial
debugging is enabled, characters are displayed as hex bytes. Character transmitted by the PC are
in the form <xy>, and characters received by the PC are shown in the form [ab].

 +SERIAL-DEBUG \ -- ; enable serial debugging
 -SERIAL-DEBUG \ -- ; disable serial debugging
 SERIAL-DEBUG? \ -- flag ; true if debugging

: RUN
 (INIT) \ Init. system (Mandatory!)
 INIT-SER \ Init. the serial line
 INIT-MULTI \ If multitasking
 0 \ counter
 BEGIN
 CR “ Hello world!” dup .
 1+
 AGAIN \ Application never ends
;

MAKE-TURNKEY RUN

Generating an Umbilical target

33

Using other link drivers
The other Umbilical Forth link drivers are specific to various CPU types and families, and are
described in the target specific manuals. Note that there are two parts to the Umbilical system, the
link driver which handles communications during debugging, and the memory driver which
handles programming of the CPU code space. New drivers can be installed at any time, and users
wishing to write a new driver should contact MPE for further details. MPE is also available to
develop new drivers for you.

Atmel 89S8252 SPI link – Umbilical link and programming

8051 SPI access – Umbilical link only

BDM for CPU32 cores such as the 68332 – Umbilical link plus RAM and limited EPROM/Flash
drivers

JTAG for ARM cores – Umbilical link plus limited RAM and EPROM/Flash drivers.

JTAG for MSP430 cores – Umbilical link plus limited RAM and EPROM/Flash drivers.

Note that if you are using Windows NT/2000 or any other version of Windows that treats direct
port I/O as a privileged instruction, you must install the NTPORT.EXE file from the
COMPILER\XTRA directory as described in the installation section of the manual and modify
your control file to include the NT-ACCESS-PORTS directive.

35

6 Optimising your target Forth

Once you have a target Forth running, you may want to either reduce the size of your image or
increase the execution speed of the code. This chapter describes those features of the MPE
Development system that helps you with this aim.

Reducing the size of your image
During development you may need to reduce the size of your target image. For example, your
application may have grown too large for your ROM space. Reducing ROM requirements is
usually done by:

• removing headers

• factoring your code

• removing excess code

• using equates instead of constants

• removing forward references

• using Umbilical Forth

Removing headers
If you have already been using Umbilical Forth, the compiler will not have generated any heads,
so this discussion only applies to a standalone target.

To reduce the size of the compiled image, you can instruct the compiler to compile all or some of
the code without heads. For each word defined, the cross-compiler generates a header in the target
image. A header is the name of the word stored as a counted string and is used when the target is
used interactively. Therefore, by removing the heads of words you reduce the interactivity of your
system.

Removing all headers
To remove the heads from all the code, use NO-HEADS. The compiler will produce code that will
be greatly reduced in size, but cannot be used interactively.

Selectively removing headers
To select a number of words to be made headerless, use INTERNAL and EXTERNAL.
INTERNAL instructs the compiler to stop generating headers, and EXTERNAL instructs it to
generate headers again.

Factoring your code
When writing in Forth, code should be reused as much as possible. By reusing code, your target
image can be reduced greatly. The smaller the procedures you use, the more easily they can be
reused. In addition, small procedures are easy to test. Consequently code written with small
procedures is normally more reliable.

Removing headers

36

Removing excess code
During development, debug and test code is often inserted into the source. This code is easily left
and forgotten about. By stripping out this excess code you can gain more space in the EPROM.
The easiest way to do this is to use the XREF system (not available in the Forth Stamp versions).

The XREF system is turned on by using the word +XREFS in the control file. All code after
+XREFS will be cross referenced. Use –XREFS to turn cross referencing off.

Use XREF-UNUSED to find which words are unused. The XREF words:

XREF <name>
XREF-UNUSED
XREF-ALL

are always available in Umbilical Forth. For standalone Forths, you can put the compiler into
interactive mode by including INTERACTIVE before FINIS in your control file, or you can
include the XREF words in your source code.

You can also reduce the size of the code by using the library file mechanism (see Controlling
compilation) which enables the compiler to include only those words that have already been
referenced.

Using equates instead of constants
An equate is a constant that just resides within the cross-compiler. It therefore cannot be
referenced when interactively debugging on your target system. The actual value of the equate is
compiled `in-line' instead of refering to a constant. Therefore you can save some space on the
target board for each constant defined but sacrifice some interactivity. This only works if you
don't refer to an equate many times, as several instances of an equate compiled in-line may use
more bytes than the memory required to store a constant and reference it.

Defining an equate

An equate is defined in a similar way to a constant:

xxxx EQU <name>

where xxxx is the value of the equate and <name> is its name.

Using an equate

An equate is used in the same way as a constant, by stating its name.

0100 EQU ADDRESS
 ADDRESS 4 + EQU ADDRESS2

: SOME-WORD \ --
 ... ADDRESS ...
 ... ADDRESS2 ...
;

Removing forward references
When a forward reference is compiled on a subroutine threaded target, the largest available target
range branch has to be used. For most CPUs, shorter instructions are available if the destination
address is already known. Removing forward references reduces the number of unknown
destinations and so reduces code size.

The compiler log tells you how many forward references were made. You can find out which
words were forward referenced using the directive .FORWARDS (--).

Optimising your target Forth

37

Using Umbilical Forth
If you require a compact target Forth but without the inconvenience of removing target headers,
you can use Umbilical Forth. Umbilical Forth gives you an interactive Forth in a very compact
size (the Umbilical Forth kernel is about 2.5k for 16 bit targets, and 4k for 32 bit targets). The
kernel does not contain all the words in the standalone target, so you might have to write a few
words to get your code to compile or copy some code from the standalone target Forth. For more
details see the chapters on Generating an Umbilical Forth target.

Speeding up your code
The normal way to increase the speed of your code is to code strategic words in assembler. Good
candidates for coding are:

• inner loops

• words containing a lot of stack manipulation words (DUP, SWAP etc)

The VFX optimisers significantly reduce the need to code in assembler. However, some impact
can be made by replacing very small definitions by compiler directives. Every time the VFX
optimiser has to generate a call, it has to generate a canonical Forth stack. If you replace a short
definition by a compiler directive, the optimiser does not call it, but compiles it as if from source
code. Thus:

: foo \ addr -- addr’
 3 cells + @
;

can be replaced by

compiler
: foo \ addr -- addr’
 3 cells + @
;
target

On many target CPUs, especially those with good indexed addressing modes, the resulting code is
shorter. Compiler directives allow you to retain the code modularity of short Forth definitions
without the calling overhead.

39

7 Generic I/O

About Generic I/O
Generic I/O allows the Forth words KEY KEY? EMIT TYPE CR to use any I/O device. The user
variables IPVEC and OPVEC contain pointers to the current device structure. For example, input
can be from a serial channel, and output can be to an LCD screen. The selection can be changed at
any time by the application, and because IPVEC and OPVEC are USER variables, different tasks
may have different I/O devices.

The generic I/O structure consists of any array of five (six for Harvard targets) XTs. The XTs are
for the words that perorm the following basic functions.

cell KEY action
cell KEY? Action
cell EMIT action
cell TYPE action
cell CR action
cell TYPEC action Harvard targets (e.g. 8051) only

The CR and TYPE actions are provided to ease implementations of devices such as LCD output in
which CR does not naturally correspond to 13 EMIT 10 EMIT, and for which TYPE will be
much faster than repeated EMITs. The output functions update the USER variable OUT before
calling the action.

Creating a new device
When creating a new device driver, make an array that contains the pointers. The following code
is taken from the 8051 serial driver.

cdata \ this table goes in CODE space
create SerConsole \ -- addr ; OUT managed by upper driver
tasking? [if]
 ' (mserkey) , \ -- char ; schedule, receive char
[else]
 ' (serkey) , \ -- char ; receive char
[then]
 ' (serkey?) , \ -- flag ; check receive char
 ' (seremit) , \ -- char ; display char
 ' (sertype) , \ caddr len -- ; display string
 ' (sercr) , \ -- ; display new line
 ' (sertypec) , \ caddr len -- ; display CDATA

\ for Harvard targets only

The generic I/O dispatcher handles all use of OUT for the output functions. OUT is manipulated
before the action is performed so that special cases can update OUT themselves.

When the multi-tasker is used, a multi-tasking version of (SERKEY) must be used. This is
usually called (MSERKEY) in the source code.

Selecting a device
To select serial input, the phrase

 SerConsole IpVec !

is all that is needed. Similarly, to select serial output

Selecting a device

40

 SerConsole OpVec !

is all that is needed.

41

8 Multitasker

The multitasker supplied with the MPE development system can greatly simplify complex tasks
by breaking them down into manageable chunks. This chapter leads you through:

• initialising the multitasker

• writing a task

• communicating between tasks

• handling events

The multitasker is in the file MULTIxx.FTH in the CPU directory, where the 'xx' denotes the
processor type. Where the CPU (e.g. 8051) uses a different code base for single chip and
expanded operation, the files will be called MULTIxxINT.FTH and MULTIxxEXT.FTH.

Initialising the multitasker
The multitasker needs to be initialised before use. At compile time the cross-compiler must be
told the total number of tasks that your system requires and at run-time, all the tasks must be
initialised.

Selecting the multi-tasker
When set non-zero, the equate TASKING? in the control file causes the multitasker to be loaded.
Note that TASKING? also affects other words such as KEY and MS so that calls to scheduler are
included by words that can block for a significant amount of time, for example when waiting for
human input.

xxxx EQU TASKING?

The configuration of the multitasker is controlled by other equates which control what facilities
are compiled.

6 cells equ tcb-size \ internal consistency check
 0 equ event-handler? \ true for event handler
 0 equ message-handler? \ true for message handler
 0 equ semaphores? \ true for semaphores

Starting the multitasker
Before use the multitasker must be initialised by the word INIT-MULTI, which initialises the
initial task MAIN, and enables the multi-tasker.

To start the multitasker, use MULTI. MULTI starts the scheduler so new tasks can be added.

Stopping the multitasker
To stop the multitasker, use SINGLE.

Writing a task
Tasks are very straightforward to write, but the way tasks are scheduled needs to be understood.

Writing a task

42

Using the scheduler
The multitasker is software scheduled. This means that each task relinquishes control back to the
scheduler when it's ready. This is different from a pre-emptive scheduler where the scheduler
interrupts a task. A word is supplied so that a task can relinquish control back to the scheduler,
PAUSE.

Using PAUSE

The word PAUSE passes control back to the scheduler, which executes all the other tasks once,
then returns back to this task

An example
An example task is shown below. The task is an endless loop with the word WAIT embedded in
it. When the word WAIT is executed, the scheduler reschedules to the next task. The scheduler
will not run this task until it has run all other tasks 1000 times. Each time the task is executed, it
will emit a beep.

: WAIT \ n -- ; wait for n iterations
 0 ?DO PAUSE LOOP
;

: ACT1ON1 \ — ; An example task
 BEGIN \ Start an endless loop
 7 EMIT \ Produce a beep
 1000 WAIT \ Reschedule 1000 times
 AGAIN \ Go round again
;

TASK TASK1 \ name task, get space for it

The task name created by TASK is used as the task identifier by all words that control tasks.

Task dependent variables
An area of memory is set aside for each task. This memory contains user variables which contain
task specific data. For example, the current base is normally a user variable as it can vary from
task to task.

Defining a user variable

A user variable is defined in the form:

n USER <name>

where n is the nth byte in the user area. From version 6.1 onwards, the word +USER can be used
to add a user variable of a given size:

 <size> +USER <name>

The use of +USER avoids any need to know the offset at which the variable starts. The v6.1
kernel code relies on +USER and new application code should use +USER in preference to USER.

Using a user variable

A user variable is used in the same way as a normal variable. By stating its name, its address is
placed on the stack, which can then be fetched using @ and stored by !.

Multitasker

43

Tasks and local variables

Local variables are held on the return stack. If heavy use of local variables is made, the required
return stack depth can be large. If you suspect this of causing problems such as random crashes,
increase the value of the EQUate for the return stack size in the control file.

Initialising a task
A task needs to be initialised in order to be run.

‘ ACTION1 TASK1 INITIATE

where ACTION1 is to be the action of the task and TASK1 is the task identifier

The task identifier is used to control the task. Tasks defined by TASK <name> return a task
identifier when <name> is executed.

Controlling tasks
Tasks can be controlled in the following ways:

• activated

• suspended for a number of schedules

• halted

• restarted after its been halted

You can also stop the current task.

Starting a task
A task is started by activating it. To activate a task, use the word INITIATE
‘ <action> <task> INITIATE

where ‘ <action> gives the xt of the word to be run and <task> is the task identifier.

Stopping a task
A task may be temporarily suspended. A task may also stop itself.

Temporarily stopping a task

To temporarily stop a task, use HALT. HALT is used in the form:

<task> HALT

where <task> is the task to be stopped. To restart a stopped task, use RESTART. RESTART is
used in the form:

<task> RESTART

where <task> is the task to restart.

Handling messages

44

Stopping the current task

To stop the current task (i.e. stop itself) use STOP. STOP is used in the form,

STOP

Handling messages
An essential feature of the multitasker is the ability to send and receive messages between tasks.

Sending a message
To send a message to another task, use the word SEND-MESSAGE. SEND-MESSAGE is used in
the form:

message task SEND-MESSAGE

where message is a 32-bit message and task is the identifier of the task to send the message to.
The message can be data, an address or any other type of information but its meaning must be
known to the receiving task.

Receiving a message
To receive a message, use GET-MESSAGE. GET-MESSAGE suspends the task until a message
arrives. When a message is received the task is re-activated and the sending task and the data is
returned.

Creating events
Events are analogous to interrupts. Whereas interrupts happen on hardware signals, events happen
under software control.

Writing an event
An event is a normal Forth word. An event is associated to a task so that when the event is
triggered, the task is activated. Therefore, an event is usually used as initialisation for a task.

Initialising an event
Events are initialised in a similiar way to tasks. They are assigned in the form,

ASSIGN EVENT1 task TO-EVENT

where EVENT1 is your event handler and n is the task number of the task that it is to be
associated with.

Triggering an event
There are two ways of triggering an event:

• using SET-EVENT

• setting a bit in the status word

Using SET-EVENT

SET-EVENT is a word that sets an event flag for a task. Once the event flag is set, the tasker will
execute the event before it switches to the task. The task is also activated.

Multitasker

45

Setting a bit in the status word.

A bit can be set in a task's status word that indicates to the multitasker that an event has taken
place. This method can be used to trigger an event from a hardware interrupt. Refer to `The
multitasker internals' later in the chapter for details on the status byte.

This mechanism can easily be used by interrupt code written in assembler to signal that an
interrupt has taken place, and that consequent processing should start.

Clearing an event
To stop an event handler being run, use CLEAR-EVENT.

Interrupts and critical sections
Sometimes the multitasker has to be inhibited so that other tasks are not run during critical
operations that would otherwise cause the scheduler to operate, e.g. KEY. This achieved using the
words SINGLE and MULTI.

SINGLE -- ; inhibit tasker

MULTI -- ; restart tasker

When communication between a task and an interrupt routine is required, or if the scheduler has
been converted to be pre-emptive rather than the default cooperative mode, great care must be
taken. Flags must be tested by the main task, interrupted and modified by the interrupt routine,
and then written back by the main routine, causing the last interrupt change to be ignored. Six
words are provided for interrupt management, and these are also documented in the interrupt
chapter. There is considerable variation in CPU architectures, and if the words described here are
not present, alternatives will documented in the CPU specific section of the manual.

DI -- ; disable interrupts
“d-i”

Globally disable interrupts.

EI -- ; enable interrupts
“e-i”

Globally enable interrupts

SAVE-INT -- x ; save interrupt status
“save-int”

Return current interrupt state, and disable interrupts. This word is provided for
compatibility with previous versions of the compiler and target code, but shorter and
faster code is likely to be produced using the new constructs [I and I].

RESTORE-INT x -- ; restore interrupt status
“restore-int”

Restore the interrupt state returned by SAVE-INT. . This word is provided for
compatibility with previous versions of the compiler and target code, but shorter and
faster code is likely to be produced using the new constructs [I and I].

[I R: -- x ; save interrupt staus, disable inteerupts
“bracket-i”

Save the current interrupt status on the return stack and disable interrupts. This word can
only be used inside a colon definition and [I and I] must be used in matching pairs.

Semaphores

46

I] R: ccr -- ; restore CCR from return stack
“i-bracket”

Restore the interrupt status from the return stack. This word can only be used inside a
colon definition and [I and I] must be used in matching pairs.

Semaphores
A SEMAPHORE is a structure used for signalling between tasks, and for resource allocation. It has
two fields, a counter (cell) and an owner (taskid, cell). The counter field is used as a count of the
number of times the resource may be used, and the owner field contains the TCB of the task that
last gained access. This field can be used for priority arbitration and deadlock
detection/arbitration. An example compiler definition of SEMAPHORE is below.

Interpreter
: semaphore \ -- ; -- addr [child]
 idata create
 0 , 0 , \ count and arbiter fields
;
target

This design of a semaphore can be used either to lock a resource such as a comms channel or disc
drive during access by one task, or as a counted semaphore controlling access to a buffer. In the
second case the counter field contains the number of times the resource can be used.

Semaphores are accessed using SIGNAL and REQUEST. SIGNAL increments the counter field of
a semaphore, indicating either that another item has been allocated to the resource, or it is
available for use again, 0 indicating in use by a task

: signal \ addr -- ; increment counter,
 \ so making it available
 save-int \ must be interrupt safe
 1 over +! cell+ off \ inc. counter, release
 restore-int
;

REQUEST waits until the counter field of a semaphore is non-zero, and then decrements the
counter field by one. This allows the semaphore to be used as a counted semaphore. For example
a character buffer may be used where the semaphore counter shows the number of available
characters.

Alternatively the semaphore may be used purely to share resources. The semaphore is initialised
to one. The first task to REQUEST it gains access, and all other tasks must wait until the accessing
task SIGNALs that it has finished with the resource.

: request \ sem -- ; get access to semaphore
 >r
 begin
 save-int r@ @ 0= \ n.b test and set
 while
 restore-int pause \ operations must be
 repeat \ non-interruptible
 -1 r@ +! \ got it, decrement counter
 self r> cell+ ! \ mark resource as mine
 restore-int \ re-enable interrupts
;

The multitasker internals
A multitasker tries to simulate many processors with just one processor. It works by rapidly
switching between each task. On each task switch it saves the current state of the processor, and
restores the state that the next task needs.

Multitasker

47

The Forth multitasker is software scheduled. This means that each task relinquishes control to the
scheduler, which then switches to the next task. In this way less processor state information needs
to be saved.

The scheduler's data structure
The Forth multitasker creates a task control block for each task. The task control block (TCB) is a
data structure which contains information relevant to a task (see below). The status byte (TCBST)
contains information on the execution of the task and its event (see below).

The control block occupies the start of the USER area.

Field Contents Size Offset

TCB.LINK Pointer to next next’s TCB Cell 0

TCB.SSP Saved task stack pointer Cell 2/4

TCB.STATUS Task status Cell 4/8

TCB.MSRC Task ID of last message sent to this task Cell 6/12

TCB.MESG Message data Cell 8/16

TCB.EVENT XT of word run by task’s event handler Cell 10/20

Table 5: Task control block

Bit When set When Reset

0 Task is running Task is halted

1 Message pending but not read No messages

2 Event triggered No events

3 Event handler has been run No events (reset by user)

4.. User defined User defined

Table 6: Task status byte

A simple example
The following example is a simple demonstration of the multitasker. Its simple role is to display a
hash (#) every so often, but leaving the forground Forth running. To use the multitasker you must
cross-compile the file MULTI*.FTH into your target.

Defining a simple task
The following code defines a simple task called TASK1. It displays a # every 1000 schedules.

VARIABLE DELAY \ time delay between #'s
 1000 DELAY ! \ initialise time delay

: ACTION1 \ -- ; task to display #'s
 [CHAR] $ EMIT \ Display a dollar ($)
 BEGIN \ Start continuous loop
 [CHAR] # EMIT \ Display a hash (#)

A simple example

48

 DELAY @ 0 \ Reschedule Delay times
 ?DO PAUSE LOOP
 AGAIN \ Back to the start ...
;

Initialising the multitasker
Before any tasks can be activated, the multitasker must be initialised. This is done with the
following code:

INIT-MULTI

The word INIT-MULTI initialises all the multitasker's data structures and starts multitasking.
This word need only be executed once in a multitasking system.

Activating the example task
To activate (run) the example task, type:

TASK TASK1

ASSIGN ACTION1 TASK1 INITIATE

This will activate ACTION1 as the action of task TASK1. Immediately you will see a dollar and a
hash ($#) displayed. If you press <return> a few times, you notice that the Forth is still running.
After a few seconds another hash will appear. This is the example task working in the
background.

Controlling the example task
The example task can be controlled in several ways:

• the rate of generation of hashes can be changed

• it can be halted

• once halted it can be restarted

• it can be started from scratch

Changing the rate of hashes

Changing the variable DELAY can change the rate of production of hashes. Try:

2000 DELAY !

This changes the number of schedules that the example tasks makes between displaying hashes to
2000. Therefore the rate of displaying hashes halves.

Halting the example task

Typing the task’s number followed by HALT halts the task:

TASK1 HALT

You notice that the hashes are not displayed.

Restarting the halted task

The task is restarted by the word RESTART. Type the task followed by RESTART:

Multitasker

49

TASK1 RESTART

You notice that the hashes are displayed again.

Restarting the task from scratch

To restart the task from scratch, just kill it and activate it again:

TASK1 TERMINATE
ASSIGN ACTION1 TASK1 INITIATE

You notice the dollar and the hash ($#) are displayed, followed by hashes (#).

Troubleshooting tasks
The most common fault is a stack fault. Since a task is an endless loop it is simple to put stack
depth checks in the main loop. A simple task with checking is shown below.

: TASK-ACTION
 sp@ s0 ! \ store stack base
 <initialisation>
 BEGIN
 <body of task>
 depth \ non-zero if anything there
 IF
 s0 @ sp!
 <warn programmer!>
 ENDIF
 AGAIN
;

When using Umbilical Forth, be careful to make sure that the multitasker is disabled by SINGLE
before compiling new definitions interactively. If the multitasker is not disabled, the CPU is never
put to sleep, and the act of compiling code through an EPROM emulator will crash the running
target.

Single chip tasking
Some of the smaller 8 bit CPUs, e.g. 8051, have a different memory model when used in single
chip mode rather than with external RAM. For these and for CPUs with very limited internal
RAM, there is a small version of the multi-tasker. The single chip version of the multitasker does
not include event handling, messages, or semaphores. Details of this multitasker are provided in
the CPU specific section of the manual.

Converting to the v6.x multitasker

Configuration
The multitasker is configured by a different set of equates. The equate #TASKS was used to build
a table of TCBs at compile time. This equate is replaced by TASKING? which only indicates that
the multitasker is required.

1 equ tasking? \ true if multitasker needed
 6 cells equ tcb-size \ internal consistency check
 0 equ event-handler? \ true for event handler
 0 equ message-handler? \ true for message handler
 0 equ semaphores? \ true for semaphores

Glossary

50

Task identifiers and TASK
The v6.x multitasker uses a linked list of tasks. Tasks are created by the defining word TASK
<name> which allocates the resources needed. Execution of <name> returns the base address of
the task’s USER area, and the task control information occupies the start of the user area. This
address is referred to as a task identifier.

WAIT and MS
The word WAIT is not present in the v6.1 multitasker. It was mostly used to produce timed waits,
and this function is provided by the new word MS, which is supplied by the code in
TIMEBASE.FTH or another timing system. MS waits for the specified number of milliseconds.

MS \ ms --

INITIATE and ACTIVATE
The word ACTIVATE has been replaced by the word INITIATE and DEACTIVATE has been
replaced by TERMINATE.

INITIATE \ xt task –
TERMINATE \ task --

?EVENT
The word ?EVENT was hardly ever used in application code, and its action is now built into
PAUSE.

Glossary
This glossary contains details of the major words in the multi-tasking system. Other words exist,
but are only used as fractions of the words below.

CLR-EVENT-RUN --
"clear-event-run"

Clears the event run flag for the current task. This is bit 4 in the task status byte.

DI -- ; disable interrupts
“d-i”

Globally disable interrupts.

EI -- ; enable interrupts
“e-i”

Globally enable interrupts

EVENT? -- t/f
"event-query"

Returns true if the event-triggered bit has been set in the current task's status byte.

GET-MESSAGE -- message task
"get-message"

Waits for a message and returns the message and the sending task.

Multitasker

51

HALT task --
"halt"

Halts the task whose number is given. Do not halt task MAIN. Halting a task prevents it
responding to messages or events.

INIT-MULTI --
"init-multi"

Initialises the multi-tasker and starts the multi-tasker. Just include this word in COLD to
kick the multi-tasker into action.

INITIATE xt task --
"initiate"

Initialises and starts the given task . Task MAIN is Forth itself and was activated when
Forth started. Note that INITIATE causes the task to start from the very beginning. If the
task was halted, and execution should resume where it left off, use RESTART instead.

MS ms –
“m-s”

Waits for at least ms milliseconds, the exact time depending on the granularity of the
timer.

MSG? task -- t/f
"message-query"

Returns true if the task is holding a message, and is therefore not free to receive another
one.

MULTI --
"multi"

Turns the multi-tasker on, by clearing the bit in the TASK# byte in RAM that inhibits the
scheduler.

PAUSE --
"pause"

Waits for one iteration of the scheduler.

RESTART task --
"restart"

Restarts a task that was halted by HALT or WAIT. Unlike INITATE, the task resumes
where it left off.

RESTORE-INT sr --
"restore-int"

Restore the interrupt enable state previously saved by SAVE-INT.

SAVE-INT -- sr
"save-int"

Saves the current state of the interrupt enable, and disables interrupts. See RESTORE-
INT.

Glossary

52

SELF -- task
"self"

Returns the task identifier for the current task. Useful with MSG? in particular to
determine whether or not a message has been received by the task.

SEND-MESSAGE message task --
"send-message"

Sends a message to the given task. The message address can be used on its own, or as a
pointer to an extended message.

SINGLE --
"single"

Turns off the multi-tasker by setting the scheduler disable bit

STATUS -- n
"status"

Returns the task status byte of the current task but with the running bit (bit 0) masked off.
If this value is non-zero, the task has been awakened for a reason other than for normal
running.

STOP --
“stop”

Halt the current task until it is RESTARTed or TERMINATEd

TERMINATE task –
“terminate”

Remove a task from thelist of active tasks and reschedule.

TO-EVENT cfa task --
"to-event"

Sets the CFA of a Forth word as the action to run when the task's event trigger is set.

ASSIGN <word> <task> TO-EVENT

WAIT-EVENT/MSG --
"wait-event-or-message"

The current task is suspended until it receives a message or an event trigger. The words
MSG? and EVENT? can be used to determine whether a message or an event trigger
terminated the wait. Note that if an event trigger is received, the event handler will have
been called, and the event run flag (bit 4 in the status byte) will be set.

[I R: -- x ; save interrupt staus, disable inteerupts
“bracket-i”

Save the current interrupt status on the return stack and disable interrupts. This word can
only be used inside a colon definition and [I and I] must be used in matching pairs.

I] R: ccr -- ; restore CCR from return stack
“i-bracket”

Restore the interrupt status from the return stack. This word can only be used inside a
colon definition and [I and I] must be used in matching pairs.

53

9 TIMEBASE

Periodic timers and TIMEBASE
The TIMEBASE code provides a timer system that allows many timers to be defined, all slaved
from a single periodic interrupt. The Forth words in the user accessible group documented below
are compatible with VFX Forth. This code assumes the presence of a global value or word TICKS
which returns a time value incremented in milliseconds. The timebase is approximate, and
granularity and jitter are affected by the timer ISR and the time taken by your own code to
execute. By default, the timer is set to run every 10ms. The main source code is in the the file
TIMEBASE.FTH, and requires a CPU dependent clock interrupt routine which provides TICKS
and clock interrupt initialisation.

The timer chain is built using a buffer area, and two chain pointers. Each timer is linked either
into the free timer chain, or into the active timer chain.

All time periods are in milliseconds. Note that on a 32 bit system such as VFX Forth or an ARM,
these time periods must be less than 2^31-1 milliseconds, say 596 hours or 24 days, whereas if the
code is on a 16 bit system, time periods must be less than 2^15-1 milliseconds, say 32 seconds.

The basics of timers
These basic words are defined for applications to use the timer system. Other words are detailed
elswhere in this chapter.

START-TIMERS \ -- ; must do this first
STOP-TIMERS \ -- ; closes timers
AFTER \ xt ms -- timerid/0 ; runs xt once
EVERY \ xt ms -- timerid/0 ; runs xt every ms
TSTOP \ timerid -- ; stops the timer
MS \ period -- ; wait for period ms

After the timers have been started, actions can be added. The example below starts a timer which
puts a character on the debug console every two seconds.

start-timers

: t \ -- ; will run every 2 seconds
 [char] * emit
;

' t 2 seconds every \ returns timer id, TSTOP to stop

The item on stack is a timer id (handle), use TSTOP to halt this timer.

AFTER is very useful for creating timeouts, such as required to determine if something has
happened in time. AFTER returns a timerid. If the action you are protecting happens in time, just
use TSTOP when the action happens, and the timer will never trigger. If the action does not
happen, the timer event will be triggered. Timer handles are not addresses, and are integers
allocated in sequence. On a 16 bit system, timer handle numbers will only be recycled every 2^16
allocations. If the handle is already in use, it will not be reallocated.

Considerations when using timers
All timers are executed within a single interrupt, and so all timer action words share a common
user area. This has some impact on timer action words. Since you do not know in which order

Implementation issues

54

timer action words are executed, you must set up any USER variables such as BASE that you may
use, either directly or indirectly.

The interrupt that handles all the timers does not set IPVEC and OPVEC to a default value. If you
are going to use Forth I/O words such as EMIT and TYPE within a timer action, you MUST set
IPVEC and OPVEC before using the I/O. For the sake of other timer action routines that may still
be using default I/O, it is polite to save and restore IPVEC and OPVEC in your timer action
words.

Do not worry about calling TSTOP with a timerid that has already been executed and removed
from the active timer chain; if TSTOP cannot find the timer, it will ignore the request.

Under some conditions, the execution time of all the timer routines may be longer than the
requested period of the timer. Try to avoid this situation! In addition, the timer interrupt may be
subject to jitter, and because the timer routines are executed in sequence, the start of a timer
routine will be dependent on the execution time of the routines before it. If this is serious, code is
available from MPE that measures and saves the actual period rather than the nominal period.
However, this increases the timer despatch time for each timer.

Implementation issues
The following discussion is only relevant if you want to modify this code. Functionally equivalent
code is provided with MPE's VFX Forth systems. In the Windows environment, timer interrupts
are implemented by callbacks and critical sections.

By default, the word DO-TIMERS is run from within the periodic timer interrupt. If interrupts are
not re-enabled after resetting the timer interrupt, you may have latency issues if a number of
timers is used, or if the timer routines take a considerable time. In this case, it would be better to
set up the timer routine to RESTART a task which calls DO-TIMERS, e.g.

: TIMER-TASK \ --
 <initialise>
 BEGIN
 DO-TIMERS STOP
 AGAIN
;

Such a strategy also permits you to use a fast interrupt, say 1ms, for the clock, and to trigger the
TIMER-TASK every say 32 ms.

Timebase glossary
#TIMERS -- n ; maximum number of timers
"hash-timers"

A constant used at compile time to set the maximum number of timers required. Each
timer requires RAM as defined by the ITIMER structure.

DO-TIMERS -- ; process all the timers in the chain
"do-timers"

The central timer despatch routine.

TIMEBASE

55

AFTER xt period -- timerid/0 ; xt is executed once
"after"

Starts a timer that executes once after the given period. A timer handle is returned if the
timer could be started, otherwise 0 is returned.

EVERY xt period -- timerid/0 ; xt is executed periodically
"every"

Starts a timer that executes every given period. A timer handle is returned if the timer
could be started, otherwise 0 is returned. The returned timerID can be used by TSTOP to
stop the timer.

TSTOP timerid --
"t-stop"

Removes the given timer from the active list chain.

PAUSE -- ; multitasker hook
"pause"

Allows the sytem multitasker to get a look in. Under Windows this also allows the
message queue to be handled. This word will be a dummy if the equate TASKING? is
zero, otherwise it will be a call to the routine in the MULTIxx file.

TICKS -- n
"ticks"

Get the current clock value in milliseconds. Note that this routine must be defined in the
CPU dependent interrupt handler code file.

LATER n -- n'
"later"

Generates the timebase value for termination in n millseconds time.

EXPIRED n -- flag ; true if timed out
"expired"

Flag is returned true if the timebase value n has timed out. Calls PAUSE.

TIMEDOUT? \ n -- flag ; true if timed out
"timed-out-query"

Flag is returned true if the timebase value n has timed out. TIMEDOUT? Does not call
PAUSE, so TIMEDOUT? can be used in interrupts, winprocs and callbacks. In particular,
TIMEDOUT? should be used rather than EXPIRED inside timer action words to reduce
timer jitter.

MS n --
"m-s"

Waits for n milliseconds. Uses PAUSE.

START-TIMERS -- ; Start internal time clock
"start-timers"

START-TIMERS must be provided by the CPU dependent code. It initialises the periodic
clock and starts it.

Timebase glossary

56

STOP-TIMERS -- ; disable timer interrupts
"stop-timers"

STOP-TIMERS must be provided by the CPU dependent code. It turns off the periodic
timer.

57

10 Heap and memory allocation

ANS Standard
The supplied source code implements the ANS Forth memory allocation word set with
extensions.

Source code
The source code is in the files COMMON\HEAP16.FTH (for 16 bit targets) and
COMMON\HEAP32 (for 32 bit targets).

The heap is allocated from a predefined section of memory using the equate SIZEOFHEAP to
produce a statuc buffer STARTOFHEAP. Facilities are provided for user expansion of the heap to
mass storage, although the current code makes no provision for page management. When the heap
is initialised, a free block and an end block are created. The end block is of zero size, and is used
only as a marker. The address returned by ALLOCATE and RESIZE is the address of the first data
byte, as is the address consumed by FREE.

Two equates are required during compilation to allocate a contiguous block of RAM for the heap.

 STARTOFHEAP start address of the heap
 SIZEOFHEAP size of the RAM for the heap

HEAP16
The HEAP16 code is optimised for code density.

The heap is controlled using two cells per block for 16 bit targets. This information is used in
three parts:

#bytes, number of bytes in this block

cell = flag, split between a four bit and a 12 bit field

The top four bits of the flag are used to indicate the block type, where $E = End, $F = Free, $A =
Allocated. Others may be added later for type management. The bottom 12 bits of the flag are
currently unused, and should be set to zero.

HEAP32
The HEAP32 code is optimised for performance and is usually used with the VFX code generator.

The HEAP32 code uses a single 32 bit cell for control, the high byte containing the control
information, where $EE = End, $FF = Free, $AA = Allocated. Others may be added later for type
management. The bottom 24 bits of the flag are contain the size of the allocated block’s data
area..

Common
The heap must be initialised before use by calling INIT-HEAP. Heap access words return
status=0 for success, and status<>0 for error.

Glossary

58

Glossary
The following glossary doesn not include all the factors used in the code. If you are interested in
the implementation, please read the source code.

ALLOCATE #bytes -- addr status
“allocate”

Attempt to allocate some memory from the heap. Walk the heap looking for a single big
enough block. If the block is larger than than required split it into two blocks. Allocate part
or all of the free block. Status=0 for success.

FREE address – status
“free”

Attempt to free a heap block. Status=0 for success.

INIT-HEAP --
“init-heap”

Initialise the heap. If you don.t the system will surely crash!

RESIZE addr1 size -- addr2 status
“resize”

Try to resize an allocated block to a new size, allowing for alignment. If the existing
memory block is not big enough, the data will be copied to a new block, and the returned
addr2 will not be the same as addr1. Status=0 for success.

SIZE addr -- currsize | -1
“size”

Return the size of an allocated block or -1 if there's an error. Note that the size returned is
the actual size of the data area, not the requested size.

.HEAP -- ; display heap info
“dot-heap”

Walk the heap displaying block information.

HEAPOK? -- t/f ; check heap
“heap-o-k-query”

Walk the heap and return TRUE if the heap is "well". If the heap is sick, diagnostic
information will be displayed.

59

11 Software floating-point

Although most embedded applications only require integer arithmetic, some do require floating-
point. Therefore software floating-point is supplied with the cross-compiler and the target Forth.
The target floating point wordset is not fully ANS compliant, but satisfies the needs of embedded
systems without undue complexity. The Forth data stack and the floating point stack are the same.
The floating point data storage format is not IEEE format, but is optimised for performance on
small controllers. If you need a separate floating point stack or IEEE format storage, please
contact MPE. Any variations in the implementation will be documented in the target specific
section of the manual.

The cross-compiler has a more limited floating-point support than the target, this means that some
words are avaliable within colon definitions, but not outside them.

Source code
The source code is in two sets of files, one for 32 bit Forth targets, the other for 16 bit targets. The
files are:

COMMON\SFP32HI 32 bit primitives
COMMON\SFP32COM 32 bit high level code
COMMON\SFP16HI 16 bit primitives
COMMON\SFP16COM 16 bit high level code

These files use no assembler definitions. Some targets have code versions of the primitives, and
these will be found in the CPU specific code directory. A significant increase in performance can
be obtained by using the code files.

Entering floating-point numbers
Floating-point numbers can be entered in two forms, 1.234 and 0.1234e1

Floating-point numbers are compiled as literal numbers when in a colon definition and placed on
the cross-compiler's stack when outside a definition.

The form of floating-point numbers
A floating-point number is placed on the Forth data stack. For 32 bit targets, it consists of two 32-
bit numbers, one for the mantissa and one for the exponent. For 16 bit targets, it consists of a 32-
bit double mantissa and a single 16-bit exponent. The mantissa is normalised. The exponent is on
the top of the stack.

Note that for 16 bit targets, number conversion is affected by HOST-MATH and TARGET-MATH.
HOST-MATH leaves double numbers and floats in 32-bit form, whereas TARGET-MATH leaves
them in 16-bit form.

Creating variables
To create a variable, use FVARIABLE. FVARIABLE works in the same way as VARIABLE. For
example, to create a floating-point variable called VAR1 you code:

FVARIABLE VAR1

When VAR1 is used, it returns the address of the floating-point number.

Creating constants

60

Accessing variables
Two words are used to access floating-point variables, F@ and F!. These are analogous to @ and
!.

Creating constants
To create a floating-point constant, use FCONSTANT. FCONSTANT is analogous to CONSTANT.
For example, to generate a floating-point constant called CON1 with a value of 1.234, you enter:

1.234 FCONSTANT CON1

When the CON1 is executed, it returns 1.234 on the Forth stack.

Using the supplied words
The supplied words split into several groups:

• sines, cosines and tangents

• arc sines, cosines and tangents

• arithmetic functions

• logarithms

• powers

• displaying floating-point numbers

• inputting floating-point numbers

The following functions only exist as target words so you cannot use them in calculations in your
source code when outside a colon definition.

Calculating sines, cosines and tangents
To calculate sine, cosine and tangent, use FSIN, FCOS and FTAN respectively. They take either
an angle in degrees or radians, depending on which is set at the moment. See Setting degrees or
radians.

Calculating arc sines, cosines and tangents.
To calculate arc sine, cosine and tangent, use FASIN, FACOS and FATAN respectively. They
return an angle in degrees or radians, depending on which is set. See Setting degrees or radians.

Calculating logarithms
Two words are supplied to calculate logarithms, FLOG and FLN. FLOG calculates a logarithm to
base 10 (decimal). FLN calculates a logarithm to base e. Both take a floating-point number in the
range from 0 to Einf.

Calculating powers
Three power functions are supplied:

• ex

Software floating-point

61

• 10x

• xy

Calculating ex

To calculate ex, use FE^X. FE^X takes x as a floating-point number.

Calculating 10x

To calculate 10x, use F10^X. F10^X takes x as a floating-point number.

Calculating xy

To calculate xy, use FX^Y. FX^Y takes x and y as floating-point numbers.

Setting degrees or radians
The angular measurement used in the trigonometric functions can be set to be either degrees or
radians. To set it to degrees, use the word DEGREES. To set it to radians use the word RADIANS.

Converting between degrees and radians
To convert between degrees and radians use RAD>DEG or DEG>RAD. RAD>DEG converts an
angle from radians to degrees. DEG>RAD converts an angle from degrees to radians.

Displaying floating-point numbers
Two words are available for displaying floating-point numbers, F. and E.. The word F. takes a
floating-point number off the stack and displays it in the form xxxx.xxxxx or x.xxxxxEyy
depending on the size of the number. The word E. displays the number in the latter form.

Changes from v6.0
Renamed DINT to F>D for consistency. F>D is the ANS word. The original F>D was just a
synonym. Similarly SINT was renamed to F>S.

The word FLOATS that enabled floating point number conversion has been renamed to REALS to
avoid a name conflict with the ANS word of the same name.

The F-PACK vocabulary has been removed as no one liked it, and it could be considered
contrary to the ANS Forth specification. If you wish to retain the F-PACK vocabulary, add the
following lines before and after the compilation of the floating point code:

 only forth definitions \ *** added ***
 vocabulary f-pack \ *** added ***
 also f-pack definition \ *** added ***
 include %CommonDir%\Sfp32Hi \ primitives
 include %CommonDir%\Sfp32Com \ common high level code
 previous definitions \ *** added ***

The code enabling floating point to work in degrees or radians has been commented out for ANS
compatibility. All trig functions now operate in radians. The commented out code may be
uncommented if you need backward compatibility.

Glossary

62

32 bit targets: software floating point
Overhauled 32 bit software floating point and incorporated improvements contributed by Hiden
Analytical. These include more complete special case detection, faster high level code, and more
accurate number input and output.

Removed all use of global variables except PLACES to make the floating point code usable in
interrupt routines and in multitasked systems. If the output routines are to be multitasked, change
the definition of PLACES from:

 VARIABLE PLACES 8 PLACES !

to:

 CELL +USER PLACES

and remember to initialise PLACES before using the floating point output routines.

Many words that are only useful as factors have been made headerless to save target memory
space.

16 bit targets: software floating point
Note that the 16 bit floating point pack is not re-entrant. If you need to use the floating point pack
in a multitasking system, you should convert the global variables to USER variables. The word
+USER can be used

 <size> +USER <name>

to define a USER variable of a given size (normally a CELL) at the next free offset in the USER
area. Only PLACES will need initialisation.

Glossary
In the following glossary, you will find all the words that you are likely to need when using
software floating-point; the words omitted are, in general, subroutines used by words in the
glossary.

N.B. Abbreviation: f.p. = floating-point

D>F d -- f
"d-to-f"

Converts a double integer to a normalized f.p. number.

DEG>RAD f1 -- f2
"deg-to-rad"

Convert f1 degrees to its corresponding number of radians.

DEGREES --
"degrees"

Switches floating-point calculations to be done in degrees.

DNORM d n -- f
"d-norm"

Normalize double number d by n left shifts. Leaves a f.p. number on the stack.

Software floating-point

63

E. f --
"e-dot"

Print the f.p. number on the stack in exponential form.

F, f --
"f-comma"

Compile the f.p. number on the top of the stack.

F. f --
"f-dot"

Print the top f.p. number on the stack in free format.

F! f addr --
"f-store"

Store the f.p. number f at address addr.

F+ f1 f2 -- f3
"f-plus"

Add together the top two f.p. numbers on the stack and put the f.p. result on the stack.

F- f1 f2 -- f3
"f-minus"

Subtract the top f.p. number on the stack from the second f.p. number on the stack, and put
the f.p. result on the stack.

F* f1 f2 -- f3
"f-star"

Take the top two f.p. numbers off the stack, multiply them together, and leave the f.p.
result on the stack.

F/ f1 f2 -- f3
"f-slash"

Divide the second f.p. number on the stack by the top f.p. number and leave the f.p. result
on the stack.

F< f1 f2 -- flag
"f-less-than"

Leave true flag if f1<f2. Otherwise, leave a false flag.

F<0 f -- flag
"f-less-than-0"

Leave a true flag if f<0. Otherwise, leave a false flag.

F= f1 f2 -- flag
"f-equals"

Leave a true flag if the top two f.p. numbers on the stack are equal. Otherwise leave a false
flag.

F0= f -- flag
"f-0-equals"

Leave a true flag if the f.p. number on the top of the stack is zero.

Glossary

64

F> f1 f2 -- flag
"f-greater-than"

Leave a true flag if f1>f2. Otherwise, leave a false flag.

F>0 f -- flag
"f-greater-than-zero"

Leave a true flag if the f.p. number on the top of the stack is greater than zero.

F>D f -- d
"f-to-d"

Leave the integer part of f as a double number on the stack.

F>S f -- n
"f-to-s"

Takes the single number integer part of f and puts it on the stack.

F# -- f [executing]
"f-hash" -- [compiling]

If interpreting, takes text from the input stream and, if possible, converts it to a f.p. number
on the stack. Numbers in integer format will be converted to floating-point. If compiling,
the converted number is compiled.

F#IN -- f 3 | 0
"f-hash-in"

Attempts to convert a token from the input stream to a floating-point number. Numbers in
integer format will be converted to floating-point. An indicator (0 or 3) is returned in the
same way as an indicator is returned by FNUMBER?.

F@ addr -- f
"f-fetch"

Fetch the f.p. number from address addr and put it on the stack.

F10^X f1 -- f2
"f-10-to-the-x"

Raise 10 to the power f1 and put the result on the stack.

FABS f -- |f|
"f-abs"

Returns the modulus of the f.p. number on the top of the stack.

FACOS f1 -- f2
"f-a-cos"

Leave, on the stack, the angle (in degrees or radians) whose cosine is f1, such that
0<=f2<=180 (f2 in degrees).

FARRAY fn-1..f0 n -- [parent]
"f-array" n -- fn [child]

When generating the array, take n f.p. numbers and n, and compile them into the array.
When executing the child word, take n and place f.p. number n from the array onto the
stack. Note that the numbering in the array goes 0,1,..n-1.

Software floating-point

65

FASIN f1 -- f2
"f-a-sine"

Leave, on the stack, the angle (in degrees or radians) whose sine is f1, such that -
90<=f2<=90.

FATAN f1 -- f2
"f-a-tan"

Leave, on the stack, the angle (in degrees or radians) whose tangent is f1, such that -
90<f2<90.

FCONSTANT f -- [parent]
"f-constant" -- f [child]

Floating-point equivalent of CONSTANT. Use in the form:

<f.p. number on stack> FCONSTANT <name>

FCOS f1 -- f2
"f-cos"

Take the cosine of f1 (degrees or radians) and put it on the stack.

FDROP f --
"f-drop"

Drop the f.p. number on the top of the stack.

FDUP f -- f f
"f-dup"

Duplicate the f.p. number on the top of the stack.

FE^X f1 -- f2
"f-e-to-the-x"

Raise e, the exponential number, to the power f1 and put the result on the stack.

FFRAC f1 f2 -- f3
"f-frac"

Leave the fractional remainder from the division f1/f2. The remainder takes the sign of the
dividend.

FINT f1 -- f2
"fint"

Place the f.p. integer value of f1 on the stack.

FLITERAL f --
"f-literal"

When compiling, compile f as a literal. For example,

: ABCD [calculate f] FLITERAL ;

Compilation is suspended for the compile-time calculation of f. Execution of ABCD leaves
f on the stack.

FLN f1 -- f2
"f-log-base-e"

Take the logarithm of f1 to base e and put the result on the stack.

Glossary

66

FLOG f1 -- f2
"f-log-base-10"

Take the logarithm of f1 to base 10 (decimal) and put the result on the stack.

FMAX f1 f2 -- max{f1,f2}
"f-max"

Put the greater of the top two f.p. numbers onto the stack.

FMIN f1 f2 -- min{f1,f2}
"f-min"

Put the lesser of the top two f.p. numbers onto the stack.

FNEGATE f -- -f
"f-negate"

Negate the f.p. number on the top of the stack.

FNUMBER? addr -- 0|n 1|d 2|f 3
"f-number-query"

Converts string at address addr to either a single, double or floating-point number along
with 1, 2, or 3 respectively. If a 0 is left on the stack then FNUMBER? was unable to
convert the string.

FOVER f1 f2 -- f1 f2 f1
"f-over"

Floating-point equivalent of OVER.

FROT f1 f2 f3 -- f2 f3 f1
"f-rote"

Floating-point equivalent of ROT.

FSEPARATE f1 f2 -- f3 f4
"f-separate"

Leave the signed integer quotient f4 and remainder f3 when f1 is divided by f2. The
remainder has the same sign as the dividend.

FSIGN f -- f flag
"f-sign"

Leave the f.p. number and a flag on the stack. Leaves a true flag if f is negative, else leaves
a false flag.

FSIN f1 -- f2
"f-sine"

Leave the floating-point sine of f1 (degrees or radians) and put it on the stack.

FSQR f1 -- f2
"f-s-q-r"

Take the square root of the floating-point number on the top of the stack and put the result
onto the stack.

FSWAP f1 f2 -- f2 f1
"f-swap"

Floating-point equivalent of SWAP.

Software floating-point

67

FTAN f1 -- f2
"f-tan"

Take the tangent of f1 (degrees or radians) and put the result on the stack.

FVARIABLE --
"f-variable"

Floating-point equivalent of VARIABLE. Set up an fvariable by typing:

FVARIABLE <name>

FX^N f1 n -- f2
"f-x-to-the-n"

Raise f1 to the power n (n integer), and put result on the stack.

FX^Y f1 f2 -- f3
"f-x-to-the-y"

Raise f1 to the power f2 and put the result on the stack.

INTEGERS --
"integers"

Switches the action of NUMBER? to be INTEGER?. This action reverses that of REALS.
Both REALS and INTEGERS are in the FORTH vocabulary.

RAD>DEG f1 -- f2
"rad-to-deg"

Convert f1 radians to degrees, and put result on the stack.

RADIANS --
"radians"

Switches floating-point calculations to be done in radians.

REALS --
"floats"

Switches the action of NUMBER? to be FNUMBER?. This action can be reversed by
INTEGERS. Both REALS and INTEGERS are in the FORTH vocabulary.

S>F n -- f
"s-to-f"

Converts a single number to a normalized f.p. number

69

12 ROM PowerForth utilities

Supplied as source in the ROMFORTH directory are utilities to:

• compile source code on your target board from the cross-compiler IDE

• upload a binary image from your target to your PC

• download a binary image to your target from your PC

Note that the target source code supplied with cross compiler versions 6.02 onwards is
incompatible with code supplied for previous versions of the cross compiler.

These utilities can be used to generate an EPROM that has all the tools required to develop an
application, or can be used during development to transfer modules to and from your PC. All the
code is designed to be used with the MPE development environment, AIDE. The code will also
work with other compatible terminal emulators.

Users who wish to distribute ROMs containing the ROM PowerForth utilities should contact
MPE for details of the OEM licence, which includes documentation on disc of the Forth kernel
and the ROM PowerForth utilities.

Compiling text files
Source text files can be compiled from the host PC onto the target system. This saves time in not
having to cross-compile the entire source if a small modification is made. The utilities permit text
file to be split into pages for better layout when printed. An ASCII Form Feed character (decimal
12) separates one page from another.

The required files
To compile text files from your target board, cross-compile the files IODEF.FTH and
TEXTFILE.FTH.

Compiling a specified text file
To compile all or part of a specified text file onto your target, use GET or INCLUDE in the form:

INCLUDE <filename>

This compiles the file <filename> into the target's dictionary. AIDE's internal file server must
be enabled (in the console window configuration), and will be triggered

Downloading a binary image
A binary image can be downloaded from the target to your host PC. Two utilities are provided:

• Intel hex download

• XMODEM download

For both utilities the cross-compiler IDE or a suitable communications package will be required.

ROM PowerForth

70

XMODEM binary image download
Binary images can be downloaded to your PC using the XMODEM protocol.

Required files

To use this utility you must cross-compile the file XMODEM.FTH (also called BIN-DOWN.FTH
in some targets).

Using the XMODEM binary download utility

To download a binary image from the target system to your PC, use BIN-DOWN in the form:

addr #bytes BIN-DOWN

where addr is the start address and #bytes is the number of bytes to down-load starting from addr.
For example,

1200 400 BIN-DOWN

sends the area of memory from 1200 to 1599 to your host PC. AIDE's internal file server must be
enabled (in the console window configuration), and will be triggered

Intel hex download
Binary images can be downloaded to your PC using the Intel hex format.

Required files

To use this utility you must cross-compile the file INTELHEX.FTH.

Using the Hex download utility

To download a binary image from the target system to your PC, use HEX-DOWN in the form:

addr #bytes HEX-DOWN

where addr is the start address and #bytes is the number of bytes to down-load starting from addr.
For example,

1200 400 HEX-DOWN

sends the area of memory from 1200 to 1599 to your host PC. In AIDE, turn on console logging
to receive the file. In other packages this may be referred to as file capture.

ROM PowerForth
ROM PowerForth can be used to generate a stand-alone Forth system. With these utilities, you
can generate an EPROM that contains an interactive Forth with the ability to develop an
application.

Note: A licence is required to distribute open Forth systems. Contact MPE for more details.

Hardware requirements
To develop an application using ROM PowerForth, your board requires an area which:

• is always EPROM

• is always RAM

ROM PowerForth utilities

71

• is RAM for development and EPROM for application

EPROM area

The area that is always EPROM contains the development kernel.

RAM area

The area that is always RAM is used for variables and all changeable data.

RAM/EPROM area

This area is used to develop your application. Therefore, it must be RAM while developing. Once
your application is developed, the application's image must be saved into battery-backed RAM or
EPROM. Therefore, this area must have the ability to be alterable but also non-volatile.

Types of board
The type of board that can be used to develop using ROM PowerForth is restricted to:

• three site boards

• two site boards with battery backed RAM

• two site boards with socket converter

Three site boards

The three areas are provided by three memory sockets:

• EPROM holding development kernel

• RAM which holds the variables and changeable data

• EPROM or RAM which is selectable by a link on the board

Two site boards with battery backed RAM

The three areas are provided by two sockets:

• EPROM holding the development kernel

• battery-backed RAM which is split into two areas

Two site boards with socket converter

On many boards, there is unused space in the EPROM as ROM PowerForth occupies less than
32k bytes of memory. Therefore, a header board can be made which converts one socket into two.
For example, if the socket normally takes a 27512 EPROM, a board can be made which has a 32k
EPROM with the ROM PowerForth development kernel and 32k bytes of RAM. To access the
RAM, the write line is attached to a suitable point on the main board with a fly lead.

After the application has been developed, the two images are combined back into a single
EPROM.

AIDE file server protocols

72

Making your application turnkey
Once your application has been developed, it needs to be made turnkey so that it is always
available. The application can be made semi-permanent by compiling into battery-backed RAM
in the RAM/EPROM area. Alternatively, it can be copied into an EPROM if the board allows.

Configuring a turnkey application

The word SETUP takes the address of the word passed to it and marks this in the RAM/EPROM
header as the address of the word to be run at power-up. If a value of zero is passed to SETUP, the
interactive Forth kernel will be run at power-up.

For example, the word JOB is to be run at power-up. Therefore you type,

' JOB SETUP

Discarding the application RAM area

The application can be discarded by typing:

0 ROM !

Changing the application RAM start address

The constant ROM returns the start address of the application RAM area. If the address of this area
is to be changed, the EPROM must be modified. To do this, the 32-bit value in ROM must be
changed.

AIDE file server protocols
AIDE's file server must be enabled for automatic file handling.

Details of the protocols used should be obtained from the source code in the ROMFORTH
directory.

Glossary
BIN-DOWN addr len --
"bin-down"

Transmits a target image in XMODEM format to the host. AIDE can receive this file if the
file server facilities are enabled.

CLS --
"c-l-s"

Clears the display by sending a trigger character (code 3) to the host.

GET <name>--
"get"

Compiles from a specified text file <name> on the host AIDE file server. File loading can
be nested.

HEX-DOWN addr len --
"hex-down"

Transmits a target image in Intel Hex format to the host. The host can receive this file by
enabling logging/capture.

ROM PowerForth utilities

73

INCLUDE <name>--
"include"

Compiles from a specified text file <name> on the host AIDE file server. . File loading can
be nested.

75

13 Controlling compilation

While cross-compiling, the cross-compiler needs to be instructed on how to configure itself. You
need to tell the cross-compiler:

• when to start compiling

• when to stop compiling

• which code and data pages to compile into

• whether to align code to even/odd bytes

• whether to enable floating-point

• whether to turn the compiler log on or off

• when to compile portions of code selectively

These instructions are normally placed in the control file, before any instructions are compiled.

Starting the cross-compiler
To start cross-compiling, use the word CROSS-COMPILE. Any code after this directive will be
compiled into the target image instead of compiled onto the cross-compiler.

Stopping the cross-compiler
To mark the end of the cross-compilation phase, use FINIS or UMBILICAL-FORTH. FINIS is
used to finish cross-compilation completely, whereas UMBILICAL-FORTH is used to finish the
batch portion of the compilation and to start the cross target link ready for interactive testing with
an Umbilical Forth target.

Defining memory - Sections and the xDATA directives
Regions of memory, known as sections, are defined in the control file by the SECTION directive.
The cross-compiler treats all memory as fitting into three types of memory, code, initialised, and
uninitialised, and maintains a current section for each type. The directive SECTION is used in the
form:

start end type SECTION <name>

where start is the start address of the section, end is the last address of the section, type is
one of CDATA, IDATA or UDATA, and <name> is the name of the section. By default, the section
will be saved to disc with the filename <name>.IMG. The compiler automatically gives the
filename <name> an extension .IMG so <name> should not include an extension. <name> will
then become the current section in use of that type. When a section name is executed, it becomes
the current section

CDATA is used to define areas of memory that contain code, usually ROM. IDATA is used to
define areas of memory that can be initialised at start up. When the cross-compiler finishes (the
FINIS or UMBILICAL-FORTH directives), the used portions of all the IDATA sections are
added to the end of the current CDATA section with headers so that the target startup code can
copy them into RAM. UDATA is used to define areas of memory that will not be initialised.

Defining memory - Sections and the xDATA directives

76

CDATA sections contain code and any data defined by CDATA during the cross-compilation.

IDATA sections contain any data defined by VARIABLE or VALUE or IDATA during the cross-
compilation.

UDATA sections contain data allocated by RESERVE BUFFER: or UDATA during the cross-
compilation.

CDATA IDATA and UDATA control which section the following words apply to:

, ALIGN ALIGNED ALLOT C, CREATE HERE ORG UNUSED W,

After executing CDATA IDATA or UDATA the current section of that type is referenced by these
words. After executing a section name, that section becomes the current one of its type, and that
type is applied. After defining all the memory sections for your target hardware it is good practice
to explicitly select one of each type of section and to set the default memory type.

Selecting section I/O
By default, SECTION creates a buffer that is saved to disc when the compiler finishes. Other
directives can be used to select a different behaviour. All these directives apply to the current
section.

WRITE-IGNORE (--) causes writes to the current section to be ignored, and reads always
return 0.

WRITE-INVALID (--) causes writes to the current section to generate an error, and reads
always return 0.

For example, in a section of EEPROM, stores during cross-compilation would be meaningless,
and can be trapped by using WRITE-INVALID.

$20000 $27FFF UDATA SECTION EEPROM WRITE-INVALID

IN-EMULATOR (offset --) causes the section memory to be in an EPROM emulator.
The offset value is the offset from the start of the EPROM set at which the section starts. If paged
memory is being used, each page will be in the emulator at a different offset. This means that the
target can be reset as soon as the compilation has finished, without any intervening download
process. Umbilical Forth especially benefits from this. The EPROM emulator is accessed through
a defined interface used the MPE/Leburg EPROM emulators. Any other EPROM emulators that
provide this interface can also be used.

$00000 $07FFF CDATA SECTION ROM 0 IN-EMULATOR

VIA-LINK (--) is used by Umbilical Forth to redirect sections to be accessed over the
Umbilical link during the interactive session. For example, a target system may contain three
sections, ROM, IRAM and URAM. The ROM section will already be in the EPROM emulator.
When the interactive session starts, the user types:

IRAM VIA-LINK
URAM VIA-LINK
ROM

So that the RAM areas are accessed across the Umbilical link, so that target memory itself is used.

An example
$00000 $07FFF CDATA SECTION ROM \ Main ROM area
$08000 $0FFFF IDATA SECTION IRAM \ Initialised data

Controlling compilation

77

$10000 $1FFFF UDATA SECTION BBRAM \ battery backed RAM
$20000 $27FFF UDATA SECTION EEPROM \ EEPROM
$80000 $803FF UDATA SECTION DPRAM \ dual port RAM
ROM IRAM BBRAM CDATA \ defaults

This indicates five areas of memory. With this setup, your kernel will have 32k of ROM and 32K
for variables and interactive development, 64k of uninitialised RAM which is not affected at
power up, an EEPROM area, and a dual port RAM.

Section toOLS
ORIGIN \ -- addr

Returns start address of CDATA section.

SEC-BASE \ -- addr
Returns start address of current section.

SEC-TOP \ -- addr
Returns end address of current section.

SEC-LEN \ -- u
Returns length (size) of current section.

SEC-END \ -- addr
Returns BP of current section.

RESERVE \ len – addr
Allocates down from top of UDATA section

UNUSED \ -- n
Returns the remaining available space in the current section. If this value becomes
negative, you have overrun the available space.

.SECTIONS \ --
Show section status.

Defining memory – Bank switched systems

Defining banks and pages
In bank switched systems BANKs may be defined, to which are attached PAGES. A bank defines
the address range and type of switched memory, and multiple pages are defined within the bank.
There is no limit to the number of separate banks and pages. Each page behaves as a SECTION,
except that only the last referenced page in each bank is active. This allows us to bank switch both
ROM and RAM areas.

Each page must have a unique identifier, restricted only in that 0 can not be used as an identifier.
Otherwise the selection of page identifiers is entirely free, and can be chosen to ease the writing
of the page handling words (see below).

HEX

0 7FFF CDATA SECTION ROM \ 32k common ROM

Defining memory – Bank switched systems

78

8000 BFFF CDATA BANK ROMBANK \ 16k pages of ROM
 0001 PAGES BANK0
 0002 PAGES BANK1
 0003 PAGES BANK2

C000 DFFF IDATA BANK IRAMBANK \ 8k IDATA pages
 0101 PAGES IBANK0
 0102 PAGES IBANK1
 0104 PAGES IBANK2

E000 FFFF UDATA BANK URAMBANK \ 8k UDATA pages
 0201 PAGES UBANK0
 0202 PAGES UBANK1
 0204 PAGES UBANK2

F000 F7FF IDATA SECTION SYSTEMRAM \ 2k non-banked IRAM

F800 FFFF UDATA SECTION STACKRAM \ 2k non-banked URAM

A very common configuration is to have a fixed ROM area to hold the Forth kernel and common
application code, a bank switched ROM area for code expansion, a bank switched RAM area for
data logging, and a non-switched RAM area for system variables and stacks.

In order to configure the system, you must provide two words, PAGE@ and PAGE! which are
used to find the current bank state, and to set a new one. These words use the same page
identifiers used by the PAGES directive.

PAGE@ \ -- page-id
PAGE! \ page-id --

Execution of a word in another page is performed by the word PAGE-EXECUTE, which performs
page selection and restoration for you. The high level version of this word is in the file
PAGING\PAGING.FTH, which you should modify to suit your own hardware.

PAGE-EXECUTE \ i*x xt pageid – j*x

When compiling code into banks, the compiler keeps track of the selected bank, and if a reference
is made to code in an unselected bank, the compiler will generate the necessary bank switch and
restore code automatically. You cannot forward reference a word in another page.

Use of CDATA pages
CDATA page management

CDATA pages are usually used with processors that do not have a large enough addressing range
for the code that must run on them. There is an overhead in calling a word in another page
because all such calls are made by PAGE-EXECUTE, which has to save and restore the current
code page around the call. As a result, most users partition the code so that inter-page calls do not
produce any significant performance overhead.

Multitasking and interrupts

Because all inter-page calls restore the previous page, the paging mechanism has no impact of on
the multitasker unless PAUSE or WAIT are used within a page. If any word that calls the
scheduler is used in a page, the multitasker code should be modified to save and restore the page.
You can use the code for PAGE@ and PAGE! as a model.

Similarly if interrupt routines are in pages, the interrupt handlers must restore the previously
active pages.

Controlling compilation

79

In many bank switched systems it is better to be safe than sorry and the simplest thing to do is to
save the bank switch system state as part of the scheduler action. Similarly, doing this in the
interrupt system can improve code reliability.

CDATA pages and vocabularies

The cross compiler treats CDATA pages as special cases of vocabularies.

When a page is defined, the compiler creates a vocabulary of the same name as the page in the
compiler.

When a page is referred to, the compiler performs the following actions:

• the page becomes the current code page in the bank.

• the vocabulary for the previously selected page in the same bank is removed from the search
order.

• the vocabulary for the newly selected page becomes the top of the search order.

Consequently, you may need to use ALSO and PREVIOUS with page names in order to keep the
Forth kernel in the search order. Assuming that the Forth kernel is all in the ROM section in the
example above, the following code switches between the banks:

ONLY FORTH ALSO BANK0 DEFINITIONS \ Use BANK0
 …
BANK1 DEFINITIONS \ change to BANK1
 …
BANK2 DEFINITIONS \ change to BANK2

Be aware that if you define vocabularies inside a CDATA page, you are responsible for removing
them from the cross compiler’s search order before changing pages.

Using CDATA pages interactively

This section discusses using vocabularies and pages interactively with a standalone Forth
interpreter running on the target hardware. It is assumed that the reader understands the use of
vocabularies.

When a banked CDATA page is defined, the compiler reserves two cells for page vocabulary links
and some space in the current UDATA section. Any vocabularies defined in this bank will not be
linked into the normal vocabulary chain, but into a chain anchored in the first cell. As a result,
switching between pages on a standalone target Forth does not affect the normal search order and
the words in pages would be inaccessible even if heads were generated for them.

In order to provide interactive access to paged words, the compiler can be told to construct special
vocabularies, which automatically handle bank switching and the search order. Once all the
memory sections have been defined to the compiler, the directive MAKE-PAGE-VOCS (used
when the kernel is the active code page) causes the compiler to construct special vocabularies in
the kernel, which use the run time action of PAGE-VOCABULARY instead of VOCABULARY. The
action of PAGE-VOCABULARY is as follows:

• Make itself the CONTEXT vocabulary

• Restore VOC-LINK to its initial value. This removes the previously selected code page from
the search order.

• Select the required page as the current page in that bank.

Aligning generated code

80

• Add the pages own vocabularies (if any) to the VOC-LINK chain.

Note that MAKE-PAGE-VOCS must be used when the kernel page is the active code page. The
data structure of a PAGE-VOCABULARY is the same as that of a normal VOCABULARY except
that two more cells, containing the page identifier and page base address have been added to the
CDATA portion of the vocabulary.

IDATA and UDATA pages
Page management

The action of IDATA and UDATA page selection is simply to make them the current page of their
type.

You can use these pages to expand the data area available to your application. For example, some
embedded systems use bank switched data pages as mass storage. This is a typical way to use
multi-megabyte memory cards in data loggers built around a processor with a restricted memory
space.

Multitasking and interrupts

Any routine that changes a current data page should be careful to restore it before calling the
scheduler. As with CDATA pages the simplest thing to do is to save the bank switch system state
as part of the scheduler action. Similarly, doing this in the interrupt system can also improve code
reliability.

Aligning generated code
Some processors require CFAs to be started on even addresses, so that instructions start on an
even address. To instruct the compiler to do this, use ALIGN-EVEN. Other processors require
CFAs to be 4-byte aligned. In this instance use ALIGN-LONG.

Numbers and 16 bit targets
This only applies to 16 bit targets.

Double numbers and floating point numbers are converted to the format used by 16 bit targets.
This means that the interpreted behaviour of double number operators may not give correct
results. This conversion can be disabled and re-enabled by the directives HOST-MATH and
TARGET-MATH. These is useful when calculating such things as baud rate divisors using
EQUates defined in the control file.

HOST-MATH
 <perform calculation> EQU <equate-name>
TARGET-MATH

Enabling floating-point
If you want the compiler to be able to handle floating-point numbers, you need to instruct it with
the word REALS. The default is integer only. Floating point can be disabled by INTEGERS. Note
that for 16-bit targets, number formats are affected by the HOST-MATH and TARGET-MATH
switches.

Turning the log on and off
The cross-compiler log can either display minimal information (when off) or information on the
items compiled (when on). To turn the log on, use LOG. To turn the compiler off, use NO-LOG.

Controlling compilation

81

Conditional compilation
Conditional compilation is used to selectively compile portions of code. Three words are
available to do this, [IF], [ELSE] [ENDIF] and [THEN]. These are analogous to IF,
ELSE and ENDIF. They can be used within Forth words to selectively compile portions of it, or
can be used outside a Forth word to selectively compile whole words.

An example
Two code examples are shown below. The examples given perform conditional compilation
inside and outside a colon definition.

Conditional compilation outside a colon definition

The example shown below compiles one of the PRINT1OR2's. Which one is compiled is
dependent on the value of 1OR2?. If it is set to one, PRINT1OR2 displays a one when executed.
If it is set to two, PRINT1OR2 displays a two.

1 EQU 1OR2?

1OR2? \ Display one or two?
[IF] \ If 1OR2?=1, PRINT1 will be compiled
: PRINT1OR2 \ — ; Display a one
 ." 1"
;
[ELSE] \ If 1OR2?=2, PRINT2 will be compiled
: PRINT1OR2 \ — ; Display a two
 ."2"
;
[THEN] \ End marker for conditional compilation

Conditional compilation within a colon definition

Using conditional compilation within a colon definition is slightly more complicated. This is
because you need to write a word which places a number on the cross-compiler's stack during
cross-compiling. An example is shown below where a constant 3OR4? is added to the compiler.
This can then be used to control compilation.

3 EQU 3OR4? \ add the word 3OR4? As an EQUate

: PRINT3OR4 \ — ; Display a three or four
 [3OR4?] [IF] \ EQUate is interpreted
 [IF]
 ." 3" \ Display a three
 [ELSE]
 ." 4" \ Display a four
 [ENDIF]
;

[DEFINED] and [UNDEFINED]
The words [DEFINED] and [UNDEFINED] are used to find out if a particular word has
already been defined, and return a flag. This is particularly useful when you want to keep a
common body of code, yet provide for assembly language versions for slow processors. The
following code allows a high-level version of a word to be defined if no other version exists.

[UNDEFINED] <FOO> [IF]
: <FOO>
 …
;
[THEN]

Library files

82

[REQUIRED]
This word is used by the library mechanism (see below). [REQUIRED] <name> returns true if
<name> has been referenced but has not yet been defined. <name> may be a word or a label.

[required] foo [if]
: foo … ;
[then]

Library files
When you need to keep code size to a minimum, the cross-compiler can resolve forward
references by scanning library files repeatedly until no more forward references can be resolved.
This is done by defining a group of files that can be scanned. This should be done as the last
action of the control file, although the compiler will permit scanning of library files anywhere.
The log will show the number of passes made over the library files.

LIBRARIES
 all from-file <filename1>
 all from-file <filename2>
 …
END-LIBS

Within each library file, the code is compiled normally, except that the word [REQUIRED] is
used to control condition compilation.

[REQUIRED] <name> [IF]
: <name> … ;
[THEN]

The code between [IF] and [THEN] will only be compiled if <name> has been forward
referenced, i.e. it is required.

Loading binary data
The DATA-FILE directive loads a binary image file into target memory at HERE and reserves
space for it, returning the size of the file. This is useful for adding data such as externally
generated font tables and web pages. The file is loaded into the current section, so make sure to
use CDATA or IDATA as appropriate. Macros in the file name are expanded but no default
extension is assumed. For example:

 cdata create image
 data-file %AppDir%\image.bin
 cr . ." bytes loaded"

Test code
The directives TESTING [TEST and TEST] support incorporating test code local to the
definition the code tests. The DOCGEN/SC extension can be used for safety critical systems to
produce FDA (the US Food and Drug Administration) standard documentation directly from the
source code and to extract separate test files.

In order to allow test code to be built into the source code, conditional compilation of test code is
provided, controlled by the word TESTING.

 0 TESTING \ test code will NOT be compiled (default)
 1 TESTING \ test code will be compiled

Test code should be surrounded by the markers [TEST and TEST].

Controlling compilation

83

0 TESTING
[TEST
 This will all be ignored
TEST]

1 TESTING
[TEST
: foo ;
TEST]

In the first example all the code between [TEST and TEST] will be ignored. In the second case
the code between [TEST and TEST] will be compiled.

C header files
In order to ease inclusion of the vast number of peripheral registers by name in modern
microcontrollers, you can often cut and paste the definitions from a C or assembler header files.

// - comment to end of line

/* comment N.B. white space delimited */

#define <name> text

For #DEFINE note that the text up to the end of the line is evaluated once at compile time and
produces an EQUate of that single integer value.

Direct port access under Windows NT/2000
If you are using Windows NT/2000 or any other version of Windows that treats direct port I/O as
a privileged instruction, you must install the NTPORT.EXE file from the COMPILER\XTRA
directory as described in the installation section of the manual. You must also modify your control
file to include the NT-ACCESS-PORTS directive.

85

14 The VFX code generator

The VFX code generator is a black box that simply does its job of compiling and optimising your
code, and usually no user intervention is required. Some implementations may have switches for
special cases such as for dealing with the children of FIELD and local variables. These will be
documented in the target specific section of the manual.

Inlining
Apart from these special cases the VFX code generator gives some control over the use of
inlining, controlled by the word INLINING (n --). When the code generator has completed a
word, the length of the word is stored in the symbol table. When the word is to be compiled, its
length is compared against the value passed to INLINING, and if the length is less than the
system value, the word is not referenced but is compiled inline, with the procedure entry and exit
code removed. This avoids pipeline stalls, and is very useful for short definitions.

By default four constants are available for inlining control, although any number will be accepted
by INLINING.

NO INLINING \ 0, inlining turned off
NORMAL INLINING \ 12-16, ~10% increase in size
AGGRESSIVE INLINING \ 255, useful when time critical
ABSURD INLINING \ 4096, unlikely to be useful

You can use INLINING anywhere in the code outside a definition.

The following words are used immediately after a definition to control the inliner.

INLINE \ mark a CODE definition
INLINE-ALWAYS \ will always be inlined
INLINE-NEVER \ will never be inlined

Colon definitions
Any word that uses words that affect the return stack such as EXIT, or takes items off the return
stack that you didn't put there in the same word, will automatically be marked as not being able to
be inlined.

Implementations that use absolute calls will disable inlining of any word that makes an absolute
call.

Use of RECURSE will disable inlining.

Note that when words are inlined, the effects may not be as expected.

: A … ; \ inlined
: B … A … ; \ A inlined, B can be inlined
: C … B … B … ; \ A, B inlined, C can be inlined

If you want to prevent a word ever being inlined, follow it with INLINE-NEVER. This is usally
only necessary after you have done sothimg particularly carnal in nature.

Code definitions

86

Code definitions
By default CODE definitions are not marked for inlining because the assembler cannot detect all
cases which may upset the return stack. If you want to make a code definition available for
inlining, follow it with the word INLINE.

If you want the word to be inlined regardless of the state of INLINING, use INLINE-ALWAYS.

COMPILER directives
The VFX optimisers significantly reduce the need to code in assembler. However, some impact
can be made by replacing very small definitions by compiler directives. Every time the VFX
optimiser has to generate a call, it has to generate a canonical Forth stack. If you replace a short
definition by a compiler directive, the optimiser does not call it, but compiles it as if from source
code. Thus:

: foo \ addr -- addr’
 3 cells + @
;

can be replaced by

compiler
: foo \ addr -- addr’
 3 cells + @
;
target

On many target CPUs, especially those with good indexed addressing modes, the resulting code is
shorter. COMPILER directives allow you to retain the code modularity of short Forth definitions
without the calling overhead. You can explore this quite quickly, and the compiler section reports
and file compilation reports will give you a good indication of whether you are winning. How
much gain in code density you will get is often non-obvious, and the only way to get a feel for it
is to play with the compiler.

87

15 Debugging tools

INTERACTIVE
When INTERACTIVE is used after CROSS-COMPILE and before FINIS, the compiler will not
exit after compilation is finished, but will enter an interactive mode in which the symbol table and
image data are preserved. This allows you to use the other debugging tools with a standalone
target compilation.

XDASM, DASM, DIS
Compilers for subroutine-threaded (STC) targets and compilers with the VFX code generator
include a disassembler that can be used from Umbilical Forth, during cross compilation, or if you
enter the compiler at the end of compilation

XDASM <name>
DASM <name>
DIS <name>

will disassemble the word <name>.

LOCATE
When the compiler is active use the phrases

LOCATE <name>
LOC <name>

to see the source code of word <name>. If you enter the compiler at the end of compilation, use
the words XLOCATE and XLOC instead.

USES
When the compiler is active use the phrase

USES <name>

to see the words that use the word <name>. If you enter the compiler at the end of compilation,
use the word XUSES instead.

XREF, XREF-ALL, XREF-UNUSED
The XREF cross reference system is turned on by using the word +XREFS in the control file. All
code after +XREFS will be cross referenced. Use –XREFS to turn cross referencing off.

When the compiler is active use the phrase

XREF <name>

to see the words that use the word <name>. If you enter the compiler at the end of compilation
with ESCAPE, use the word XUSES instead.

XREF-ALL produces a cross refence listing for the whole application. It is of most use when cut
and pasted into a text editor for further processing.

WORDS

88

XREF-UNUSED produces a list of the words that have not been referenced in colon definitions.
XREF-UNUSED can be used to produce a minimum-sized application by removing those words
that are unused.

WORDS
WORDS produces a list of the target words. The following switches control whether or not
unresolved target words are shown by WORDS and friends:

 +SHOW-UNRESOLVED \ --
 -SHOW-UNRESOLVED \ -- ; default

LABELS
LABELS produces a list of the target labels.

EQUATES
EQUATES produces a list of the target equates.

ESCAPE
Using the word ESCAPE in the control file before the final FINIS enters the cross compiler in
host mode so that the debugging tools above can be used. Note that no files are saved. Unless you
are debugging an extension to the cross compiler itself, the use of ESCAPE is now deprecated,
and you should use INTERACTIVE instead.

HELP
HELP lists the compiler directives, and gives some reminders.

INTERPRETERS
INTERPRETERS lists all the words which are special when interpreting.

COMPILERS
COMPILERS lists all the words which are special when compiling.

Command line switches
These switches can be used on the command line that runs the cross compiler to control its
behaviour

/PAUSEOFF \ -- ; run in batch mode

The compiler will terminate immediately after FINIS is used, otherwise it will offer you the
choice of re-entering the compiler.

/IDE \ -- ; run from IDE host

When run from AIDE, this command tells the cross compiler to use the AIDE tool capture
window as the console window.

/PAGEOFF \ -- ; inhibit page-throws

Debugging tools

89

Prevents the compiler from putting page throw characters in the log.

/COLS \ cols -- ; specify number of log
\ columns per line

Specifies the number of columns used in the log. By default the cross compiler will generate three
columns, which allows 32 bit numbers to be logged as 8 hexadecimal digits.

91

16 Compilation in more detail

This chapter provides more detail on how to get the best out of the compiler. Topics covered
include:

• Special compilation behaviour

• Special interpretation behaviour

• Defining words

Special compilation behaviour
The following words are treated as special cases during compilation, either because the code
generator/optimiser produces in-line code rather than a call to a target word, or because the word
is normally IMMEDIATE and is executed during compilation. As the list may have been extended
since the manual was written, or because there are CPU specific switches, full lists of the
interpretation and compilation words can be obtained using the directives INTERPRETERS and
COMPILERS.

Code generator
! * + +!

+STRING - -ROT -TRAILING

0< 0<> 0= 0>

1+ 1- 2! 2*

2+ 2- 2/ 2@

4* 4+ 4- 4/

< <= <> =

> >= ?DUP @

C! C@ CHARS COMPARE

COUNT DROP DUP NIP

OVER PICK ROLL ROT

SWAP TUCK U2/ U4/

U< U> W! W@

Immediate
-> ; ;CODE ADDR

ASCII EXIT IF(LITERAL

LOCALS| POSTPONE RECURSE SEC-BASE

SEC-TOP TO TO-DO {

[['] [CHAR] [COMPILE]

Special interpretation/compilation behaviour

92

[DEFINED] [ELSE] [IF] [THEN]

[UNDEFINED] [REQUIRED] [ENDIF]

Strings
"" ." ABORT" C"

S"

Comments
(((\

Control structures
+LOOP ?DO ?OF AGAIN

BEGIN CASE DO ELSE

END-CASE ENDCASE ENDIF ENDOF

IF LOOP OF REPEAT

THEN UNTIL WHILE

Special case in defining words
, >NUMBER ?LEAVE ALLOT

ASSIGN BLANK C+! C,

COMPILE CREATE DOES> ERASE

HERE I J LEAVE

MOVE W, WORD

Special interpretation/compilation behaviour
The following words are treated as special cases during interpretation, because they mimic target
behaviour, usually by dealing with target memory, or they are defining words, because they are
compiler directives, or because they are made available for execution during interpretation.

New directives may have been added since this manual was written, and a full list is available by
using the words HELP, COMPILERS and INTERPRETERS.

Compiler directives
[ELSE] [ENDIF] [IF]

[THEN] [UNDEFINED] [REQUIRED]

2VARIABLE 32BIT 8BIT

CCITT CDATA CHECKSUM

COMPILER CORG CRC16

DEFINE-EMULATOR E27010 E27020

E27040 E27080 E27128

E2716 E27256 E2732

Compilation in more detail

93

E27512 E2764 E2764H

E2764L EMU-IO END-STRUCT

ESCAPE EXTERNAL FIELD

FIELD-TYPE FINIS FORTH

FROM-FILE HOST HOST&TARGET

HOST-COMPILATION IDATA IF(

IMMEDIATE IN-EMULATOR INCLUDE

INTEGERS INTERNAL INTERPRETER

IORG LOCATE LRCC16

MAKE-BUILD MAKE-TURNKEY NO-HEADS

ONLY ORG PTO

RESERVE RESTART-COMPILATION SAVE-COMPILATION

SDLC SEC-BASE SEC-END

SEC-TOP SERIAL SHOW-CODE

-SHOW-CODE 16BIT 2CONSTANT

SIMPLE16 SIMPLE32 SIMPLE8

STACK-CHECK SUSPEND-COMPILATION TARGET

TARGET-ONLY TARGET-SUPPORT UDATA

UORG UPDATE-BUILD USE-ANS-CONTROLS

USE-MPE-CONTROLS VIA-LINK [DEFINED]

Host referring words
@(H) !(H) C@(H) C!(H)

W@(H) W!(H)

Defining words
: :NONAME BUFFER: CODE

CONSTANT CREATE DEFER EQU

MARKER PROC STRUCT USER

VALUE VARIABLE VOCABULARY I:

Assembler control
L$10: L$1: L$2: L$3:

L$4: L$5: L$6: L$7:

L$8: L$9: L: LABEL

POSTFIX PREFIX

Special interpretation/compilation behaviour

94

Target memory and interpretable
! "" ", #

#> #S ' (((

)ELSE()ENDIF)THEN *

*/ */MOD + +!

+STRING , ," -

-1 -ROT -TRAILING -ZEROS

. ." .R .S

/ /MOD /STRING 0

0< 0<> 0= 0>

1 1+ 1- 2

2* 2+ 2- 2/

2DROP 2DUP 2OVER 2ROT

2SWAP 4 < <#

<= <> = >

>= >BODY >IN >NUMBER

?DUP @ ABS ACTION-OF

ALIGN ALIGNED ALL ALLOT

ALSO AND ASCII ASMCODE

ASSEMBLER ASSIGN BASE BINARY

BLANK BOUNDS C! C+!

C, C@ CELL CELL+

CELLS CHAR CHAR+ CHARS

COMPARE COUNT CR D+

D< DABS DECIMAL DEFINITIONS

DEPTH DNEGATE DROP DUP

EMIT ERASE F# F*

F+ F- F/ FALSE

FILL FIND HERE HEX

HOLD INVERT KEY KEY?

LSHIFT M* M/MOD MAX

MIN MOD MOVE NEGATE

NIP NOT ONLY OR

Compilation in more detail

95

ORDER OVER PICK POSTPONE

PREVIOUS ROT RSHIFT RSHIFTS

S" S>D S>F SCAN

SIGN SKIP SM/REM STATE

SWAP TO TO-DO TRUE

TUCK TYPE U. U<

U<= U> U>= UM*

UM/MOD UMOD W! W+!

W, W@ WIDEN WITHIN

WORD XOR ['](T) \

]

Structures
A named structure is defined using the following template. When the name of a structure is
executed its size is returned.

Size FIELD-TYPE <field-type-name>

STRUCT <struct-name>
 size1 FIELD <field-name1>
 size2 FIELD <field-name3>
 <field-type-name> <field-name3>
 …
END-STRUCT

The run time action of a <field-name> is to add its offset in the structure to the address on the
top of a stack. A structure can be used as a field within another structure by using the form:

<struct-name> FIELD <field-name>

The following example shows the construction of a structure defining a rectangle in terms of two
points.

CELL FIELD-TYPE INT

STRUCT POINT \ -- size
 INT .X \ addr – addr’
 INT .Y \ addr – addr’
END-STRUCT

STRUCT RECT \ -- size
 POINT .TOP-LEFT \ addr – addr’
 POINT .BOTTOM-RIGHT \ addr – addr’
END-STRUCT

RECT BUFFER: NEW-RECT

CREATE ANOTHER-RECT \ -- addr
 RECT ALLOT

Allocating memory and variables

96

Allocating memory and variables
This section shows the ANS definitions for each ANS word, and shows how to use them. These
words are affected by the current xDATA setting, and unless otherwise noted refer to the
currently selected data area which is one of CDATA IDATA and UDATA

The directives CDATA IDATA and UDATA select which type of memory the Forth words below
affect:

, ALIGN ALIGNED ALLOT C, CREATE HERE UNUSED W,

CREATE
CREATE "<spaces>name" –
“create”

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below. If the data-space pointer is not aligned,
reserve enough data space to align it. The new data-space pointer defines name's data field.
CREATE does not allocate data space in name's data field.

name Execution: (-- a-addr)

a-addr is the address of name's data field. The execution semantics of name may be
extended by using DOES>.

The result of this is to create a reference to the current location. Space can now be reserved using
ALLOT or data can be laid down using one of the comma words.

CDATA CREATE BITS \ -- addr ; table of bit masks
 8 C, \ size of table
 $01 C, $02 C, $04 C, $08 C,
 $10 C, $20 C, $40 C, $80 C,

BITS was defined with CDATA in effect, so the table is in code space, normally ROM, and is
constant. If we had wanted to change this table, we could replace CDATA with IDATA, and then
the table would be in RAM, but initialised at power up. If we just want to reserve an uninitialised,
we could use UDATA and ALLOT.

UDATA CREATE ABUFFER \ -- addr
 <size> ALLOT

Note that it is either invalid or ignored to use the comma words in a UDATA section, or to write
data to these at compile time. You cannot rely on the behaviour of the compielr under these
circumstances.

Commas: , C, W,
These words lay data into the current xDATA section. C, lays a character (a byte in byte-
addressed machines, or a cell in cell-addressed machines), , lays a cell, and W, lays a 16 bit
value in byte-addressed machines. You can use these words as shown in the previous section to
lay initialised data at compile time.

ALIGN and ALIGNED
The ANS specification provides these words to provide portability between systems that have
different data alignment requirements. For example, a 386 does not require 32 bit data to be on a
four byte address boundary. A 68332 requires it on a two byte boundary, and an ARM requires it

Compilation in more detail

97

on a four byte boundary. ALIGN forces the section to the next-cell aligned address, and
ALIGNED will align an address on the stack.

ALIGN --
“align”

If the data-space pointer is not aligned, reserve enough space to align it.

ALIGNED addr – addr’
“aligned”

a-addr is the first aligned address greater than or equal to addr.

ALLOT
ALLOT is used to reserve space in the current section. Note that when used in IDATA space, that
the size of the initialised RAM table added by the compiler at the end of the ROM may be
increased. See RESERVE and BUFFER:

ALLOT n –
“allot”

If n is greater than zero, reserve n address units of data space. If n is less than zero, release
|n| address units of data space. If n is zero, leave the data-space pointer unchanged.

If the data-space pointer is aligned and n is a multiple of the size of a cell when ALLOT
begins execution, it will remain aligned when ALLOT finishes execution.

If the data-space pointer is character aligned and n is a multiple of the size of a character
when ALLOT begins execution, it will remain character aligned when ALLOT finishes
execution.

HERE (CHERE IHERE UHERE)
These words return the current data space pointer or that of the defined section in the case of the
xHERE words.

HERE -- addr
“here”

addr is the data-space pointer.

ORG (CORG IORG UORG)
ORG and friends set the the relevant data space pointer. In classical Forth, this is the variable DP,
but does not have to be.

ORG addr –
“org”

Set the data space pointer of the current section.

VALUE and VARIABLE
VALUE defines an initialised variable (size=cell) whose default action is to return its contents
(value). To write to it, you must precede it with TO . The address can be found using ADDR. By
definition, the data is in the current IDATA section.

Allocating memory and variables

98

VARIABLE defines a cell-sized variable that always returns its address. In Forth 6, the variable is
in IDATA space and is initialised to zero. This prevents errors caused by forgetting to initialise
the variable before use. By legend, this error in a Fortran program was responsible for the loss of
one of the Mars probes.

5 VALUE FOO
 FOO . addr FOO @ .
6 to FOO FOO .

VARIABLE BAR
 5 BAR ! BAR @ .

VARIABLE "<spaces>name" –
“variable”

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below. Reserve one cell of data space at an
aligned address.

name is referred to as a variable.

name Execution: (-- a-addr)

a-addr is the address of the reserved cell. A program is responsible for initializing the
contents of the reserved cell.

2VARIABLE "<spaces>name" –
“TWO-VARIABLE”

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below. Reserve two consecutive cells of data
space.

name is referred to as a two-variable.

 name Execution: (-- a-addr)

a-addr is the address of the first (lowest address) cell of two consecutive cells in data space
reserved by 2VARIABLE when it defined name. A program is responsible for initializing
the contents.

VALUE x "<spaces>name" –
“value”

Skip leading space delimiters. Parse name delimited by a space. Create a definition for
name with the execution semantics defined below, with an initial value equal to x.

name is referred to as a value.

name Execution: (-- x)

Place x on the stack. The value of x is that given when name was created, until the phrase
x TO name is executed, causing a new value of x to be associated with name.

BUFFER:
This is the equivalent with one important exception of the code below:

UDATA CREATE ABUFFER \ -- uaddr
 <size> ALLOT

Compilation in more detail

99

<size> BUFFER: ABUFFER \ -- uaddr

The big difference is that BUFFER: leaves the currently active section alone, whereas the first
example switches it to UDATA which is a trap for the unwary.

RESERVE
Associated with UDATA sections is second location pointer, which grows down from the top of
the section, allocating space from the top. This can be very useful when careful use of the IDATA
and UDATA spaces is required, ans the gap between the top of the IDATA section and the botton
of the UDATA section can be made contiguous if the IDATA and UDATA sections are themselves
contiguous.

RESERVE n – addr
“reserve”

The word RESERVE takes a required size n, drops the location pointer, and returns the
base address addr.

RESERVE is mostly used to reserve space for stacks and buffers in the form:

 <size> RESERVE EQU <name>

UNUSED
Used to find out how much space is left in a section. If UNUSED returns a negative value, this
indicates that the upper location counter (see RESERVE) is now lower than the normal location
pointer, and that you have a problem.

UNUSED -- u/n

U/n is the amount of space remaining in the region addressed by HERE , in address units.

Local variables
The sequence

: <name> { ni1 ni2 ... | lv1 lv2 ... -- o1 o2 }
 …
;

defines named inputs, local variables, and outputs. The named inputs are automatically copied
from the data stack on entry. Named inputs and local variables can be referenced by name within
the word during compilation. The output names are dummies to allow a complete stack comment
to be generated.

• The items between { and | are named inputs.

• The items between | and -- are local variables.

• The items between -- and } are outputs.

Named inputs and locals return their values when referenced, and must be preceded by -> or TO
to perform a store, or by ADDR to return the address.

Arrays may be defined in the form:

 arr[n]

Local variables

100

Any name ending in the '[' character will be treated as an array, the expression up to the
terminating ']' will be interpreted as the size. Arrays only return their base address, all operators
are ignored.

In the example below, a and b are named inputs, a+b and a*b are local variables, and arr[is a
10 byte array.

: foo { a b | a+b a*b arr[10] -- }
 a b + -> a+b
 a b * -> a*b
 cr a+b . a*b .
;

The ANS local variable syntax is also supported, but is not recommended on the grounds of
readability and functionality. If you need it the ANS specification is provided in HTML format in
the DOCS\ANSFORTH directory. Start with DPANS.HTM

Compilation in more detail

101

Extending the compiler
The compiler allows the user to extend the compiler itself by controlling where new words are
placed. After cross-compilation is started, all new words are placed by default into the target
image. The following directives control where new words are placed.

Directive and
corresponding
vocabulary

Action

TARGET

*TARGET

New words are placed in the target image

Conceptual search order: *TARGET

COMPILER

*COMPILER

New words are added to the cross-compiler’s compile time
behaviour. These words act like IMMEDIATE words in
conventional Forth, but are not available during interpretation. All
memory access words refer to the target.

Conceptual search order: *COMPILER *HOST

INTERPRETER

*INTERPRETER

New words are added to the cross-compiler’s interpret time
behaviour. These words are not available during compilation. All
memory access words refer to the target. See the next section on
defining words for details of the actions for defining words using
CREATE … DOES> or CREATE … ;CODE.

Conceptual search order: *INTERPRETER *HOST

ASSEMBLER

*ASSEMBLER

New words are added to the cross-compiler’s assembler. This
directive is usually used to add macros to the assembler. Also
searches the INTERPRETER words.

Conceptual search order: *ASSEMBLER *INTERPRETER
*HOST

HOST

*HOST

Exposes the underlying host portion of the cross-compiler so that
utility words can be added that will be used later by words
defined using COMPILER INTERPRETER or ASSEMBLER. Use
of this mode is at your own risk. Finish this mode with TARGET.

Conceptual search order: *HOST

Table 7: Compiler extension directives

It is a convenient conceptual model to regard these directives as corresponding to vocabularies
called *TARGET *COMPILER *INTERPRETER *ASSEMBLER and *HOST. The table shows
the conceptual search order generated by the directives.

Defining words
Defining words can be handled in two ways, automatically by the cross-compiler, or explicitly
using the extension mechanism discussed above. The objectives behind the two mechanisms are
different.

Defining words

102

The automatic mechanism aims to be transparent, so that code for the cross-compiler can be the
same as that for a hosted Forth. This encourages portability and makes the cross-compiler easier
to use for the majority of defining words. The automatic mechanism copes with the majority of
defining words.

The explicit mechanism provides very fine control of the host and target environments, but can be
more confusing to use.

Automatic handling
The cross-compiler will automatically build an analogue of the defining word in the host’s
conceptual *INTERPRETER vocabulary up to the terminating ; DOES> or ;CODE. This is
triggered by the word CREATE. Consequently, any code between the : and the CREATE will not
have a host analogue. The words between CREATE and the terminating DOES> or ;CODE must
either be in the *INTERPRETER vocabulary or must be target constants or variables, which
allows construction of linked lists that refer to target variables.

A target version of the defining portion up to DOES> or ;CODE is built if the target words has
heads.

The run-time portion of the code is always placed in the target.

Construction of the host analogue is inhibited between the directives TARGET-ONLY and
HOST&TARGET.

Both the defining words below can be handled automatically by the cross-compiler

: CON \ n -- ; -- n ; a constant
 CREATE
 ,
 DOES>
 @
;

VARIABLE LINKIT \ exists in target

: IN-CHAIN \ n -- ; -- n ; constants linked in a chain
 CREATE
 , \ lay down value
 HERE LINKIT @ , LINKIT ! \ link to previous
 DOES>
 @
;

Explicit handling
Explicit handling uses the compiler directives discussed in the previous section to control how
defining words are created. This is particularly useful for more complex words, and where no
target version of the defining word is required, as is often the case when the Umbilical Forth
target is being used.

The examples from the automatic handling section are repeated here using the explicit
mechanism.

INTERPRETER

: CON \ n -- ; -- n ; a constant
 CREATE
 ,
 DOES>
 @
;

Compilation in more detail

103

VARIABLE LINKIT \ exists in target

: IN-CHAIN \ n -- ; -- n ; constants linked in a chain
 CREATE \ only in host
 , \ lay down value
 HERE LINKIT @ , LINKIT ! \ link to previous
 DOES> \ run time in target
 @
;

HOST

VARIABLE LINKIT2 \ exists in host

INTERPRETER

: IN-CHAIN2 \ n -- ; -- n ; link variable in host
 CREATE \ in host
 ,
 HERE LINKIT2 @(H) , LINKIT2 !(H)
 DOES>
 @
;

TARGET

As can be see from the examples above, the automatic handling mechanism is simpler, but the
explicit handling mechanism permits finer control over where code is generated, which may be
useful when defining words are required and the absolute minumum of target memory is to be
used.

IMMEDIATE words
As with defining words, IMMEDIATE words can be handled in two ways. In the first case, I: can
be used to mark that a host analogue is required. In the second case, a host version of the word is
placed in the *COMPILER conceptual vocabulary using the COMPILER directive. The examples
below illustrate the definition of –IF, which acts like IF but executes the code after –IF if
TOS=0.

Automatic handling
I: -IF \ -- ; always produces target version
 POSTPONE 0= POSTPONE IF
; IMMEDIATE

The disadvantage of this method is that there will always be a target version, but the only
variation from conventional Forth is the use of I:.

Explicit handling
COMPILER

: -IF \ -- ; only exists in host
 0= IF \ references *COMPILER’s 0= and IF
;

TARGET

Checksums
Checksums can be calculated over the current CDATA area. To do this, use the word CHECKSUM.

start end location type CHECKSUM

Automatic build numbering

104

where start is the first address of the checksum region, end is the last address, and location
is where the checksum is to be placed. The type is a constant identifying what sort of checksum
is required, and may be chosen from the predefined types:

SIMPLE8 SIMPLE16 SIMPLE32
CCITT CRC16 LRCC16 SDLC

Automatic build numbering
The automatic build numbering system allows you to update a build number string every time
that a successful compile takes place. This information is stored in a separate file in the working
directory. By default it is called BUILD.NO.

The build file consists of one line of text, which can be any mixture of text and numbers. At every
update, all the digits in the text are treated as a single integer which is updated. This allows you to
incorporate text in the form:

 MPE PowerForth v6.20 [build 0030]

BUILDFILE "<filename>" -- ; set build file name
“build-file”

Sets the name of the build file. By default it is BUILD.NO. e.g.

BUILDFILE MYBUILD.NO

MAKE-BUILD \ addr –
“make-build”

Read the build file and copy the text to the target as a counted string. Use this to copy the
string to a pre-allocated buffer.

BUILD$, --
“build-dollar”

Read the build file, and lay the text in the target as a counted string, e.g.

CREATE VERSION$ BUILD$,

only allocates the exact amount of space needed to hold the string.

UPDATE-BUILD --
“update-build”

Update the build number file. Place this just before FINIS so that a successful build
updates the build number.

Macros in text strings
The word M”, is available during interpretation to lay down a counted string which includes
macros delimited in the usual way by the ‘%’ character. E.g.

CREATE DESCRIPTION \ -- addr
 M”, Reactor type %RTYPE%, boiler %BOILER%”

105

17 Forth on the target

This chapter describes how a Forth is laid out on a target board. It is therefore not necessary to
read this chapter, but this chapter provides more information if you are interested or if you want to
perform more advanced modifications to the cross-compiler or target.

Inside a ROM target Forth
A standalone ROM target Forth communicates with the host up a serial line. The host needs to be
running a dumb terminal emulator. The terminal emulator displays any characters that arrive from
the target and sends any characters typed at the host's keyboard. The target takes input and makes
output directly from the serial line, not from a keyboard and to a display. To do this, the deferred
words EMIT and KEY have the actions SER-KEY and SER-EMIT respectively.

The Forth memory map
A typical Forth system consists of several areas apart from the code space itself. The RAM on the
target system is split into several areas:

• a user area for interrupts

• a user area and stacks for eack task

• a terminal input buffer (TIB) for standalone Forth

The remaining RAM is available for use by the Forth as dictionary space.

RAM initialisation
The ANS standard does not require variables (created by words VARIABLE or CVARIABLE) to
be automatically initialised at start up. In MPE PowerForth data created in IDATA space is
initialised to zero within the cross-compiler. The table of initial values is then copied to the end of
the output file when the cross-compiler terminates. The compiler termination report tells you
where it is located.

For Umbilical Forth targets, an EQUate INIT-IDATA? may be present to control whether the
additional start up code to perform initialisation is compiled. This saves code space when this
feature is not required

Two locations in the target, INIT-RAM and RAM-START, point to the initial value table (in
ROM), and to the memory area (in RAM) it should be copied to. The table consists of a number
of entries containing four fields: len, addr, pageid, len data. This repeats until terminated by an
entry with len=0.

Cell: len, a count of the number of bytes to be copied

Cell: addr, the address to which the data should be copied

Cell: pageid, the page id in which the data resides, 0 indicating unpaged memory.

Len bytes: the data to be copied.

The code that performs this copy can be found in the word (INIT) in
COMMON\KERNEL.FTH.

Register usage

106

In addition to using the memory store operators C! W! and !, RAM can be initialised when
space is allotted using cross-compiler words that use , or W, or C,. It is safest to explicitly
initialise all variables and data areas in COLD or ABORT. This protects the system from errant
behaviour after error recovery or power failure. It is worth remembering that a Mariner probe was
lost because of an uninitialised Fortran variable!

Register usage
The Forth implementation on 32 bit targets uses subroutine threaded code with inlining for speed,
with top-of-stack kept in a register. The assignment of the registers is given in more detail in the
assembler chapter of the target specific manual.

Threading
For speed, MPE PowerForth uses Subroutine Threaded Code (STC) on 32 bit targets, as it is a
good compromise between speed and space. The 16 bit targets may use Direct Threaded Code
(DTC) or Subroutine Threaded Code, depending on whether the processor is regularly used on
systems with limited memory space and the suitability for code generation. The routine which
threads between the Forth words is called NEXT,. NEXT, is implemented as a macro, which is
described in the assembler chapter. In most system NEXT, is simply an alias for the CPU return
from subroutine instruction.

When suitable, STC compilers produce inline code for suitable primitives. The optimising VFX
compilers all produce STC code when optimisation is not possible or is turned off, otherwise they
produce native machine code.

Forth models
Two different targets are provided in the COMMON directory. The first is a standalone Forth that
can be debugged interactively using a dumb terminal. The Forth provides all the facilities you
need. Source code can be downloaded to the Forth and debugged on the target. The target Forth
provides interpretation and compilation facilities.

The second is a Forth called Umbilical Forth that is tuned for single chip applications. Unlike the
Standalone Forth, Umbilical Forth requires the Umbilical Forth message passer in the
TARGEND.FTH file for interpretation and compilation, which is provided by a server on the host
PC (see below). Umbilical Forth is a system that contains a fully interactive Forth kernel in
typically less than 4k bytes (32 bit targets), or 2k bytes (16 bit targets), although these figures will
vary between different processors.

All directories use the same implementation model, and so code from one system can be used by
another. Thus an application using Umbilical Forth as a basis can safely use code from the
Standalone Forth. This does not apply on some processors such as the 8051, where stacks may be
in different address spaces in the Standalone and Umbilical models. In this case there may be a
separate set of UMB files that match the ROM model. Note that all the Umbilical Forth message
handling source code is in high-level Forth.

Inside Umbilical Forth
Umbilical Forth interacts with you in the same way as a ROM target Forth, but the mechanism
that provides the interaction with the target is totally different. When you reset the target and the
board signs-on, you are still running the cross-compiler. Umbilical Forth is therefore an extension
of the cross-compiler to provide interactive cross interpretation and cross-compilation.

Forth on the target

107

When a word is cross-compiled, the cross-compiler places information in the symbol table. The
symbol table therefore contains the CFA of the word in the target image. By using a message
passing system between the cross-compiler and the target, the CFA of the word can be passed to
the target. The target can then execute the word on the target passing parameters to and from as
appropriate. Therefore, the target does not need any headers in the target image, nor does the
target need any of the code to process the headers.

Target source code

Cross compiler & Symbol table

Target emulator

Message passing system (host)

Message passing system (target)

Target executable code

Figure 5: Umbilical Forth structure

109

18 Optimising development

While developing an application, you cycle through a series of steps:

• editing your source code

• cross-compiling to generate a binary image file

• downloading to an EPROM emulator/programmer

• testing and debugging your code

This development cycle is repeated until all development and debugging is completed. The faster
you can go round this cycle, the sooner your application is finished.

Speeding up the compilation
Every time a cross-compilation is carried out, certain sections of code, which are never altered,
are compiled again and again. This is particularily the case for the kernel files that generate the
Forth image. You can use the partial compilation feature of the cross-compiler to halt the cross-
compilation at a strategic position and save the cross-compiler's state. You can then continue
cross-compiling from this saved position. In this way, you can dramatically reduce the time the
application takes to compile.

Note: Partial compilation cannot be used when directly compiling to an emulator

Saving the compilation state
To stop and save the cross-compilation at a required place, use SUSPEND-COMPILATION.
SUSPEND-COMPILATION is used in the form:

SUSPEND-COMPILATION <filename>

where <filename> is the name of files the cross-compiler will use to save the state information.
The filename is a name without an extension.

Restarting from a saved state
To restart from a previously saved cross-compilation state, use RESTART-COMPILATION.
RESTART-COMPILATION is used in the same form as SUSPEND-COMPILATION,

RESTART <filename>

where <filename> is the filename used when saving the compilation state. RESTART-
COMPILATION must be used after the word CROSS-COMPILE and any macros must be loaded.

Note: The image file created by the compiler after a SUSPEND-COMPILATION must exist in
the compilation directory.

An example
An example control file can be found in the directory ROM\PARTIAL.

Speeding up the download

110

Speeding up the download
The cross-compiler has the facility to download the image to the LeBurg emulator while it is
compiling. This speeds up the turn-around of the edit, compile, download and test cycle by
removing the download step. To download directly to a LeBurg emulator, you need to tell the
cross-compiler:

• what size of EPROM it is generating

• the bus width (e.g. 8 bit, 16 bit)

• which page to put in the emulator

You also need to load the driver TSR for your emulator before running the cross-compiler, and to
set the I/O port address it uses.

Note: This facility cannot be used with partial compilation.

Setting EPROM size and bus width
To set the size of EPROM to use and the bus width of the target board, use DEFINE-
EMULATOR. This is in the form:

size width DEFINE-EMULATOR

where size and width are given in the following tables.

EPROM Size indicator EPROM size

E2764 8k bytes

E27128 16k bytes

E27256 32k bytes

E27512 64k bytes

E27010 128k bytes

E27020 256k bytes

E27040 512k bytes

E27080 1M bytes

Table 8: EPROM size indicators

Bus width indicator Bus width

8BIT 8 bit bus width

16BIT 16 bit bus width

32BIT 32 bit bus width

Table 9: Bus width indicators

For example, if your board uses a 27256 and your target has a 16-bit bus width, code:

Optimising development

111

E27256 16BIT DEFINE-EMULATOR

This instruction must be placed in your control file before the CROSS-COMPILE directive.

Setting the page
To send a page to an EPROM emulator, use IN-EMULATOR in the form:

xxxx IN-EMULATOR

where xxxx is the base address in the emulator where to place the image.

Using the emulator driver
To download to the emulator you first need to load an emulator driver. Which TSR you use
depends on the emulator you have, and selection of the correct driver will be described in the
EPROM emulator manual. One of these emulator drivers should be loaded before you run the
cross-compiler. This should be done by loading the relevant TSR driver in your
AUTOEXEC.BAT file.

Note that if you are using Windows NT/2000 or any other version of Windows that treats direct
port I/O as a privileged instruction, you must install the NTPORT.EXE file from the
COMPILER\XTRA directory as described in the installation section of the manual. You must
also modify your control fileto include the NT-ACCESS-PORTS directive.

113

19 An example control file

The example control file presented here is typical for v6.2 cross compilers. It is for the MPE
ARM Development Kit hardware. Your control file will be different, but the code is commented
to show what is important.

Standard header
The header section contains the copyright notices and a description of the target. It also contains
the change history for the system.

\ Builds a PowerNet system for the MPE ARM7 Development Kit.

((
Copyright (c) 2003
MicroProcessor Engineering
133 Hill Lane
Southampton SO15 5AF
England

tel: +44 (0)23 8063 1441
fax: +44 (0)23 8033 9691
net: mpe@mpeltd.demon.co.uk
 tech-support@mpeltd.demon.co.uk
web: www.mpeltd.demon.co.uk

From North America, our telephone and fax numbers are:
 011 44 23 8063 1441
 011 44 23 8033 9691

The code is set up to run in a 48k section of Flash
 $1000000 $100BFFF
The boot code remaps the chip select unit and segment mapper to put:
 1Mb Flash at 0100:0000 to 010F:FFFF Segment 1, r/w, not cached
 512k RAM at 0000:0000 to 0007:FFFF Segment 2, r/w, cached
 2k local SRAM at 0000:0000 to 6000:07FF Cache mode
 1k Ethernet at 5000:0000 to 5000:03FF Segment 4, r/w, not cached
The vector table is then copied to address 0.

To do
=====

Change history
==============
))

Text macros
This section handles defining the directory structure of the kernel and application. You can
modify this if the directories are moved, and you can also use conditional compilation if you have
a different directory structure on your desktop and your laptop.

only forth definitions

\ ******************************
\ Define the default directories
\ ******************************

"" ..\common" setmacro CommonDir \ where common code lives
"" ." setmacro CpuDir \ where CPU specific code lives
"" .\hardware\MpeArmDevKit"

setmacro HWDir \ board specific code lives
"" c:\buildkit.dev\software\AddOns\PowerNet\v30dev"

setmacro IpStack \ where PowerNet code lives

mailto:mpe@mpeltd.demon.co.uk
mailto:tech-support@mpeltd.demon.co.uk
http://www.mpeltd.demon.co.uk

Cross compiler initialisation

114

"" ..\examples\Filesys"
 setmacro FileSysDir \ where the File System lives

Cross compiler initialisation
Until the word CROSS-COMPILE has been run, this is a normal Forth system and the facilities of
the host Forth can be accessed. After this, the system is reconfigured as a cross compiler. Because
of this, extensions such as macros are compiled before CROSS-COMPILE.

This section may include some CPU specific directives. These will be documented in the CPU
specific manual. In this case, the ARM version and alignment are specified.

\ ***
\ Turn on the cross compiler and define CPU and log options
\ ***

include %CpuDir%\macros \ compiler and assembler macros

\ file: PROG.log \ uncomment to send log to a file

CROSS-COMPILE

only forth definitions \ default search order

 no-log \ uncomment to suppress output log
 rommed \ split ROM/RAM target
 interactive \ enter interactive mode at end
 +xrefs \ enable cross references
 align-long \ code is 32bit aligned
 ARM7 \ Core of Sharp's LH77790
 32bit-mode \ running in 32 bit mode

0 equ false
false not equ true

Configure target
The target has to be configured as to memory layout, size of stacks and user areas and so on.

\ ****************
\ Configure target
\ ****************

\ What sort of header do we need, default is memory image with no header
 0 equ AIF? \ true for ARM AIF format

\ Kernel components
 1 equ tasking? \ true if multitasker needed
 6 cells equ tcb-size \ for internal consistency check
 0 equ event-handler? \ true to include event handler
 0 equ message-handler? \ true to include message handler
 1 equ semaphores? \ true to include semaphores
 1 equ timebase? \ true for TIMEBASE code
 0 equ softfp? \ true for software floating point
 0 equ FullCase? \ include ?OF END-CASE NEXTCASE extensions
 0 equ target-locals? \ true if target local variable sources needed
 0 equ romforth? \ true for ROMForth handler
 0 equ blocks? \ true if BLOCK needed
 $20000 equ sizeofheap \ 0=no heap, nz=size of heap
 1 equ heap-diags? \ true to include diagnostic code
 0 equ paged? \ true if ROM or RAM is paged/banked
 0 equ MPE-SET? \ compatibility with MPE v5 targets
 0 equ ENVIRONMENT? \ true if ANS ENVIRONMENT system required
 0 equ ColdChain? \ true if cold chain system needed.

\ Clock, serial and ticker rates
#24000000 equ system-speed \ System clock rate in HZ.
#38400 equ console-speed \ Serial port speed in BPS.
#38400 equ console0-speed \ Serial port 0 speed in BPS.

An example control file

115

#38400 equ console1-speed \ Serial port 1 speed in BPS.
#38400 equ console2-speed \ Serial port 2 speed in BPS.
2 equ console-port \ Designate serial port for terminal.
#10 equ tick-ms \ TIMEBASE tick in ms

\ version numbers
 char 6 equ mpe-rel \ x in Vx.yz
 char 1 equ mpe-ver \ y in Vx.yz
 char 0 equ usrver \ z in Vx.yz

\ define stack and user area sizes
$0200 equ UP-SIZE \ size of each task's user area
$0200 equ SP-SIZE \ size of each task's data stack
$0200 equ RP-SIZE \ size of each task's return stack
up-size rp-size + sp-size +
 equ task-size \ size of TASK data area
UP-SIZE equ INTRAM \ space used by interrupt page

$0100 equ TIB-LEN \ terminal i/p buffer length

\ define nesting levels for interrupts and SWIs
1 equ #IRQs \ number of IRQ stacks,
 \ shared by all IRQs (1 min)
0 equ #SWIs \ number of SWI nestings permitted (0 is ok)

\ *****************
\ default constants
\ *****************

cell equ cell \ size of a cell (16 bits)
0 equ false
-1 equ true

\ ********************
\ Define memory layout
\ ********************

$00000000 equ link-address \ for a binary image
 \ - usually starts at zero on the ARM
 \ Used by the AIF header
$00000000 $0001FFFF cdata section ADKnet \ 128k program
$01000000 $010FFFFF cdata section PROGf \ 1Mb of Flash
$00020000 $0002FFFF idata section PROGd \ 64k IDATA RAM
$00030000 $0006FFFF udata section PROGu \ 256k UDATA RAM
$00070000 $007FFFFF udata section VideoRAM \ 64k video RAM
\ N.B. Change INITNET.FTH if you change this.

Interpreter
: prog adknet ; \ synonym for common code
target

PROG PROGd PROGu CDATA \ use Code for HERE , and so on

\ **********************************
\ USER area and Multi tasker equates
\ **********************************
\ Assume stacks grow down: user area, sp stack, rp-stack
\ Main User/Task stack for USR/SVC operation
\ The return stack must be the lowest of RSP, PSP and UP
\ in order to permit fast interrupt nesting. In order for
\ the initialisation code in MULTIARM.FTH to work, INIT-U0
\ must be the highest.

rp-size sp-size + equ TASK-U0 \ initial offset of user area
rp-size sp-size + equ TASK-S0 \ initial offset of data stack
rp-size equ TASK-R0 \ initial offset of return stack

task-size reserve equ INIT-T0 \ base of main task area
 init-t0 task-u0 + equ INIT-U0 \ base of main user area
 init-t0 task-s0 + equ INIT-S0 \ top of main data stack
 init-t0 task-r0 + equ INIT-R0 \ top of main return stack

Kernel files

116

task-size #SWIs * reserve drop \ space for SWI nesting

tib-len reserve equ INIT-TIB \ base of TIB

\ IRQ stacks ; nestable up to #IRQs
0 reserve equ IRQ_STACK_TOP \ top of IRQ stacks
task-size #IRQs * reserve \ bottom of IRQ stacks
 equ IRQ_STACK_BASE

PROGd
 sec-top 1+ equ UNUSED-TOP \ top of memory for UNUSED
PROG

Kernel files
This section uses the information defined earlier to pull in the required files for the Forth kernel.

\ ************
\ Kernel files
\ ************

 include %CpuDir%\sfr790A \ LH77790A Special function registers.
 include %CpuDir%\initARM \ Generic startup code (*required*).
 include %HwDir%\Boot\InitNet \ Devkit start up code for boot loader
 include %CpuDir%\codeARM \ low level kernel definitions
 include %CommonDir%\kernel62 \ high level kernel definitions
 include %CpuDir%\intARM \ exception handlers
 include %CpuDir%\drivers\Ser790i \ Debug Uart - channel 2
 include %CommonDir%\devtools \ DUMP .S etc development tools
 include %CommonDir%\voctools \ ORDER VOCS etc
 include %CommonDir%\methods \ target support for methods
 include %CpuDir%\local \ local variables

tasking? [if]
 include %CpuDir%\multiARM \ multi-tasker, MUST be before TIMEBASE
[ELSE]
 : pause ;
[then]

timebase? [if]
 include %CommonDir%\timebase \ time base common code
 include %CpuDir%\drivers\Tick790 \ timer tick
[then]

environment? [if]
 include %CommonDir%\environ \ ENVIRONMENT?
[then]

SIZEOFHEAP [if]
 include %CommonDir%\heap32 \ memory allocation set
[then]

softfp? [if]
 include %CpuDir%\softfp \ floating point
 include %CommonDir%\softcom \ common floating point code
[then]

romforth? [if]
 include %CommonDir%\RomForth\link \ appl. rom link
 include %CommonDir%\RomForth\iodef \ link i/o
 include %CommonDir%\RomForth\filetran \ ascii file uploader
 include %CommonDir%\RomForth\xmodem \ XMODEM downloader
 include %CommonDir%\RomForth\intelhex \ Intel Hex downloader
 include %CommonDir%\RomForth\textfile \ XSHELL textfile support
\ include %CommonDir%\RomForth\blocks \ XSHELL blocks support
[then]

An example control file

117

mpe-set? [if]
 include %CpuDir%\mpe_supp \ MPE v5 compatibility word set
[then]

\ *************
\ End of kernel
\ *************

internal
: .CPU \ -- ; display CPU type
 ." MPE ARM ANS ROM PowerForth v6.20"
;
external

: ANS-FORTH \ -- ; marker
;

Application code
The application code example here is MPE’s PowerNet TCP/IP stack, which uses its own build
file, but requires configuration through a number of equates and some compiler and interpreter
extensions.

\ *************************
\ Add application code here
\ *************************

interpreter
: const equ ;
\ *G Define this as CONSTANT to get interactive access to the
\ ** constants.
Target

ProgF
 sec-base equ Flashbase
Prog

compiler
: ForceUncached ; \ addr -- addr'
target
interpreter
: ForceUncached ; \ addr -- addr'
target
 include %CpuDir%\drivers\29F040B.fth

create EtherAddress \ -- addr
\ *G Holds the Ethernet MAC address (six bytes). Note that you
\ ** must obtain these from the IEEE (www.ieee.org) or from other
\ ** sources.
 $00 c, $10 c, $8B c, $F1 c, $44 c, $20 c,

create IpAddress \ -- addr
\ *G Holds the Ethernet IP address (four bytes).
 192 c, 168 c, 1 c, 251 c, \ assign these as required

$50000000 equ EtherBase \ -- addr
0 equ SMC16? \ -- flag ; true for 16 bit access code
0 equ fastCPU? \ -- n ; true for fast CPU
0 equ smcDiags? \ -- flag ; true for Ethernet diagnostics
0 equ eeprom? \ -- flag ; true for attached EEPROM
1 equ sniff? \ -- flag
 include %CpuDir%\drivers\smc91c9x.fth
 include %HWDir%\hware\Led.fth

: reboot \ --
\ *G Reboot the CPU (equivalent to a hardware reset). This word
\ ** is used by NETBOOT.FTH if present.
 $07 $FFFFAC30 ! begin again
;

http://www.ieee.org

End of compilation

118

\ *** Define these constants carefully! ***
\ These assume that the bottom 128k of Flash is used for the
\ boot code, the middle is unused, and the final 64k is used
\ for data storage.
\ N.B. These constants are affected by the SECTION definitions.
0 equ BootMenu? \ -- n ; nz to compile boot menu
flashbase constant BootFlash \ base address of boot Flash
 \ after mapping
$00020000 constant BootLen \ length of boot Flash
$00000000 constant BootRAM \ addr of boot code after mapping
$01020000 constant userflash \ -- addr ; base address of user flash
$0 constant userflashlen \ -- n ; size of user flash
$01070000 constant dataflash \ -- addr ; base address of data flash
$00010000 constant datalen \ -- n ; size of data flash
\ Where applications are copied to from the user flash
$00010000 constant AppRam \ -- addr ; application area
$00060000 constant Applen \ -- n ; length of application area
1 equ CPU=ARM \ if defined, selects ARM specific code
 include %CpuDir%\drivers\netcode \ Network order and CPU dependent
 include %CpuDir%\drivers\netboot \ Network boot loader

\ PowerNet configuration and setup
 1 equ ethernet? \ nz for Ethernet systems
 0 equ slip? \ nz to include SLIP
 0 equ tftp? \ nz to include TFTP
 1 equ tcp? \ nz for TCP as well as UDP
 1 equ telnet? \ nz to include Telnet
 1 equ echo? \ nz to include Echo
 0 equ snmp? \ nz to include SNMP
 1 equ diags? \ nz to include diagnostics (recommended)
 include %IpStack%\PowerNet.bld

End of compilation
All the files have been compiled. All that is required is library file resolution and some sanity
checks.

\ *********************
\ *S End of compilation
\ *********************

libraries \ to resolve common forward references
 include %CpuDir%\libARM
 include %CommonDir%\library
end-libs

\ ****************
\ *S Sanity checks
\ ****************

decimal

 cr ." Required USER size is : " next-user @ .
 cr ." Current USER allocation is: " up-size .
Next-user @ up-size > [if]
\ *G Check that the USER area is large enough.
 cr ." *** Increase USER area size UP-SIZE in control file ***
 abort
[then]

\ XREF DUP \ where is DUP used
\ XREF-ALL \ full cross reference
\ XREF-UNUSED \ find unused words

\ ********
\ All done
\ ********

An example control file

119

decimal

FINIS

121

20 Converting from v6.0 to v6.2

This chapter details the generic changes between v6.0 and v6.2 and shows you how to minimise
the impact of the changes and how to take advantage of the new features. Note that all these
changes are target source code changes, and you can choose to use your previous code base if you
want to.

Generic I/O
The v6.0 versions of KEY KEY? TYPE EMIT and CR were DEFERred. The new v6.1 code is not
deferred. Instead two new user variables, IPVEC and OPVEC, hold the address of a vector table
which points to the action of these words.

This structure makes it much easier to add new I/O devices.

Multitasker
The v6.2 multitasker is now list driven rather than table driven. This gives faster context
switching. The major differences are indicated below.

The control file uses the equate TASKING? which is set true or false to control compilation. You
do not have to specify the maximum number of tasks.

A task is defined by the word TASK <name> which allocates the resources for a task, and
returns a taskid at run time. This identifier is user instead of the task number by all task words.

The separate task control blocks (TCBs) are no longer required. Instead, the multitasker is
controlled by several (currently 6) cells at the start of the USER area.

The execution action of a task is no longer held in the TCB. Instead, the word INITIATE (xt task
--) replaces ACTIVATE to start the task. For symmetry, the word DEACTIVATE is replaced by
TERMINATE.

The word START: allows the use of nameless task actions.

User variables
From version 6.1 onwards, the word +USER can be used to add a user variable of a given size:

 <size> +USER <name>

The use of +USER avoids any need to know the offset at which the variable starts. The v6.2
kernel code relies on +USER and new application code should use +USER in preference to USER.

Heap
All targets now come with heap code. There are two versions, HEAP16.FTH and HEAP32.FTH,
which use different control block structures. They are optimised for 16 bit and 32 bit targets
respectively. The application word set is the same.

TIMEBASE

122

TIMEBASE
Users with beta test versions of this code should note that it now prevents timerids being recycled
except at ridiculously long intervals.

Build numbering
Now documented and available.

123

21 Moving from v5 to v6/VFX cross
compilers

Introduction
The process of converting code from a version 5 MPE Forth Cross Compiler to the v6 and VFX
compilers is straightforward. The simplest case is for code bases from the 8 and 16 bit v5 targets
that have 16 bit Forth implementations. The stages for these also apply to the 32 bit targets for
which the v6 targets have VFX code generators, but some additional work is also required.

Basic v5 to v6 conversion

Memory definitions
The v6 compiler uses the SECTION model for memory description. The description of memory is
nearly always in the control file (.CTL extension). Change all the lines of the form:

<start> <end+1> ROMBASE <name>

to:

<start> <end> CDATA SECTION <name>

The SECTION model uses different words to return the start and end of a section, so the
definition of equates such as EM will need to be changed. See the new v6 control files in the
CONFIGS directory for examples.

You should define at least one CDATA, IDATA, and UDATA section. The v5 compilers have no
equivalent of a UDATA section, and this can be a dummy definition, but it must exist.

After all the memory definitions have been made, select a default section of each type and put in
CDATA to make CREATE and friends behave like the v5 compilers.

If your processor requires start-up vectors at the end of the kernel code section (e.g. 68HC11), use
the SAVE-ALL directive after the definition of the code section. This forces the compiler to save
the whole section, rather than just from the start to the current end of the code.

EPROM emulator
The EPROM emulator directives have changed, but will not affect you if you are not using an
EPROM emulator with the v5 code.

The first major change is that defining an EPROM emulator does not force any section to use it.
The second is that the IN-EMULATOR directive can be applied to any code section defined by
SECTION or PAGES. It takes a 32-bit offset from the start of the EPROM set, and tells the
compiler to place the output of that section starting at that offset from the beginning of the
EPROM set. This allows a bank switched system to be defined with each page in the bank
occupying a different portion of the EPROM.

Basic v5 to v6 conversion

124

Assembler changes
The use of the word ASSEMBLER to denote the start of a piece of assembly code is no longer
supported in v6 compilers, and the use of FORTH to end it is now deprecated. Convert all pieces
of code that use these words from the form:

ASSEMBLER
 …
FORTH

To:

ASMCODE
 …
END-CODE

Bank switched systems
The bank switching code has changed slightly from v5 to v6, especially in that PAGE-WORD is
now called PAGE-EXECUTE, and the parameter passing may be slightly different. This is likely
to mean that you cannot produce a byte for byte equivalent system unless PAGE-EXECUTE is
headerless.

Conditional compilation
The previous directives IF()ELSE(and)ENDIF are now replaced by their ANS equivalents
[IF] [ELSE] [THEN] and the extension [ENDIF] which behaves just like [THEN].

Conditional compilation may be nested.

The words [DEFINED] <name> and [UNDEFINED] <name> can be used to return a flag if the
target word <name> has already been defined.

The word [REQUIRED] <name> returns true if a word has been forward referenced but has not
yet been defined. This is used with the LIBRARIES and END-LIBS directives to allow you to
make files whose contents are only compiled if the words have been referenced but are currently
not defined.

Interpreted calculations
These notes only apply to 16-bit targets.

The v6 compilers all use a 32-bit host Forth, whereas the v5 compilers for 16-bit targets used a
16-bit host Forth. Some calculations performed at compile time, such as baud rate calculations,
relied on truncation of the 16-bit results. By default, the v6 compilers for 16-bit targets treat
numbers in this way. However, the interpreted integer math operators are all 32-bit. If your
calculations rely on truncation of 16-bit results, it is better to redo them using 32-bit arithmetic
and to use the directives HOST-MATHS and TARGET-MATHS around the calculation so that large
literals are not truncated. This often simplifies baud rate calculations where clock frequencies
need a 32-bit value, and were represented as double numbers in the v5 code.

Startup code
The V6 compiler directive MAKE-TURNKEY <name> places the xt of <name> at label CLD1.
The startup code executes this word. The v5 label STRTUP is no longer needed, and the v6 entry
code should be used in place of the v5 code.

Moving from v5 to v6/VFX cross compilers

125

In addition, the structure of the initialised data table header has changed to permit multiple
IDATA sections and banked RAM.

Testing
Unless you have used some particularly clever defining words, the stages above are all that is
needed to convert direct threaded 16-bit Forths from v5 to v6 compilers.

When MPE converts target code from v5, we rename the image files (.IMG extension) as .IMO
files, and then ensure that the new IMG file is byte-for-byte compatible with the old one. The
DOS FC file utility can used to test this:

FC <image>.IMG <image>.IMO /B

We suggest that you copy your working target code directory to a new one, and perform the
conversion until you obtain byte-for-byte equivalence of your application.

Converting from DTC to STC and VFX compilers
The version 5 compilers produce what is termed direct threaded code (DTC), which is a particular
implementation strategy for Forth. The 32-bit v6, some 16-bit v6, and the optimising VFX
compilers produce subroutine threaded code (STC) with inlining. The VFX compilers also
include the VFX optimising code generators that provide a substantial improvement in
performance over simple STC code generation and very little change in code density and
sometimes an improvement that depends heavily on coding style.

The v6 targets are also based on an ANS Forth model, rather than the Forth-83 model used with
the v5 target code. Converting from Forth-83 to ANS is covered in a separate chapter of the
manual.

Strategy
In order to convert an application from DTC to STC, it is probably easier to start from the v6 code
base, as this will provide an easier long term upgrade path. The recommended stages are:

1) Generate a new v6 kernel for your target

2) Build a conversion harness that provides any missing words

3) Apply all the changes discussed for basic v5 to v6 conversion

4) Convert all code definitions to the new register model used by v6. See the assembler chapter
in the accompanying processor specific manual for details. This usually involves switching
the data and return stack pointers, and preserving the frame stack pointer if it is used.
Compile and test each file in turn. You will probably need to revisit stage 2.

5) Compile your application as a whole. At this stage, you will probably have to go back round
through stage 2. Repeat this cycle until you get a clean compile.

6) Test your application as a whole.

Some additional considerations are:

• Is the code generator good enough that you can remove many code definitions in favour of
high level Forth definitions, so enhancing maintainability and portability?

• Can coded interrupt routines now be rewritten in high level Forth for maintainability and
portability?

Converting from DTC to STC and VFX compilers

126

COMPILE, and ,
The word COMPILE, (xt --) compiles the code that calls a definition. This is the only portable
way to generate a call to a word. Because of the change from DTC to STC and optimised code,
you cannot predict what code will be generated. Any use of the Forth word , (comma) to lay code
rather than data must be replaced by COMPILE,.

: MYMAGIC
 …
 [‘] FOO , [‘] BAR ,
 …
; IMMEDIATE

should be relaced by

: MYMAGIC
 …
 POSTPONE FOO POSTPONE BAR
 …
; IMMEDIATE

or

: MYMAGIC
 …
 [‘] FOO COMPILE, [‘] BAR COMPILE,
 …
; IMMEDIATE

Vector tables
In direct threaded code, you could lay down the address of a Forth word by turning the compiler
on. Two forms of this could be found:

CREATE TABLE
] A B C D [

L: MYLABEL
] FOO [

: BAR
 … MYLABEL @ EXECUTE … ;

This worked because MPE’s DTC code uses the address of the Forth word as the execution token
(xt). However, this is not a portable technique, and fails if the xt is not cell sized (e.g. the MPE 32
bit 8086/186 target uses a 16 bit xt) or generates native code (e.g. CALL FOO). The
recommended portable technique is:

CREATE TABLE
 ' A ,
 ' B ,
 ' C ,
 ' D ,

L: MYLABEL
 ' FOO ,

or:

L: MYLABEL
 0 ,
 …
 ' FOO MYLABEL ! \ Avoids forward reference

Moving from v5 to v6/VFX cross compilers

127

: BAR
 … MYLABEL @ EXECUTE …
;

Choice of word names – ANS and Forth-83
The ANS Forth committee (in which MPE participated) were careful not to make changes that
break existing code. Thus some words whose function varied according to vendor have had name
changes. The v6 compilers still generate the MPE versions, but also include the ANS versions.
For long term portability of both code and programmers, it is suggested that new code use the
ANS versions. The help documentation includes an ANS draft specification that is technically
identical to the ratified ANS/ISO Forth specification. Note that this is a standards document, and
so is not drafted in the same way as the glossary for a user manual is drafted.

For more details see the chapter on converting Forth-83 code to ANS.

CREATE CDATA IDATA UDATA and sections
When a section name is interpreted, its action is to make that section the current section for
CREATE and words derived from CREATE. CREATE will return the next address in the selected
section. The following words are also affected:

, ALIGN ALIGNED ALLOT C, HERE W, UNUSED

The result is that if you have three sections ROM (CDATA), IRAM (IDATA), and URAM
(UDATA) you must be careful to select the right one before using CREATE. The following
sequence has different effects according to which section is selected:

CREATE FOO
 5 , 6 , 7 ,

ROM CREATE FOO \ FOO points into ROM
 5 , 6 , 7 , \ table cannot be changed

IRAM CREATE FOO \ FOO points into IRAM
 5 , 6 , 7 , \ table is initialised

\ and can be changed

URAM CREATE FOO \ FOO points into URAM
 5 , 6 , 7 , \ table is invalid!

\ URAM values exist only at
\ compile time

If you have several sections of a type, and all you wanted to do was to select the current section of
that type, you could use CDATA, IDATA or UDATA instead.

As a result of these ANS changes, the technique used in version 5 compilers for selecting between
ROM and RAM data is neither desirable nor efficient. But it will still work if CDATA has been
selected. You may find it worthwhile to rewrite defining words that used to use both HERE
THERE, ALLOT and ALLOT-RAM. Overall, MPE has found the new notation to be far more
flexible, and it has been well received.

COMPILER, INTERPRETER, HOST, TARGET and ASSEMBLER
In both version 5 and the version 6 and VFX compilers, the use of defining words is mostly
handled automatically by the compiler.

For those cases where it is not handled automatically, or because there are compile time words
which are not desirable or needed in the target code, a new mechanism has been provided for

Umbilical Forth

128

adding words into the compiler. The actions of these directives are discussed in more detail
elsewhere in the manual, these examples are more informal.

The directive TARGET is used to return to cross compilation into the target, and should be used to
terminate any of the other directives.

The directive INTERPRETER compiles new definitions into the cross interpreter, and uses target
referring versions of words such as @ and !. Use TARGET to return to cross compilation. The
following example can be used to add a defining word (that cannot be handled automatically) to
the system without having a target version. All the code after DOES> is compiled into the target.

INTERPRETER

: SEMAPHORE \ -- ; -- addr [child]
 IDATA
 CREATE
 0 , \ counter
 0 , \ task id
 CDATA
 DOES>
;

TARGET

The directive COMPILER compiles new definitions into the cross compiler, creating a word
which is only found at compile time, in other words it is IMMEDIATE but is not found during
interpretation.

COMPILER

: !++ \ n addr – addr’ ; store and step address
 TUCK ! CELL +
;

TARGET

The effect of this is to add a new word to the compiler, which can reference all the other compiler
words. This is effectively a macro. Note that any reference inside such a word to structure words
like IF and ENDIF will be taken as references to the compiler’s versions of IF and ENDIF, and
not to the normal Forth versions.

The directive HOST is used to add words to the underlying Forth system. It is useful when adding
words that may be used as factors of other words, and where any variables may only exist during
compilation.

HOST

: FOO …. ;

TARGET

The directive ASSEMBLER is used to add macros to the cross assembler.

ASSEMBLER

: bar … ;

TARGET

Umbilical Forth
The Umbilical Forth protocol has been extended and modified slightly. The TARGEND.FTH file
used must be the one supplied with the v6 compiler if you want interactive testing. You will not

Moving from v5 to v6/VFX cross compilers

129

be able to produce a byte for byte equivalent file from a v6 compiler that will run on your target
with the v6 compiler, but you should be able to test it with the v5 compiler. Recompiling your
code with the old TARGEND file on the v6 compiler should produce a file identical with that
produced by the v5 compiler, and so you should be able to run the code and interact with it using
the v5 compiler.

The v6 TARGEND code also has facilities for using the multitasker with Umbilical Forth. This is
controlled by the conditional compilation facilities.

FLOATS and REALS
The word FLOATS used to enable the floating point package conflicts with an ANS word. Its
function is replaced by REALS. The package can be turned off by INTEGERS.

131

22 Converting from Forth-83 to ANS

This chapter is not a complete guide to converting applications to ANS standard Forth. It
summarises some of the changes that are likely to affect your applications. A copy of the ANS
specification is supplied with the cross compiler.

Where Forth-83 words and MPE extensions do not conflict with the standard, they have been
retained in the cross compiler. Compatibility with previous code generated by the MPE Forth
cross compiler v5 (and v4 in most cases) has been retained to the level that v5 code for the 16 bit
DTC targets can be used with only minor changes to produce byte for byte identical output.

Choice of word names – ANS and Forth-83
The ANS Forth committee (on which MPE acted as observers) were careful not to make changes
that break existing code. Thus some words whose function varied according to vendor have had
name changes. The v6 compilers still generate the old MPE words, but also include the ANS
versions. For long term portability of both code and programmers, it is suggested that new code
use the ANS versions. The help system includes an ANS draft specification that is technically
identical to the ratified ANS/ISO Forth specification. Note that this is a standards document, and
so is not drafted in the same way as the glossary for a user manual is drafted.

INVERT NOT and 0=
Because there was little commonality between Forth systems in the semantics of the word NOT,
it has been excluded from the standard. Some vendors, including MPE, use it to mean a bitwise
inversion (logical NOT), and others use it to mean the inversion of a flag (Boolean NOT, or 0=).
The ANS word for a logical NOT is INVERT.

EXPECT SPAN and ACCEPT
Because the Forth-83 EXPECT does not return the number of bytes actually read, Forth-83
specifies a (USER) variable SPAN to hold this. ANS Forth defines a word ACCEPT which returns
the length, rendering SPAN redundant. EXPECT and SPAN are declared to be obsolete, and will
be removed during the next revision process, which started at the time this manual was in
preparation.

S” and C”
Traditionally, Forth has represented strings as a count byte followed by that many characters, in
the same way as Pascal has. With the increasing use of zero terminated strings in some operating
systems, and the increasing use of two-byte (Unicode) and multi-byte character sets, this
description of strings has become less portable. Consequently the ANS committee accepted the
idea that strings be represented as address and length pairs. For the most part, it is still true that a
character usually has to mean a byte, but in the next revision the ANS standard will be modified
to make internationalisation easier to handle. In the meantime, it is recommended that new code
be written using address/length pairs.

S” <string>” compiles a string that returns an address/length pair at run time, whereas C”
<string>” compiles a string that returns the address of the count byte. The original MPE
definition “” still exists in the cross compiler, but is not recommended for new code.

Division

132

ASCII CHAR and [CHAR]
The MPE word ASCII is state smart. When interpreted it returns the literal value of the following
ASCII character. When compiled, it compiles the literal. Because state smart words are
increasingly perceived as being capable of causing bugs that are hard to find, the interpretation
behaviour is provided by the ANS word CHAR, and the compile time behaviour is provided by the
ANS word [CHAR].

CHAR A CONSTANT FOO

: BAR
 … [CHAR] A EMIT …
;

LSHIFT and RSHIFT
The MPE words <<N and >>N are replaced by LSHIFT and RSHIFT which have the same stack
action:

x1 u -- x2

FORGET and MARKER
The time-honoured word FORGET <name> is now deprecated because of the variation in
implementations and the portability issues raised by it. The ANS standard specifies the defining
word MARKER <name> such that when <name> is executed, the dictionary is restored to its state
before <name> was created by MARKER.

MARKER FOO \ create a dictionary marker

…

FOO \ restores state, deleting FOO

Division
The Forth-83 standard introduced floored division. Whatever its merits, this has incurred a
performance penalty on most CPUs. In ANS Forth the implementer may choose, and MPE has
chosen to return to the usual symmetric division for / and words derived from it.

In order to retain the ability to perform floored division, the word M/MOD has been replaced by
two words, SM/REM (symmetric) and FM/MOD (floored).

CREATE and friends
Section E.5 of the ANS specification suggests that, for embedded systems, CREATE be made
sensitive to the current memory section. This makes it much easier to control where data is laid
down, and removes the need for new words to refer to each section of memory. This proposal
caused much controversy, but some vendors have informally agreed and used a common notation,
which is the basis of the MPE SECTION notation.

When a section name is interpreted, its action is to make that section the current section for
CREATE and words derived from CREATE. CREATE will return the next address in the selected
section, with the following words also being affected:

, ALIGN ALIGNED ALLOT C, HERE W, UNUSED

Converting from Forth-83 to ANS

133

The result is that if you have three sections ROM (CDATA), IRAM (IDATA), and URAM (UDATA)
you must be careful to select the right one before using CREATE. The following sequence has
different effects according to which section is selected:

CREATE FOO
 5 , 6 , 7 ,

ROM CREATE FOO \ FOO points into ROM
 5 , 6 , 7 , \ table cannot be changed

IRAM CREATE FOO \ FOO points into IRAM
 5 , 6 , 7 , \ table is initialised

\ and can be changed

URAM CREATE FOO \ FOO points into URAM
 5 , 6 , 7 , \ table is invalid, URAM values

\ exist only at compile time

If you have several sections of a type, and all you wanted to do was to select the current section of
that type, you could use CDATA, IDATA or UDATA instead. Note that the CDATA IDATA and
UDATA directives are not part of the original proposal in section E.5 of the ANS specification.

As a result of these ANS changes, the technique used in version 5 compilers for selecting between
ROM and RAM data is neither desirable nor efficient. But it will still work if CDATA has been
selected. You may find it worthwhile to rewrite defining words that used to use both HERE,
THERE, ALLOT and ALLOT-RAM. Overall, MPE has found the new notation to be far more
flexible, and it has been well received.

>BODY and friends
Because of the number of implementation techniques, and because of the impact of embedded
systems, ANS Forth specifies that >BODY is only standard when applied to the children of
CREATE, and to words derived from it.

FLOATS and REALS
The word FLOATS used in v5 to enable the floating point package conflicts with an ANS word.
Its function is replaced by REALS. The package can be turned off by INTEGERS.

CATCH and THROW
Before the ANS specification, Forth lacked a portable nested exception handler. The design of
CATCH and THROW is excellent, and MPE recommends that they be used to replace the use of
ABORT and ABORT”, which can if necessary be defined in terms of CATCH and THROW.

Description
The following description of the ANS words CATCH and THROW was written by Mitch Bradley:

CATCH is very similar to EXECUTE except that it saves the stack pointers before EXECUTEing
the guarded word, removes the saved pointers afterwards, and returns a flag indicating whether or
not the guarded word completed normally. In the same way that a Forth word cannot legally play
with anything that its caller may have put on the return stack, and also is unaffected by how its
caller uses the return stack, a word guarded by CATCH is oblivious to the fact that CATCH has
put items on the return stack.

Here's the implementation of CATCH and THROW in a mixture of Forth and pseudo- code:

VARIABLE HANDLER \ Most recent error frame

CATCH and THROW

134

: CATCH \ cfa -- 0|error-code
 <push parameter stack pointer on to return stack>
 <push contents of HANDLER on to return stack>
 <set HANDLER to current return stack pointer>
 EXECUTE
 <pop return stack into HANDLER>
 <pop & drop saved parameter stack ptr from return stack>
 0
;

: THROW \ error-code --
 ?DUP
 IF
 <set return stack pointer to contents of HANDLER>
 <pop return stack into HANDLER>
 <pop saved parameter stack pointer from return stack>
 <back into the parameter stack pointer>
 <return error-code>
 THEN
;

The description as written implies the existence of a parameter stack pointer and a return stack
pointer. That is actually an implementation detail. The parameter stack pointer need not actually
exist; all that is necessary is the ability to restore the parameter stack to a known depth. That can
be done in a completely standard way, using DEPTH, DROP, and DUP. Likewise, the return stack
pointer need not explicitly exist; all that is necessary is the ability to remove things from the top
of the return stack until its depth is the same as a previously-remembered depth. This can't be
portably implemented in high level, but I neither know of nor can I conceive of a system without
some straightforward way of doing so.

Sample implementation
In most Forth systems, the following code will work:

VARIABLE HANDLER \ Most recent exception handler

: CATCH \ execution-token -- error# | 0
 (token) \ Return address already on stack
 SP@ >R (token) \ Save data stack pointer
 HANDLER @ >R (token) \ Previous handler
 RP@ HANDLER ! (token) \ Set current handler to this one
 EXECUTE () \ Execute the word passed
 R> HANDLER ! () \ Restore previous handler
 R> DROP () \ Discard saved stack pointer
 0 (0) \ Signify normal completion
;

: THROW \ ?? error#|0 -- ?? error# ;
\ Returns in saved context

 ?DUP
 IF
 HANDLER @ RP! (err#) \ Back to saved R. stack context
 R> HANDLER ! (err#) \ Restore previous handler
 (err#) \ Remember error# on return stack
 (err#) \ before changing data stack ptr.
 R> SWAP >R (saved-sp) \ err# is on return stack
 SP! (token) \ switch stacks back
 DROP ()
 R> (err#) \ Change stack pointer
 THEN
\ This return will return to the caller of catch, because
\ the return stack has been restored to the state that
\ existed when CATCH began execution.
;

Note the following features:

• CATCH and THROW do not restrict the use of the return stack

Converting from Forth-83 to ANS

135

• They are neither IMMEDIATE nor "state-smart"; they can be used interactively, compiled into
colon definitions, or POSTPONEd without strangeness.

• They do not introduce any new syntactic control structures (i.e. words that must be lexically
"paired" like IF and THEN)

To handle the case where there is no CATCH to handle a THROW, it is wise to CATCH the main
loop of the application. A different solution, if you don't want to modify the loop, is to add this
line to THROW:

HANDLER @ 0= ABORT" Uncaught THROW"

Stack rules for CATCH and THROW
Let's suppose that we have the word FOO that we wish to "guard" with CATCH. FOO's stack
diagram looks like:

FOO \ a b c -- d

Here's how to CATCH it:

<prepare argument for FOO> (a b c)
['] FOO CATCH (x1 x2 x3)
IF
 <some code to execute if FOO caused a THROW>
ELSE (d)
 <some code to execute if FOO completed normally>
THEN

Note that, in the case where CATCH returns non-zero (i.e. a THROW occurred), the stack depth
(denoted by the presence of x1,x2,x3) is the same as before FOO executed, but the actual contents
of those 3 stack items is undefined. N.B. items on the stack UNDERNEATH those 3 items should
not be affected, unless the stack diagram for FOO, showing 3 inputs, does not truly represent the
number of stack items potentially modified by FOO.

In practice, about the only thing that you can do with those "dummy" stack items x1,x2,x3 is to
DROP them. It is important, however, that their number be accurately known, so that you can
know how many items to DROP. CATCH and THROW are completely predictable in this regard;
THROW restores the stack depth to the same depth that existed just prior to the execution of FOO,
and the number of stack items that are potentially garbage is the number of inputs to FOO.

Some more features
THROW can return any non-zero number to the CATCH point. This allows for selective error
handling. A good way to create unique named error codes is with VARIABLEs as they return
unique addresses without having to worry about which number to use, e.g.

VARIABLE ERROR1
VARIABLE ERROR2

creates 2 words, each of which returns a different unique number. For selective error handling, it
is convenient to follow CATCH with a CASE statement instead of an IF. Here's a more
complicated example:

BEGIN
 ['] FOO CATCH
 CASE
 0 OF ." Success; continuing" TRUE ENDOF
 ERROR1 OF ." Error #1; continuing" TRUE ENDOF
 ERROR2 OF ." Error #2; retrying" FALSE ENDOF
 (default) ." Propagating error to another level" THROW

POSTPONE

136

 ENDCASE (retry?)
UNTIL

Note the use of THROW in the default branch. After CATCH has returned, with either success or
failure, the error handler context that it created on the return stack has been removed, so any
successive THROWs will transfer control to a CATCH handler at a higher level.

The CATCH and THROW scheme appealed to people because it is simpler than most other
schemes, as powerful as any (and more powerful than most), is easy to implement, introduces no
new syntax, has no separate compiling behaviour, and uses the minimum possible number of
words (2).

POSTPONE
This word was introduced to delay execution of a word without having to know whether the word
is immediate or not. Inside a colon definition such as BAR below

: BAR
 … POSTPONE FOO …
;

will cause FOO to execute when BAR executes if FOO is IMMEDIATE, or if FOO is non-
IMMEDIATE, FOO will be compiled when BAR executes. In most cases this is what was required,
and the words COMPILE and [COMPILE] can be eliminated. The advantage of this is that the
user does not need to know whether the target word is IMMEDIATE or not.

COMPILE, and ,
The word COMPILE, (xt --) compiles the code that calls a definition. This is the only portable
way to generate a call to a word. Because of the change from DTC to STC and optimised code,
you cannot predict what code will be generated. Any use of the Forth word , (comma) to lay code
rather than data must be replaced by COMPILE,.

: MYMAGIC
 …
 [‘] FOO , [‘] BAR ,
 …
; IMMEDIATE

should be relaced by

: MYMAGIC
 …
 POSTPONE FOO POSTPONE BAR
 …
; IMMEDIATE

or

: MYMAGIC
 …
 [‘] FOO COMPILE, [‘] BAR COMPILE,
 …
; IMMEDIATE

137

23 IRTC and Stamp compiler differences

IRTC compilers
The IRTC Forth cross compilers are based on the same source code as the Forth 6 compilers
except for the AVR compiler, but with the following restrictions:

Only an Umbilical Forth is provided. An interactive standalone Forth target is not provided.

There is no expansion beyond 64k of code, i.e. the BANK and PAGES directives are not provided.

Floating point target code is not provided.

Compiler source code is not provided.

Forth Stamp compilers
Versions supplied with the Forth Stamp boards are further limited:

• Code size is limited on the Forth Stamp versions to the size of the internal Flash on the Forth
Stamp.

• No multitasker is provided on the Forth Stamp versions

• The XREF tools are removed on the Forth Stamp versions

Upgrades are available from the IRTC Forth Stamp version to the unlimited IRTC version and to
the full Forth 6 compiler.

Late documentation on all cross compilers is in the DOCS documentation directory. The file
RELEASE.XC6.TXT describes late changes to the generic compiler, while RELEASE.xxx.TXT
describes late changes on the CPU specific code.

139

24 Technical glossary

Compiler log When each label, variable, constant or colon defintition is cross-compiled the
cross-compiler displays a dot or information about the compiled item.

Control file A file which is loaded by the cross-compiler. It contains directives to the cross-
compiler and the names of any additional files to be compiled.

Cross-compiler A program which generates executable code for a processor different to that on
which it is running.

Dictionary A list of words defined in a Forth system

Event A non-regular occurence. In the multitasker an event is used to trigger a task.

Glossary A list of forth words with their pronunciation, stack effect and a brief description of
their action.

Host The platform the cross-compiler runs on. Normally a PC.

Image file The output of the cross-compiler. It has the extension .IMG by default.

Initialised RAM See RAM table.

Kernel The code required for interactive Forth.

Memory map A description of the start and end of ROM and RAM in memory

Multitasker A program which allows a processor to run more than one task by continuously
switching between different tasks.

Paged target A system where there is more memory available that can be addressed at one time.
Areas of memory can be switched into an addressable range, so simulating a larger address space
than is physically possible.

RAM table An area of memory in the ROM that is copied to RAM at startup. It contains any
initial values of variables.

ROM target forth A Forth which works on a ROM/RAM system as opposed to a RAM system.

ROM/RAM target A target with code executed out of ROM and data kept in RAM.

Scheduler The part of a multitasker which switches to the next task

Screen file A type of file which Forth source was originally developed in.

Serial line driver The words which interface the target code to the serial line. These are device
dependant whereas the rest of the kernel is generic.

Symbol table Used and generated by the cross-compiler. It contains information on each item
compiled.

Target The processor or board that the cross-compiler is generating code for.

Target mode One of XShell's modes that acts as a dumb terminal. It lets you communicate with
your target board.

Forth Stamp compilers

140

Task In a multitasking environment, a task is a stand-alone program that appears to run
simultaneously with other tasks.

Task control block Where information about a task is kept. It is used by the scheduler to switch
to the next task.

TCB See task control block

UART Universal Asynchronous Receiver/Transmitter - Sends and receives serial data.

Umbilical Forth A reduced Forth designed for single chip targets. Uses a message passing
system to commicate with the host.

Unresolved references Any words which are used in the source code but are not defined.

Vocabulary An independently linked subset of the dictionary

141

25 Error messages

Error messages are kept in the file X*.ERR in the COMPILER directory, where the '*' denotes the
processor type. Error numbers start at zero and each error number refers to a line in the file,
starting at line zero.

The error messages are listed in different categories:

• general Forth errors

• system messages

• assembler errors (these are listed in the accompanying processor specific manual)

• binary module errors

• source file errors

• operating system errors

• text file errors

General Forth errors 0..15
These are the basic errors of a Forth system.

Error 0 - is undefined. The word is not in the dictionary search order specified, or it was
misspelled.

Error 1 - empty stack, the last operation caused a stack underflow. Usually caused by using the
wrong number of parameters to a word.

Error 2 - dictionary full, there is no room for more definitions. This error should not arise within
the cross-compiler unless you are extending it.

Error 3 - has incorrect address mode.

Error 4 - is redefined - the word's name has been used before. This is only a warning, not a proper
error.

Error 5 - is undefined. See error 0.

Error 7 - full stack, there are too many items on the stack. Usually caused by a stack fault in a
loop.

Error 8 - cannot open USING file. Incorrect file name? Wrong directory?

Error 9 - cannot compile from screen zero.

Error 12 - uninitialised deferred word.

Error 13 - BASE must be DECIMAL.

Error 14 - missing decimal point. Only found when using floating-point extensions.

System messages 16..31

142

System messages 16..31
These are error messages caused by mistreating Forth.

Error 17 - compilation only, use in definition, not when executing. Usually happens when a ; is
missing from a previous word.

Error 18 - execution only - not allowed during compilation. Usually because a [COMPILE] is
missing in front of an immediate word.

Error 19 - conditionals not paired - overlapping control structures.

Error 20 - definition not finished - a control structure needs correction.

Error 21 - in protected dictionary - the word is below the address in FENCE. Not found in the
cross-compiler except when modifying the cross-compiler, or in bizarre circumstances with
Umbilical Forth.

Error 22 - use only when loading, illegal from the keyboard

Error 23 - block number out of range 0..32767 (0..7FFFh).

Error 24 - reset vocabularies - CONTEXT must be the same as CURRENT when using FORGET.

Error 25 - do not use when loading, only from the keyboard.

Error 26 - initialised RAM size exceeded. Often happens when arrays are defined before
variables. To reduce the size of this table, all initialised or preset RAM should be defined before
arrays are used.

Error 27 - forward references are illegal between CREATE ... DOES> and I: ... ; for the cross-
compiler.

Error 28 - word between CREATE ... DOES> or I: ... ; is not in host FORTH vocabulary.

Error 29 - illegal internal value - contact MPE.

Assembler errors 32..47, 144...159
These are listed in the accompanying processor specific manual.

Binary module errors 48..63
Error 49 - public words table full - max 32 (decimal) words/module.

Error 50 - module number out of range 0..31 (decimal).

Error 51 - slot already occupied - slot must be empty before entry is made.

Error 52 - not enough memory.

Error 53 - can't load module file - DOS can't find it, or can't read it.

Error 54 - can't free memory - DOS won't let go - see DOS function 49H.

Error 55 - module not present - requested module is not resident.

Error 56 - external references table full - max 32 (decimal) words/module.

Error messages

143

Error 57 - unresolved external reference - use RESOLVE-ALL before execution.

Error 62 - illegal operation in slave module.

Error 63 - illegal operation in master module.

Source file errors 64..79
These errors are given by the screen file handlers.

Error 65 - no screen file open. Often a result of a previous operation failing to open or reopen a
file.

Error 66 - screen file seek error.

Error 67 - screen file write error.

Error 68 - path not found. Usually because the file or path name has been misspelled.

Error 69 - starting screen number less than ending screen number.

Operating system errors 80..112
Error 81 - invalid function number - OS doesn't know what to do.

Error 82 - file not found - wrong directory or doesn't exist.

Error 83 - path not found - incorrect spelling? - device not installed?

Error 84 - no handle available - all handles are in use.

Error 85 - access denied - e.g. attempt to write to read-only file.

Error 86 - invalid handle - file/path not open?

Error 87 - memory control blocks destroyed.

Error 88 - insufficient memory.

Error 89 - invalid memory block address - OS did not allocate this segment.

Error 90 - invalid environment - previous SET or PATH command bad.

Error 91 - invalid format - ask Microsoft what this one means.

Error 92 - invalid access code.

Error 93 - invalid data.

Error 95 - invalid drive specification.

Error 96 - attempt to remove current directory.

Error 97 - not same device.

Error 98 - no more files to be found.

Text file errors 112..127

144

Text file errors 112..127
These errors are issued by the text file handler.

Error 113 - cannot allocate memory. Each nested file needs about 9k bytes.

Error 114 - cannot free memory.

Error 115 - cannot open file.

Error 116 - cannot close file.

Error 117 - cannot seek to byte requested in file.

Error 118 - read-path error. Disk cannot be read, normally seen only from floppy disks, or failing
hard discs.

Error 119 - file nesting depth reached - cannot open another file. You have nested files too deep.

Error 120 - file de-nesting error.

Error 121 - start page number greater than last page number in file.

Overlay load errors 128..143
Error 129 - cannot close overlay file.

Error 130 - overlay file read error.

Error 131 - overlay file write error.

Error 132 - overlay file open error - does file exist?

Error 133 - overlay produced on different version of ProForth.

Error 134 - overlay too big.

Error 135 - overlay must be compiled twice!

Error 136 - overlay length is mod. 256, insert `1 ALLOT' & recompile.

Error 137 - overlay must be longer than 256 bytes.

Error 138 - overlay copies must be the same length.

Error 139 - cannot create overlay file.

145

26 Further information

MPE courses
MicroProcessor Engineering runs the following courses:

Architectual introduction to Forth
A two-day course for those with little or no experience of Forth. It provides an introduction to the
architecture of a Forth system. It shows, by practical example, how software can be coded, tested
and debugged, quickly and efficiently, using Forth's interactive abilities.

Embedded software for hardware engineers
A three-day course for hardware engineers needing to construct real-time embedded applications
using Forth cross-compilers. Includes multitasking and writing interrupt handlers.

Quick Start Course
A very hands-on tailored course on your site using your own hardware, and including installation
of a target Forth on your hardware, approaches to writing device drivers, and and whatever else
you need. The course is usually three days long.

MPE consultancy
MPE is available for consultancy covering all aspects of Forth and real-time software and
hardware development. Apart from our Forth experience, MPE has considerable knowledge of
embedded hardware design. Our software orbits the earth, will land on comets, runs construction
companies, laundries, vending machines, payment terminals, access control systems, theatre and
concert rigging, anaesthetic ventilators, art installations, trains and newspaper presses. We have
done projects ranging from a few days to major international projects covering several years and
continents and many countries.

Projects at MPE cover topics such as custom compiler developments, including language
extensions such as SNMP, and new CPU implementations, custom hardware design and compiler
installations, a portable binary system for smart card payment systems, machine controllers,
virtual memory systems, and code porting to new hardware or operating systems. We can operate
to fised price and fixed term contracts.

We have a range of outside consultants covering but not limited to:

Communications protocols

Windows device drivers

All aspects of Linux

Safety critical systems

Project management (including international)

Recommended reading

146

Recommended reading
For an introduction to Forth:

“Starting Forth” by Leo Brodie

“Thinking Forth” by Leo Brodie

For more experienced Forth programmers:

“Object Oriented Forth” by Dick Pountain

“Scientific Forth” by Julian Noble

Other miscellaneous Forth books:

“Forth Applications in Engineering and Industry” by John Matthews

“Stack Machines: The New Wave” by Philip J Koopman Jr

All of these books can be supplied by MPE.

147

27 Index

#TASKS, 49
#TIMERS, 54
(EMIT), 16
(INIT), 105
(KEY), 16, 27
(KEY?), 17, 27
,, 96, 126, 127, 136
.HEAP, 58
/COLS, 89
/IDE, 88
/PAGEOFF, 88
/PAUSEOFF, 88
?EVENT, 50
[CHAR], 132
[DEFINED], 81
[ELSE], 81
[ENDIF], 81
[I, 45, 52
[IF], 81
[REQUIRED], 82
[UNDEFINED], 81
+USER, 42, 121
+XREFS, 36, 87
->, 99
0=, 131
2VARIABLE, 98
ABORT, 106
ACCEPT, 131
ACTIVATE, 50
ADDR, 97, 99
AFTER, 55
AIDE, 3
AIDE file server, 72
ALIGN, 96, 127
ALIGNED, 96, 127
ALLOCATE, 58
ALLOT, 96, 97, 127
ASCII, 132
ASSEMBLER, 101, 127
AUTOEXEC.BAT, 111
Automatic build numbering, 104
BANK, 77, 78, 137

bank switched, 77
BIN-DOWN, 70, 72
books, 146
BUFFER:, 76, 98
BUILD$,, 104
BUILDFILE, 104
C,, 96, 127
C”, 131
CATCH, 133
CCITT, 104
CDATA, 14, 24, 75, 96, 127
CHAR, 132
CHECKSUM, 103
Checksums, 103
CHERE, 97
CLEAR-EVENT, 45
CLR-EVENT-RUN, 50
CLS, 72
COLD, 106
COMPILE,, 126, 136
COMPILER, 86, 101, 127
COMPILERS, 88, 92
constants, 36
control file, 13, 23
CORG, 97
courses, 145
CR, 39, 121
CRC16, 104
CREATE, 127, 132
cross compiler log, 19, 29
CROSS-COMPILE, 9, 75
D>F, 62
DASM, 87
DEACTIVATE, 50, 121
DEFINE-EMULTOR, 110
Defining words, 101
DEG>RAD, 62
DEGREES, 62
DI, 45, 50
DINT, 61
directory structure, 3
DIS, 87

Index

148

Division, 132
DNORM, 62
DO-TIMERS, 54
download, 110
Downloading, 19, 30
DP, 97
E., 63
EI, 45, 50
EMIT, 16, 39, 105, 121
emulator driver, 111
END-LIBS, 82
END-STRUCT, 95
EPROM emulator, 1, 5, 110
EPROM emulator,, 25
equates, 36
EQUATES, 88
Error messages, 141
ESCAPE, 88
EVENT?, 50
events, 44

Initialising, 44
Triggering, 44

EVERY, 55
EXIT, 85
EXPECT, 131
EXPIRED, 55
Extending the compiler, 101
EXTERNAL, 35
F-, 63
F!, 63
F#, 64
F#IN, 64
F*, 63
F., 63
F/, 63
F@, 64
F+, 63
F<, 63
F<0, 63
F=, 63
F>, 64
F>0, 64
F>D, 61, 64
F>S, 61, 64
F0=, 63
F10^X, 64
FABS, 64

FACOS, 64
Factoring, 35
FARRAY, 64
FASIN, 65
FATAN, 65
FCONSTANT, 60, 65
FCOS, 65
FDROP, 65
FDUP, 65
FE^X, 65
FFRAC, 65
FIELD, 95
FIELD-TYPE, 95
FILE:, 18, 29
FINIS, 75
FINT, 65
FLITERAL, 65
FLN, 65
floating point, 59
FLOATS, 61, 133
FLOG, 66
FMAX, 66
FMIN, 66
FNEGATE, 66
FNUMBER?, 66
FORGET, 132
FOVER, 66
F-PACK, 61
FREE, 58
FROM-FILE, 9
FROT, 66
FSEPARATE, 66
FSIGN, 66
FSIN, 66
FSQR, 66
FSWAP, 66
FTAN, 67
FVARIABLE, 59, 67
FX^N, 67
FX^Y, 67
Generic I/O, 39
GET, 69, 72
GET-MESSAGE, 44, 50
HALT, 43, 51
HEAP16, 57
HEAP32, 57
HEAPOK?, 58

Index

149

HELP, 88, 92
HERE, 97, 127
HEX-DOWN, 72
HOST, 101, 127
HOST&TARGET, 102
HOST-MATH, 80
I], 46, 52
IDATA, 14, 24, 75, 96, 127
IDE, 9
IHERE, 97
IMMEDIATE words, 103
INCLUDE, 9, 69, 73
IN-EMULATOR, 76, 111
INIT-HEAP, 57, 58
initialised RAM, 14
INITIATE, 43, 50, 51, 121
INIT-IDATA?, 105
INIT-MULTI, 41, 48, 51
INIT-RAM, 105
INIT-SER, 16, 26
INLINE-ALWAYS, 86
INLINE-NEVER, 85
INLINING, 85
installation, 1
INTEGERS, 67
INTERACTIVE, 36, 87
INTERNAL, 35
INTERPRETER, 101, 127
INTERPRETERS, 88, 92
INVERT, 131
IORG, 97
IPVEC, 39, 121
IRTC, 137
KEY, 16, 17, 27, 39, 105, 121
KEY?, 27, 39, 121
LABELS, 88
LATER, 55
LIBRARIES, 82
library files, 82
Licence terms, i
local arrays, 99
local variables, 99
Local variables, 99
LOCATE, 87
LOG, 18, 29
LRCC16, 104
LSHIFT, 132

M”,, 104
macros, 9
Macros, 104
MAIN, 41, 51
MAKE-BUILD, 104
MAKE-TURNKEY, 21
MARKER, 132
memory allocation, 57
memory map, 13, 105
message

Receiving, 44
Sending, 44

messages, 44
MS, 50, 51, 55
MSG?, 51
MULTI, 41, 45, 51
multitasker, 41

example, 47
Initialising, 41
internals, 46
Starting, 41
task control block, 47

NEXT,, 106
NO-HEADS, 21, 35
NO-LOG, 18, 29
NOT, 131
NT-ACCESS-PORTS, 83
OPVEC, 39, 121
ORG, 97
Paged memory, 77
PAGES, 77, 78, 137
PAUSE, 42, 50, 51, 55
PLACES, 62
POSTPONE, 136
RAD>DEG, 67
RADIANS, 67
RAM Initialisation, 105
RAM-START, 105
REALS, 61, 67, 80, 129, 133
RECURSE, 85
registration, i
Removing headers, 35
REQUEST, 46
RESERVE, 76, 99
RESIZE, 58
RESTART, 43, 51

Index

150

RESTART-COMPILATION,
109
RESTORE-INT, 45, 51
ROM, 14
ROM PowerForth

compiling text, 69
Types of board, 71

ROM PowerForth, 69
Intel hex, 70

RSHIFT, 132
S”, 131
S>F, 67
SAVE-INT, 45, 51
SDLC, 104
SECTION, 14, 15, 24, 75, 77
sections, 127
SELF, 52
SEMAPHORE, 46
SEND-MESSAGE, 44, 52
SER-EMIT, 105
serial drivers, 15, 25

Initialising, 16
Interrupt driven, 15, 26
Polled, 16, 26

SER-KEY, 105
SET-EVENT, 44
SETMACRO, 9
SETUP, 72
SIGNAL, 46
sign-on, 20
SIMPLE16, 104
SIMPLE32, 104
SIMPLE8, 104
SINGLE, 31, 41, 45, 49, 52
SINT, 61
SIZE, 58
SIZEOFHEAP, 57
SPAN, 131
stack fault, 49
Stamp, 137
START:, 121
STARTOFHEAP, 57
START-TIMERS, 55
STATUS, 52
STOP, 44, 52
STOP-TIMERS, 56
STRUCT, 95

Structures, 95
Support, i
SUSPEND-COMPILATION,
109
System requirements, 1
TARGET, 101, 127
TARGET-MATH, 80
TARGET-ONLY, 102
task

Controlling, 43
initialising, 43
Starting, 43
Stopping, 43

TASK, 42, 121
TASKING?, 41, 49, 55, 121
TCB, 47
TERMINATE, 50, 52, 121
text macros, 9
Threading, 106
THROW, 133
TICKS, 55
TIMEBASE, 53
TIMEDOUT?, 55
TO, 97, 99
TO-EVENT, 52
TSTOP, 55
TYPE, 39, 121
UART, 15
UDATA, 14, 24, 75, 96, 127
UHERE, 97
Umbilical Forth, 23, 49, 106,
128
UMBILICAL-FORTH, 75
uninitialised RAM, 14
UNUSED, 99, 127
UORG, 97
UPDATE-BUILD, 104
USER, 42, 121
user variable, 42
USES, 87
VALUE, 76, 97
VARIABLE, 76, 97
VFX, 85
VIA-LINK, 76
W,, 96, 127
WAIT, 50
WAIT-EVENT/MSG, 52

Index

151

Warranties, i
WORDS, 88
WRITE-IGNORE, 76
WRITE-INVALID, 76
XDASM, 87

XMODEM, 69, 70
XREF, 87, 137
XREF-ALL, 87
–XREFS, 36, 87
XREF-UNUSED, 88

