
<BACK Embedded Systems Programming BACK>

Demystifying PID Control

The proportional-integral-derivative (PID) control algorithm is a powerful resource for
embedded systems programmers. PID control is useful in systems that sample an output,
compare the sample to a desired result, and take corrective action to force the controlled
element closer to the desired result. In a well-designed PID control loop, the controlled
element reaches the desired value rapidly and can be made to exhibit a great deal of
stability.

The words proportional, integral, and derivative relate to the correction calculated by the
algorithm based on the error, the integrated error over time, and the error's rate of change.
Coeffi-dents applied to each of these terms tune the system's response.

The paradigmatic form of the PID equation is:

Output =
 Kp * error + Ki * sum(error) + Kd *
 d(error)/dt

The K coefficients are constant or variable values determining the weight assigned by the
programmer to each term.

A DRIVE THROUGH THE LOOP

The different parts of this mathematical model can be correlated to actions taken while
operating a car. First, let's look at the proportional term. Let's assume that you are driving
along a circular road. If you observe an error--in this case your automobile is deviating
from its lane of travel--you will correct your course by placing the steering wheel in a new
(constant) position and holding it there.

Next, we'll look at the integral term. Think of driving down a straight highway. As you
attempt to stay in the center of your lane, perturbations (wind, potholes, road crown, and
so on) affect your relative position. Rather than changing your steering wheel's position,
you allow the drift (error) to accumulate (integrate) until it is noticeable, then factor a
small correction into the steering-wheel position. As the car begins to drift in the opposite
direction, the same process is repeated.

Finally, we'll look at the derivative term. Pretend you're 19 again. As you slide your 1965
Mustang out of a corner, you know from past experience that if you wait until the end of
the curve to center the steering wheel, it will be too late. So, as the rate of turn begins to
decrease, you turn the steering wheel away from the direction of turn before the turn
actually ends to anticipate the car's path as it leaves the turn.

Effective PID control reaches the desired result as quickly as possible without oscillation.
In our Mustang metaphor, oscillation is the same as fishtailing.

FROM THEORY TO CODE

While the model of the PID algorithm is simply stated, the implementation typically
requires a great deal of insight and hand tuning. We will examine each term in detail to
better understand its physical contributions and characteristics.

The proportional term produces an output directly proportional to the error. The corollary
is that to have any output from this term, you must have an error. The proportional term
has no time dependence and will produce an output immediately. This term should be
emphasized in systems that require fast response.

The integral term is really the heart of the PID control loop. As the error decreases to
zero, the product of the integral term and its coefficient produce the result needed to
regulate the output to a desired value. The integral term also contains the summation of
the errors.

For example, we have a proportional heater that will be used in a hot tub. If we set the
heater to 100, we want the water to be promptly warmed to 100 ***. The direct approach
would have us output a command of 100 to the heating element. The system will be
designed so that this command will result in the heating element exerting 50% of its
maximum wattage, enough to maintain the water temperature at 100 *** if the water is
already at that temperature.

With this type of control, the water temperature will rise to 100*** --but it may take days.
Obviously, the heating element will have to be controlled in a more sophisticated manner,
allowing the wattage to rise so the desired temperature will be reached within a reasonable
amount of time.

REFINING THE MODEL

Our next attempt, somewhat less naive, is to calculate a varying output to the heating
element based on a history of samples and their cumulative error. This output is equivalent
to a PID equation lacking a derivative term. Let's illustrate this approach by calculating
our output value:

Output =
 .5 * error + .5 * sum(error) + 0 *
 d(error)/dt

No derivative term contribution exists.

Now we turn on the power. Table 1 shows the temperature readings for our hot tub with
respect to time. By the time we reach Sample 6, we have reached our desired value and
begun to overshoot due to the large value contained in the integral term. However, as
soon as negative errors begin to decrease the integral term, our loop gets closer to the
desired value. Some time after Sample 13, the integral term will be 200 and the error
contribution will be zero. The integral will sit forever at 200 as long as nothing perturbs
the loop.

Small deviations will produce an error that will be corrected by the proportional term. If
anything permanent happens, such as the heater losing heat-transfer ability (so that 100
does not tend to yield 100¯ in operation), the integral term will effectively servo to
whatever value it takes to produce 100¯ of water temperature and the system will tend to
stabilize at that new output value. The integral term stabilizes the output so that no errors
exist. If low final error is the goal, this term should be emphasized.

The derivative term is our ace-in-the-hole for fast servo action. As the weighting of a
proportional term is increased, instability results. We can cancel some of the susceptibility
to instability by dampening our system with the derivative term. This term reduces the
driving force if the error is decreasing. As long as the controlled element is making
progress toward the desired value, the derivative term restrains the output. If the error
remains constant, the derivative term has no effect.

The problem in the previous example is that anyone in the hot tub would be parboiled by
the time the water temperature stabilized at 100¯, due to the detour through 130¯ of
water temperature. Let's reexamine our example but this time calculate the d(error)/dt
term at each step to see what damping effect the derivative term would have had if it had
been present.

In Table 2, we use the same values but do not calculate the output because the modified
output would modify the next sample. We wish only to illustrate what the derivative term
would have been at each step, given the same sample set as in the previous example.

As you can see by looking at the new readings, the d(error)/dt term works against the
error and sum(error) terms, as evidenced by the opposite sign. The error is decreasing as
the system progresses towards the desired value (Samples 1 through 6). When the
temperature passes through the target point value, the proportional term and the derivative
term act together to bring the value towards zero error (Samples 7 and 8). However, at
Sample 9, the error is decreasing again, and the derivative term is holding back the rate of
closure.

GETTING DOWN TO CODE

Properly implemented PID algorithm allows programmers to tailor the response of their
systems from underdamped to over-damped by modifying the three critical coefficients.
Listing 1 is a partial PID implementation. The complete source code can be found on the

Real-Time Control & Forth Board, at (303) 2780364, the Embedded Systems
Programming library on CompuServe (library 12 of CLMFORUM), or the Embedded
Systems Programming bulletin board system at (415) 267-7674.

This code was written as an illustration of the PID principal, not as optimal control code.
Consequently, it is not particularly Forthy--only a few arguments are passed on the stack,
and variables are used to hold intermediate values. The system-specific words were
written to run on a Vesta Technology single-board computer based on the Intel 80188
microprocesser, employing its onboard Forth-83 + development environment.

The output of our model control system is an 8-bit D/A converter. The controlled element
consists of an 8-bit A/D converter connected through two phase-lag networks to the
output of the D/A converter, as shown in Figure 1. The phase-lag networks simulate a
real-world mechanical system that cannot respond instantly to changes in its input. In our
hot tub example, if you turn the heater on, it is some time before the output is affected. A
voltmeter, oscilloscope, or chart recorder connected to the input of the A/D will display
the effect of the PID control algorithm on the control element as the software attempts to
stabilize the servo-feedback loop.

The code example begins by defining the variables and initializing the variables to
reasonable values. Kp, Ki, and Kd are the three PID coefficients. The variable
COMMAND is the desired value that the loop should attain. The variable ACTUAL is the
result of reading the A/D converter. ERROR is the difference between what the output is
and what it should be.

The variable INTEGRAL contains a sum of the errors. Positive errors will increase
INTEGRAL, negative errors will reduce it. A common problem with this term is
integrator windup. If large errors persist while the loop is stabilizing, the integral term will
wrap up to a high value, which will necessitate an equally large number of corresponding
negative errors to wind down the integrator. This problem can be avoided by limiting the
integral's attainable value. The maximum absolute value that the integral term can attain is
stored in INTEGRAL_LIMIT.

LOOP_TIME controls the frequency the PID code will execute. The system has a clock
incrementing at 1/18 of a second. ATOD, DTOA, and CLOCK are system-specific words
that do just what you would expect.

The proportional term is calculated by the word CALC_PROPORTIONAL_TERM. After
multiplying the value of Ki by the error, the result is divided by 100 to allow more
resolution before the effects of integer math are felt.

The integral term is calculated by CALC_INTEGRAL_TERM. Before calculating,
INTEGRATE adds the contents of ERROR to INTEGRAL and calls upon LIMITER to
check that the product of Ki times INTEGRAL will not be more than
INTEGRAL_LIMIT.

CALC_DERIVATIVE_TERM calculates the derivative term. (Who says Forth is hard to
read?) The error is compared to the error from the last time the loop was executed. The
result, DELTA_ERROR, is the change in the error. This result is divided by the time since
the last error to normalize the error's rate of change.

The three PID terms are summed by SUMMATION, which outputs the result to the D/A
converter. A REPORT is generated to the screen showing the key variables as they
change. The final word, PID, loops with each loop sending a correction to the D/A
converter attempting to cause the input of the A/D to track to the desired value.

PID is written as a Forth background task so that new values of COMMAND can be
written by the user as the task is executing. This interactive-development approach has
obvious benefits, but PID controls can be implemented in practically any language--even
Ada. (Personal experience suggests that Forth is unparalleled as a rapid development
tool.)

Whatever your implementation language, you'll find the range of PID applications is
virtually limitless. The PID algorithm will work in all facets of process control--from
remote-operated vehicle steering to temperature, pressure, flow, and position control.

BY STEVEN E. SARNS AND JACK WOEHR

Jack Woehr is a programmer at Vesta Technology Inc. in Wheat Ridge, Colo. He can be
reached on Usenet at jax@well.uucp or as VESTA on GEnie. Steven Sarns is the
president of Vesta Technology. His is a member of Mensa, Intertel, and the Michigan
Society of Professional Engineers. Sarns is also a founding member of the Denver Forth
Interest Group.

Listing 1

PID.F by Steven E. Sarns and Jack Woehr.

(Complete source code is available from the Real-Time bulletin board system, at (303)
278-0364, the Embedded)

(Systems Programming library on CompuServe (library 12 of CLMFORUM), or the
Embedded Systems Programming)

(bulletin board system at (415) 267-7674. Variables include the KP, KI, KD coefficients
plus a number of)

(intermediate calculation values and miscellaneous machine-specific addresses.)

...

(CLOCK is where the program spends all of its time. ATOD, which fetches a reading and
normalizes, is executed)

(for lack of anything better to do during this time.)

: CLOCK (---)

 LOOP_TIME @ 0 do ticks @

 begin ATOD pause dup ticks @ <> until
 drop loop;

...

(In calculations, the intermediate results are divided by 100 to allow "fractional" values
LIMITER prevents)

(integrator "windup" during open loop periods)

: LIMITER (---)

 INTEGRAL_LIMIT @ 100 KI @ */round

 INTEGRAL @ min INTEGRAL !

 INTEGRAL_LIMIT @ 100 KI @ */round negate

 INTEGRAL @ max

 INTEGRAL ! ;

: INTEGRATE (---)

 INTEGRAL @ ERROR @ + INTEGRAL ! ;

: CALC_INTEGRAL_TERM (---)

 INTEGRATE LIMITER (Check the case if)

 (INTEGRAL is negative)

 INTEGRAL @ KI @ 100 */round INTEGRAL_TERM ! ;

(INTEGRAL_TERM is Ki * sum(error) (since time began)

(Derivative Term: DELTA_ERROR is the change since the last reading)

: CALC_DELTA_ERROR (---)

 ERROR @ LAST_ERROR @ - DELTA_ERROR ! (this error - last error)

 ERROR @ LAST_ERROR ! ;

(DERIVATIVE_TERM is Kd * d[error]/d[time])

: CALC_DERIVATIVE_TERM (---)

 CALC_DELTA_ERROR DELTA_ERROR @ LOOP_TIME @ 18 */round

 KD @ 100 */round DERIVATIVE_TERM ! ;

: TERMS (---) cr KP @ . KI @ . KD @ . ;

 TERMS! (n1 n2 n3 ---) KD ! KI ! KP ! ;

: SUMMATION (---) CALC_ERROR

 CALC_PROPORTIONAL_TERM CALC_INTEGRAL_TERM
CALC_DERIVATIVE_TERM PROPORTIONAL_TERM @

 INTEGRAL_TERM @ DERIVATIVE_TERM @ + + 128 + 255 min 0 max dup DTOA
OUTPUT ! ;

: REPORT (---) cr

 COMMAND @ 6 .r ACTUAL @ 6 .r

 PROPORTIONAL_TERM @ 6 . r INTEGRAL_TERM @ 6 .r

 DERIVATIVE_TERM @ 6 .r OUTPUT @ 128 - 6 .r ;

BACKGROUND: PID (---)

 BEGIN CLOCK SUMMATION REPORT AGAIN ;

: GO (---) 0 CMD PID WAKE MULTI ;

(As with any Forth program, the highest level words are at the bottom of the listing. In
this case, we're)

(executing a background task (PID) and then using the foreground task as an interactive
console for)

(tweaking the coefficients. For example, you might define new coefficients (with a phrase
such as 20 80 0)

(TERMS! or even define test words such as:)

(CRIT_DAMP (---) 40 30 50 TERMS! ;)

