
ISSN 0265-5195

Issue 105 January 2000

 Editorial

 Forth News

 F11-UK, Hardware Project Jeremy Fowell

 Did You Know? - EasyWriter Chris Jakeman

 20th Anniversary Reunion Chris Jakeman

 Clock Challenge Chris Jakeman

 Vierte Dimension 4/99 Alan Wenham

 From the 'Net - Cube Roots

 Cube Roots Again Chris Jakeman

 "See Win32Forth scroll the Window"

Dave Pochin

 Forth for Fun various authors

 Forthwrite Subject Index

Editorial
Welcome to this Millennium-free issue. The
FIG UK Reunion was a big success, read all
about it in this issue. Jeremy has had some

problems with the Hardware Project, F11-UK, but happily is back
on track again - see his report. Several members have accepted
the Clock Challenge but there's still time for others to join in.

I'm especially pleased to publish another article from Dave
Pochin on his explorations on Win32Forth. Together with his
Internet guide "Getting Started", Dave is building a valuable
resource for newcomers to both Forth and Windows.

Apologies to Alan Wenham for mixing him up with Alan Winfield
yet again (!) in the last issue. Alan provides an expanded report
on Vierte Dimension in this issue.

Welcome to new members Martin Eales, Rob Paterson, our
second member from Ireland, Mick Dennis from Shannon, and
Jan Coombs who is re-joining us.

Our IRC session last month was one of the most active yet,
probably because it's at an earlier hour. Using IRC is not
complicated and it's a good opportunity to chat and collect some
tips so get organised in time for 9:00pm Sat 5th February.

Until next time, keep on Forthing,

EUROPEAN NEWS

EuroFORTH 99

The 15th euroFORTH conference
on the FORTH programming
language and FORTH processors
was held on September 17 - 20,
1999 at the Institute for
Informatics and Automation of
the Russian Academy of Sciences
in St. Petersburg, Russia

Reuben Thomas of the Computer
Laboratory at Cambridge
University presented a paper
called:

"Machine Forth for the ARM
processor". The paper is available
on the WWW and although MF
has not won Reuben over entirely,
he writes:

"MF's explicit use of an address
latch is simple way to improve
the performance of small Forth
compilers that cannot afford to
have an optimiser. Even more
interesting are its non-destructive

conditionals,
which could easily be used in
traditional Forth.

In conclusion, Machine Forth's
judicious mixture of novelty and
classic simplicity merit careful
study, though I for one will not be
abandoning the traditional
combination of Forth and
assembler in its favour."

http://dec.bournemouth.ac.uk/for
th/euro/ef99 .html

PUBLICATIONS

Electronic Design Online
magazine, Nov 99 issue, includes
an article by Tom Napier on the
role of Forth in embedded
systems. This is available online
at

http://www.elecdesign.com/Pages
/magpages/nov2299/embed/1122
es1.htm

Dave Abrahams
0161 477 2315

d.j.abrahams@cwcom.net

Forth News

WEB SITES

Dutch Web Site

Willem Ouwerkerk invites
visitors to the new web site for the
Dutch Forth Users Group.

http://www.forth.hccnet.nl

Web Ring

The Web Ring approach to
linking web-sites with a common
interest appeared in the June issue
of Forth News. By mid-October,
25 Forth sites had joined the Forth
Web Ring including FIG UK, FIG
Russia and International FIG.

FREE SYSTEMS

LEGO Robot Book Boosts Forth

Howard Shapiro reports. that he
came across a book recently with
an unexpected reference to Forth.

"The Unofficial Guide to LEGO
MINDSTORMS Robots" by
Jonathan Knudsen's

(O'Reilly & Associates,

1999, ISBN 1-56592-692-7).

This features a chapter on Ralph
Hempel's pbFORTH for the
LEGO system, with a brief
introduction to Forth.

COMMERCIAL SYSTEMS

Eserv

Version 2 of the Eserv Forth Web-
Server is now available from:

http://www.eserv.ru/

Jeremy Fowell
0121-440-1809

Jeremy.Fowell@btinternet.com

F11-UK, FIG UK Hardware Project

Jeremy Fowell

Jeremy reports on some unexpected problems and their solution.

Code Complete
The code for programming the
FLASH memory on the F11-UK
board is now completed.

Since you may wonder what I have
been up to during the last few weeks
of dark winter evenings, this is the
story. It took about 15 pages of
Forth and works like this:

We begin with all memory areas on
the F11-UK board blank, except for
one vital item which is the bootstrap
loader onboard the HC11.

Bootstrap Loader
This is a small section of code built
in to every chip, its function is to
receive up to 512 bytes of code via
the serial port and copy this to
internal RAM starting at address
$0000 and working up towards
higher memory.

The bootloader is activated by
switching into bootstrap mode. This
is simply done by moving jumper
link J2 to position A and pressing the

reset switch. The bootloader is now
running and waiting for the first
byte from the serial port. This must
be $FF in order to select the faster of
two available baud rates, 1200 or
7812 baud.

7812 ?@!*?? yes, those engineers at
Motorola really did select a non-
standard rate. Fortunately 7680
baud, which is the nearest the PC
can manage, works well enough.

Talker
We now download a talker program
into the onboard RAM which will be
responsible for loading PygmyHC11
into the external FLASH. Once the
talker is loaded the bootloader
passes execution to address $0000 to
run the talker.

The complete talker does not fit into
the onboard RAM so its first task is
to load the second part into external
RAM. When completed there are
seven essential target functions
available to the host computer:

mailto:Jeremy.Fowell@btinternet.com

1) Read from target memory and
send to serial port,

2) Receive from serial port and
write to buffer,

3) Move from buffer to target
memory,

4) Wipe FLASH memory,

5) Lock FLASH memory,

6) Unlock FLASH memory and

7) Restart talker.

Normal Mode
When the downloaded code has
been locked and verified the HC11
can be switched into normal mode
by moving jumper link J2 to position
B. Start a terminal program on the
PC and press the reset switch and
you should see the PygmyHC11
prompt.

The PC end is handled by a
downloader program written in
80x86 Pygmy. This makes use of
Frank Sergeant's serial port code in
SERIAL.SCR which also has a simple
terminal program for
communicating with the target when
PygmyHC11 is running.

There are talkers already available
written in assembler, but they don't
seem to do the sort of jobs we need.
After looking at this code to see if it
could be adapted I gave up and
decided to write one in Forth. There
were a few problems along the way.

Was Forth a better choice than
assembler for the talker ? It's
difficult to say, certainly the one or

two real show-stoppers would have
still occurred with assembler, and
once the core was set up, adding the
last few words in Forth was very
easy.

Conclusion
We now have all the code to
program the FLASH memory very
easily, including words to guard
against accidental erasure and verify
that the contents are correct.

There are a few restrictions with
FLASH however, you have to write
to one or more complete sectors
(128 bytes in this case) at a time and
you cannot access the FLASH device
while programming it. Also
downloading and verifying at 9600
baud is a bit slow so we will need to
develop a way of only updating
those sectors where the code has
changed. On the other hand we can
also say goodbye (hopefully) to
EPROM programming and the cost
of a programmer.

Now let's get on with that
documentation. This at least should
be more or less routine.

Chris Jakeman
cjakeman@bigfoot.com

Did you Know? - EasyWriter

Chris Jakeman

While other parts of Forthwrite bring you all the news and the latest
ideas and developments, the Did You Know? section highlights

achievements in Forth, both recent and historical (taking care always
to distinguish hearsay from attested fact).

Forth has a long and fascinating past but the 18 year old item
reported here came to my notice just recently thanks to a posting by

FIG UK member Leo Wong.

The introduction of the first IBM PC on Aug 12, 1981, is a
focal point of the best-selling biography of Bill Gates, "Hard
Drive". It reports:

"The basic machine introduced that day had one (5.25"
floppy) disk drive, 16 Kb of RAM and came with a price tag
of $1,565. With options, the price rose quickly as high as
$6,000.

IBM offered several application programs for the PC,
including the popular spreadsheet program, VisiCalc, and a
word-processing program called EasyWriter from
Information Unlimited Software. Unbeknown to IBM, the
infamous "phone phreak" Captain Crunch wrote EasyWriter,
reportedly while serving a jail sentence after the feds
caught him making free long-distance phone calls with his
blue box. (Captain Crunch got his name when he
discovered that a toy whistle included in boxes of the
breakfast cereal of the same name emitted a tone that
caused Ms Bell's circuitry to release a long-distance line to
the caller.)"

You may have guessed by now that EasyWriter, the first
word processor for the now ubiquitous PC, is a Forth
application. Here is a precis - Captain Crunch (real name
John Draper) tells the full story on his web site at

http://webcrunchers.com/crunch/Play/ibmstory/home.html

which is well worth reading in full.

The HistoryThe HistoryThe HistoryThe History
BooksBooksBooksBooks

Draper did indeed do a lot of work on day release from jail.
As he puts it,

"So, during the day, I would be coding EasyWriter, and just
before I left work to go back to jail, I would get a complete
listing of EasyWriter to take back with me. Then, I would
examine the code for mistakes. I would be up late at night
in my little cubicle, examining code, writing new code,
getting ready to type it in when I returned to work the next
day.

It was a perfect coding environment, coding in jail."

Draper had developed a commercial Forth for the Apple II
and needed a word-processor to write the documentation.
EasyWriter was the result, being put to use even as it was
being developed. After 2 months of work at this intensive
pace, EasyWriter was good enough to show at the 4th West
Coast Computer Faire.

The most popular editor at the time was Electric Pencil for
CP/M computers and the market for post-CP/M machines
was wide open.

"Rumours were that Barny Stone was feverishly working on
his own version of a word processor but was writing it in
BASIC. Then, one day, Barny came over and played with
EasyWriter for the first time. Because I wrote EasyWriter in
FORTH, I didn't need or use Apple's DOS, so I developed
my own file format for EasyWriter. So, when I booted up
EasyWriter, it booted up very fast and loaded in less than 3
seconds. With Andy Hertzfield's help, I changed the disk
interleaving so that disk reads and writes were twice as
fast. When Barny played with it, he was floored by the
awesome speed it scrolled, and how fast the disk
accesses were. Then he told me that I was much further
than he was and he gave up on his development effort
after he saw EasyWriter."

"During this time, I wrote a really cool FORTH debugger
that allowed single stepping through FORTH code (totally
unheard of in those days). I also wrote a de-compiler that
would take the compiled FORTH code and re-generate
source code. This was invaluable in tracing down some
gnarly compiler problems in FORTH. You see, I was not
only writing a word processor, but I was also developing
the language on the fly as well. I even wrote a DOS (in
Forth) to manage the EasyWriter text files, using a FAT (File

Coding In JailCoding In JailCoding In JailCoding In Jail

Forth forForth forForth forForth for
SpeedSpeedSpeedSpeed

allocation table) and all that other gnarly Disk Operating
System low level code. I found that FORTH allowed me
total flexibility. If the language didn't have a feature, I
implemented it. Simple as that."

Sales were way above expectations and development
continued to accommodate the rash of new video cards
which gave 80 mixed case characters across the Apple
screen (instead of 40 chars and upper case only).

"Around July 1981" Draper's company signed an
agreement with IBM to port EasyWriter to the new
computer and learned that it used the new 8086 cpu.

Now knowing the cpu, Draper bought one of the few 8086
computers then available and used the FIG-FORTH listing
to implement Forth for it. He writes,

"It took us 2 weeks to get the Forth Kernel working.
Eventually, the IBM computer arrived. Within 30 minutes, I
had Forth up and running on the IBM-PC, partly because we
just ported the ".HEX" text file over (just for fun). But
surprisingly, when we ran FORTH, it just came up and ran,
once we converted it to the .COM file. IBM'ers were totally
blown away that a language could be operational so
quickly. The next day, IBM's best software engineers were
quizzing us on how we did it so fast."

So, thanks to Forth, they were able to deliver EasyWriter in
time for the 12th August launch of the PC and secure their
place in the history of computing.

On the PCOn the PCOn the PCOn the PC

20th Anniversary Reunion

Twenty FIG people past and present
found their way to the bar of the Royal
Westminster Hotel on Saturday 13th.

Once we'd adopted name tags
and looked around, we found that we
had a good mixture of old and new
members. From the early days of Forth
we had Mike Beach, Chris Stephens
(Comsol) and his old business partner
Nic Vine.

At the opposite extreme, Jeff
Penn and Federico de Ceballos
represented the newest members.
Federico had furthest to travel, calling
in on his way from Spain to California
to present a paper at FORML 99 !

We had some fun tracking down
the "big names" from the past. We
successfully found old-timer Keith
Goldie-Morrison with just a week to go
(not easy after so many years, but a
distinctive name helps). Too late, as he
had a wedding to attend. Sadly we still
haven't located Dick de Grandis-
Harrison.

Our guest of honour, journalist
and Forth author Dick Pountain missed
a good night out - it turned out that he
had taken to his sick bed and forgotten
all about us! Jeremy Fowell, Jack Brien
and Keith Matthews sent more
conventional apologies.

Alan Winfield told us some
startling tales of research into robots

for clearing mines.
Bill Stoddart was another fa

from the early days. With Gordon'
support, he is now proposing a rese
project for a Forth that can run
backwards.

Bill Powell, who started it all
turned up, as did ex-members Gord
Charlton and John Hayhow. Gordon
John enjoyed the evening so much
they've have decided to re-join (al
with Bill Stoddart).

Once we had all gathered,
effectively taking over the hotel b
we moved on to a nearby pub
restaurant for dinner.

Conversation ranged from de
Forth debate to fool-proof recipes
instant ice-cream! Interesting to m
Andrew Haley after reading his
authoritative posts on the Newsgro
and to chat with current members
Smart, Howerd Oakford and Steve
Smith.

Stephen Pelc regaled us with
stories from his trips to USA and
brought along a charming MPE colle
trained in animal psychology. (I'm n
sure what this says about FIG
meetings.)

Several people wrote to say
enjoyed the event, so we hope to d
again for our 25th Anniversary in 20

cjakem
Chris Jakeman
01733 753489

an@bigfoot.com
ce
s
arch

,
on
 and

ong

ar,

ep
 for
eet

up
Mike
n

ague
ot

they
o it
04.

Chris Jakeman
cjakeman@bigfoot.com

Clock Challenge

Chris Jakeman

Here is our second installment on the Clock Challenge.

ComponentsComponentsComponentsComponents
Without a time signal to feed into our F11-UK board, this challenge would be
still-born. Fortunately, the modules in the Maplin catalogue are still available,
though there have been small changes.

Two components are needed to deliver a signal ready for decoding - an aerial (or
antenna) and a receiver module.

Part: Antenna Receiver Carriage
Code: MK72 MK68 -

Price incl VAT: 4.99 16.99 4.13
Purchase from www.maplin.co.uk & 01702 554000

A third component is listed, a "microcontroller Decoder Module" which decodes
the signal and sends the time and date down a serial line. We won't need this as
we can program the F11-UK to do this sort of thing ... and much more.

SignalSignalSignalSignal
We don't need the F11-UK in order to see the signal. With the addition of a
battery, an LED and a current-limiting resistor, the LED will flash once
(sometimes twice) a second as the signal is detected.

I have bought a set of these components from Maplin. As soon as the power was
connected, the LED started to flash. It's quite fascinating to watch. A long half-
second flash indicates the first second of the minute and the coded data follows
in a mixture of short and long flashes thereafter. The details of the code given in
the last issue show that there are two data bits. For most of the code, the second
bit - Bit B - is unused, so a short flash indicates Bit A is off and a longer one
indicates Bit A is on.

Bit B is currently used for the first few seconds, indicating the approximate
difference between GMT and UTC (don't ask!), so there may be some double
flashes during that period. The section of signal needed for decoding time and
date is from second 17 to second 51 and Bit B is unused in this section.

http://www.maplin.co.uk/

I imagine that signal strength varies,
being strongest when the antenna
points towards the transmitter. I live
about an hour's drive from Rugby, so
the signal is strong and turning the
antenna made no difference at all.

ConstructionConstructionConstructionConstruction
The receiver module sent by Maplin differs
slightly from the one described on their web
site. In particular, it has an "open collector"
output which can drive up to 2mA (100 times
more than the advertised module) and enough
to light a small LED. It also has a "low power
consumption" feature which initially led me to
think the device was faulty. It turns out that if control pin LP2 is not linked to
ground pin LP1, then no signal is output.

I used a 9 volt
battery (PP9), a 10K
resistor to limit the
current to 0.9mA
and a small low-
current LED.

German TransmissionsGerman TransmissionsGerman TransmissionsGerman Transmissions
Although the Rugby transmissions reach to Northern Europe, our German
members would be better to work with the German service which uses a
different frequency. Details can be found at
http://www.eecis.udel.edu/~mills/ntp/dcf77.htm

Rising to the ChallengeRising to the ChallengeRising to the ChallengeRising to the Challenge
Latest news (heard at our December IRC session) is that 2 other members have
bought these components in readiness for the challenge and 2 more have agreed
to take part. Our German colleagues are also looking into their equivalent
service, so that challenge may even go international.

9v
LED

10K

http://www.eecis.udel.edu/~mills/ntp/dcf77.htm

Alan J M Wenham
01932 786440

101745.3615@compuserve.com

Vierte Dimension 4/99

Alan Wenham

Alan provides a look at the latest issue of the German FIG magazine.
To borrow a copy or to arrange for a translation of an individual

article, please call Alan.

Riddle - An attempt at finding a solution

Fred Behringer A riddle was posed in VD 3/99 concerning the connection of
three lights and three switches. Fred not only presents a
solution but also takes the opportunity to discuss the
exactness of assumptions in riddles, Forth, and with
programming in general.

Reed-Solomon Error Correction - Part 1

Glenn Dixon This is a translation by Fred of a paper originally from Forth
Dimensions, Vol 20 No 4.

Patriot Scientific PSC 1000, a Java-, Forth-, and C-processor

Jens Wilke This unit is marketed as a Java processor but can also be
considered as a good Forth processor. Jens Wilke describes
the operational structure and discusses how it can be adapted
for Gforth.

BEGIN-UNTIL in 32 K on the 80386 in ZF-Assembler

Fred Behringer One can implement structured programming (IF-THEN and
so on) in ZF-Assembler but the jumps can only cover 128
bytes (forwards or backwards). Fred shows how the jumps
may be extended to 32 kilobyte length. Only three high-level
Forth words are necessary for extension of the assembler.

Hashing - Part 1

Friedrich Prinz Fritz analyses the hashing mechanism in ZF. This study
originated in 1994 and was further worked out within a
tutorial circle in the Forth Group at Moers and, because of its
size, has not been published up to now. Questions of
optimal hashing have acquired great significance in our
present time of very large Forth systems. This is the first part
of a three-part series.

Eaker's CASE statement in assembler for ZF and Turbo Forth

Fred Behringer Fred has expanded assembler in ZF and Turbo Forth "on the
fly" so that one can use structured programming CASE
constructs in assembler as well as in high-level definitions.
He relates this to the BEGIN-UNTIL paper noted above and, in
the same way, extends it to over 32 kilobytes.
Dear Chris,

I have changed the way in which I report on Vierte Dimension, the journal

of our German Forth friends.

Fred Behringer has kindly agreed to send me a short summary of the most

important aspects of the significant papers. I have translated these and

Fred has then checked that I have extracted the proper meaning from them.

We must be most grateful to him because some of the specialist details of

Forth and of German grammar can be a touch obscure!

Alan Wenham

Dave Pochin
01905 723037

davep@sunterr.demon.co.uk

"(Sc)roll Up, (sc)roll Up,

see Win32Forth scroll the Window."

Dave Pochin

This is the latest in a very valuable series from Dave, who allows us
to share his explorations of Windows using Win32Forth - see also
Issues 101 and 103. (I've been following this closely as I expect it

save me a lot of time when I get around to programming for
Windows. - Ed)

I have to confess to having a ‘hang up’ about scrolling techniques. There seems
to be a great deal more work involved than should be necessary. In addition,
there are no practical results for all my trouble unless I get involved with the file
handling, the font styles and the screen handling as well.

However, as a beginner with Win32Forth, I must not get into a negative frame of
mind. What is required is a keen analytical approach, never my strongest point !

The approach here is to strip away all the trimmings and try to look only at the
scrolling part of the task. This involves using token representations for files, font
styles, and window characteristics; so there is a great deal of extra work to do
before using any of the material in the listing as part of an application. On the
other hand, there are only three Windows procedures to consider and there are
no basic differences between those required for vertical and horizontal scrolling.

The problem can be tackled by :-
1. Setting out a reasonable specification for the demonstration.
2. Explaining some of the terms used by Windows.
3. Finding the parts of the scrolling procedure that Windows does not do for

us.
4. Updating the content of the window in response to the scrolling action.
5. Observe and comment on the results.

1. Specification - write a short
application to show scrolling.

1.1. Display a window with
vertical and horizontal scroll
bars.

1.2. Both scroll bars to show correctly the effects of ; Line Up, Line Down,
Page Up, Page Down and the use of the scroll box.

1.3. The window initially to display a page consisting of 5 lines of text of
approximately 40 characters a line.

1.4. The window to scroll vertically by use of the scroll box, and by increments
of 5 lines, and by 1 line.

1.5. The window to scroll horizontally by use of the scroll box, and by
increments of approximately 10 characters and by 1 character.

2. Terms used by Windows
The terms used in scrolling procedures include the following.

2.1 The Client Area of the window is the part of the window available to the
user, i.e., excluding the Title and Scroll bars. The extent of the Client Area
is described by two parameters, width cxClient and height cyClient. In
practice, these values are obtainable from Windows, but in the listing they
are defined as values.

2.2 The average size of a character is described by two parameters, width
cxChar and height cyChar. These values are also obtainable from
Windows, but once again in the listing they are defined as values.

2.3 The scroll bars are added to the window by modifying the window style,
using the constants WS_VSCROLL and WS_HSCROLL in the WindowStyle
method.

2.4 When a scroll bar is clicked or the scroll box is dragged the action is
coded as a parameter in a message for Windows to process. The messages
are called WM_VSCROLL and WM_HSCROLL. (WWWWindow MMMMessage VVVVertical ...
etc). Two of the methods used in the listing take the names of these
messages. Five scrolling parameters, SB_LINEUP, SB_LINEDOWN, SB_PAGEUP,
SB_PAGEDOWN and SB_THUMBTRACK (SSSScroll BBBBox _ etc) are used in the
listing.

3. Scroll Bar Operations
3. Windows requires our program to look after three scroll bar operations :-

! Setting up the range of the scroll bar.
! Processing the scroll bar messages.
! Updating the position of the scroll box.

3.1 Setting the range of the scroll bar. Use the Windows procedure
SetScrollRange which is defined as :- SetScrollRange (hwnd, nBar,
nMin, nMax, bRedraw) where hwnd is the window handle, nBar is either
SB_VERT or SB_HORZ, nMin and nMax are the minimum and maximum

values of the range and bRedraw is TRUE if you want the scroll bar set to
these values. In Win32Forth, reversing the order of the parameters
gives :-
 FALSE 100 0 SB_VERT Gethandle: self call SetScrollRange drop.

3.2 The scroll bars messages are processed by reading the value of the
parameter (SB_LINEUP etc) of the message and using a case ... end case
branching routine to alter the value of a variable (or a value) which is
either VScrollPos or HScrollPos in the listing.

3.3 The Windows procedures SetScrollPos and GetScrollPos are used to set
and obtain the position of the scroll box. If initially the position of the
scroll box and the value of VScrollPos (or HScrollPos) are the same,
representing the top (or left) of the scroll bar, then at the end of the
processing of a WM_VSCROLL (or a WM_HSCROLL) message the new
position of the scroll box obtained from VScrollPos (or HScrollPos)
and the old position obtained from GetScrollPos can be compared and
the position of the scroll box updated by using SetScrollPos and
redrawing the window.

In Windows GetScrollPos is defined as :-
GetScrollPos (hwnd, nBar).

In the Win32Forth listing for the vertical scroll box position this
becomes :-

SB_VERT Gethandle: self call GetScrollPos

Similarly in Windows SetScrollPos is defined as :-
SetScrollPos (hwnd, nBar, nPos, nRedraw)

In the Win32Forth listing for the vertical scroll box this becomes :-
TRUE VScrollPos Gethandle: self call SetScrollPos drop

4. Updating the scroll box
Updating the scroll box is not enough.

When the window is redrawn the window content must be scrolled as well as the
scroll box . To do this the values of VScrollPos and HScrollPos are used to
calculate a new position within the file which must be displayed in the top left
hand corner of the client window. In the listing this is done in part of the :M
On_Paint: method by re-writing an artificial file of 25 lines of text.

5. Comments
5.1 The results could be improved in many ways. For example, by adjusting

the vertical incremental routine it is possible to stop the scrolling when
the ‘end of the file’ , the 25th line, is the bottom line in the window.

5.2 There are many places where experimenting with changes in the
parameters in the listing can alter the performance.

5.3 If you wish to see scrolling work in a larger application, use the Winview
editor to see Tom Zimmer’s Winview.f itself; about a quarter of the way
through you will see some of the detail required by a proper scrolling
routine.

6. Code Listing
\ ScrollUp.F Simple Scrolling
\ Modified as a Win32Forth OOP. D.R.Pochin

\ See Windows.f for details of the Window class
\ Modified from WINHELLO.F

\ Define an object "ScrollWindow" that is a
\ child object of class "Window"
\ Redefine the Window Title.
\ Add scroll bars and some text to scroll.

\ Create a new Object of the Class Window.
\ See Window.f for details.
:Object ScrollWindow <Super Window

\ Set up some values.
 25 value NumLines \ Set the number of lines of text.
 80 value NumCols \ Set the number of columns of text.
 8 value xChar \ Set a value to represent the average
 \ width of a character.
 15 value yChar \ Set a value to represent the average
 \ height of a character.
 \ NOTE. Both these are arbitrary.
 \ They are simplifications of values which
 \ should by obtained from the
 \ characteristics of the font used.
 270 value xClient \ Width of the client window.
 75 value yClient \ Height of the client window.
 \ NOTE:
 \ Both these are arbitrary simplifications.
 0 value VScrollPos \ Initial value for the position of the
 \ vertical scroll box.
 0 value HScrollPos \ Initial value for the position of the
 \ horizontal scroll box.

:M WindowStyle: (-- style) \ Inherit WS_OVERLAPPEDWINDOW.
 WindowStyle: super \ from M: WindowStyle in Window
 \ Class.

 WS_VSCROLL or \ Add a vertical scroll bar.
 WS_HSCROLL or \ Add a horizontal scroll bar.
 ;M

:M WindowTitle: (-- Zstring)
 z" Scrolling." \ New title for the window.
 ;M

:M StartSize: (-- w h) \ Set the width and height of our window.
 300 90

 ;M

:M StartPos: (-- x y) \ Set the screen origin of our window.
 200 100
 ;M

:M On_Paint: (--) \ All window refreshing is done by On_Paint:
 NumLines 0 \ Start loop limits to insert text.
 do xChar 0 HScrollPos - * \ Set left edge of
 \ text.
 yChar 0 VScrollPos - i + * \ Set line of text.
 \ Change the line number
 \ and space to the string
 \ temp$.
 i 1+ s>d <# 32 hold #s #> temp$ place
 \ Add more text to temp$.
 s" Line No: 0123456789 abcdefghijkl 0123456789"
 temp$ +place
 temp$ count TextOut: dc \ Print out temp$.
 loop \ Return to start of loop.
 ;M

:M On_Init: (--) \ Things to do at the start of window
 \ creation.
 On_Init: super \ Do anything superclass needs.
 \ Set the range of the vertical scroll bar.
 FALSE NumLines 0 SB_VERT Gethandle: self call SetScrollRange
 drop
 \ Set the initial position of the vertical
 \ scroll box.
 TRUE VScrollPos SB_VERT Gethandle: self call SetScrollPos
 drop
 \ Repeat for the horizontal scroll bar.
 FALSE NumCols 0 SB_HORZ Gethandle: self call SetScrollRange
 drop
 TRUE HScrollPos SB_HORZ Gethandle: self call SetScrollPos
 drop
 ;M

:M WM_VSCROLL (h m w l -- res) \ Control the Vertical scroll
 \ bar.
 \ Place the position of the box on the return stack.
 swap word-split >r
 case \ Identify the scroll command.
 SB_LINEDOWN \ Add 1 line to the value VScrollPos.
 of VScrollPos 1 + to VScrollPos
 endof
 SB_LINEUP \ Subtract 1 line from the value VScrollPos.
 of VScrollPos 1 - to VScrollPos
 endof
 SB_PAGEDOWN \ Set value VScrollPos down 5 lines.
 of VScrollPos yClient yChar / + to VScrollPos
 endof
 SB_PAGEUP \ Set value VScrollPos up 5 lines.
 of VScrollPos yClient yChar / - to VScrollPos
 endof
 SB_THUMBTRACK \ Fetch box position from return stack
 \ and update the value VScrollPos.
 of r@ to VScrollPos
 endof

 \ Check that the value VScrollPos is within the page.
 0 VScrollPos NumLines min max to VScrollPos

 \ Check if value of VScrollPos <> position of scroll box,
 \ if so then reset scroll box.
 VScrollPos SB_VERT Gethandle: self Call GetScrollPos <>
 if
 TRUE VScrollPos SB_VERT Gethandle: self Call SetScrollPos
 drop
 Paint: self \ Redraw the window.
 then
 endcase \ end case switch.
 0 ;M

:M WM_HSCROLL (h m w l -- res) \ Control the Horizontal scroll bar.
 \ Place the position of the box on the return stack.

 swap word-split >r
 case \ Identify the scroll command.
 SB_LINEDOWN \ Add 1 column to the value HScrollPos.
 of HScrollPos 1 + to HScrollPos
 endof

 SB_LINEUP \ Subtract 1 column from the value HScrollPos.
 of HScrollPos 1 - to HScrollPos

 endof

 \ Set value HScrollPos down xClient/(4*xChar) columns.
 SB_PAGEDOWN
 of HScrollPos xClient xChar 4 * / + to HScrollPos
 endof

 \ Set value HScrollPos up xClient/(4*xChar) columns.
 SB_PAGEUP
 of HScrollPos xClient xChar 4 * / - to HScrollPos
 endof

 SB_THUMBTRACK \ Fetch box position from return stack
 \ and update the value HScrollPos.
 of r@ to HScrollPos
 endof

 \ Check that the value HScrollPos is within the page.
 0 HScrollPos NumCols min max to HScrollPos

 \ Check if value of HScrollPos <> position of scroll box,
 \ if so then reset scroll box.
 HScrollPos SB_HORZ Gethandle: self Call GetScrollPos <>
 if
 TRUE HScrollPos SB_HORZ Gethandle: self Call SetScrollPos
 drop
 Paint: self \ Redraw the window.
 then
 endcase \ end case switch.
 0 ;M

:M On_Done: (--) \ things to do before program termination
 On_Done: super \ then do things superclass needs
 ;M

;Object \ Complete the new object.

\ Words to start and finish running the program.
: DEMO (--) \ Start running the program.
 Start: ScrollWindow
 ;

: UNDEMO (--) \ Close the window.
 Close: ScrollWindow
 ;

\ Instructions to run.
 cr cr .(Type 'DEMO' to run program, 'UNDEMO' to stop) cr

Forth for Fun

Hugh Aguilar, Chris Jakeman, Willem
Ouwerkerk, Friederich Prinz, Martin Bitter, Fred

Behringer

The contributions here, from 4 countries, were inspired by some
comments in a Forth Dimensions article on Code Cracking by Hugh
Aguilar. There has been much emphasis in recent years, through the
ANSI standard and comp.lang.forth, on the advantages that
professionals gain from using Forth. The authors of this paper, whilst
welcoming these advantages, remind us that Forth is also suitable
for amateur programming and, in many ways, more suitable than
other more complex languages.

Hugh Aguilar, in his Forth Dimensions article on code cracking,
writes: "The author found that writing CrakPoly was fun, and that
using it is fun, too. Also, designing and writing fun programs is good
practice for working on commercial products.

C++, with its emphasis on GUIs and commercial development,
requires too much work to be used in weekend projects. Because
nobody programs as a leisure activity anymore and, in so doing, gets
practice at programming, our professional programming is now
described with terms like "death march project" and "anti-pattern".
These apparently are the wages of professionalism."

This article will also be published in Forth Dimensions. A Dutch
version will appear in 'Het Vijgeblaadje' (Dutch FIG), a German
version, in Vierte Dimension (German FIG).

1. Writing fun programs is fun. This is an end in itself.

2. Writing fun programs is more fun if other people get
involved and contribute. The program becomes more
useful and interesting this way.

3. Forth Dimensions and its cousins are practically the
only magazines left these days that will publish articles
about fun programs and which will provide source
code. This is a reason in itself to use Forth.

Why "ForthWhy "ForthWhy "ForthWhy "Forth
For FunFor FunFor FunFor Fun

Hugh Aguilar,
FIG International,
author of several
articles in Forth
Dimensions

4. Forth is an ideal language for writing fun programs
because it is simple.

5. Portable Forth provides a command-line interface, a
simpler alternative to writing a GUI interface. Forth is
robust as well as simple, however, and can easily
support extensions such as OOP and GUI.

6. Writing fun programs makes a person a better
programmer. This has a positive effect on a person's
professional work (Forth or otherwise).

7. Fun programs which initially don't seem to have any
commercial value can evolve into something really
good and worthwhile. If a lot of people start using the
program, it may even be possible for the author to
make some money by selling support and writing
custom upgrades. This idea, of making money from
public-domain open-source software, is Richard
Stallman's.

I think that there are a lot of cool Forth programs out there
that are languishing in obscurity because the author thinks
that nobody cares about his program because it has no
commercial potential. We need to encourage this unknown
Forth programmer to write an article and have it
published. People do want to read it.

I've been dabbling in Forth for 15 years and been a
member of FIG UK for nearly as long. I've never written a
line of Forth code professionally and my use of Forth at
work has been limited to one-liners like:

 50 RANDOM 1+ .

to select the winner of a publicity draw with 50
contestants.

During those 15 years, I have managed small software
teams doing difficult things in C, C++, Unix and Windows
and Forth has been an important part of my continuing
education.

Looking back, the pages of Forthwrite, the FIG UK
magazine, are sprinkled with my various work-in-progress
showing the results of experiments in language design
(parsing, compiling and object-oriented code), string

Forth at homeForth at homeForth at homeForth at home
but not at work -but not at work -but not at work -but not at work -

why bother?why bother?why bother?why bother?

Chris Jakeman, Editor
of Forthwrite, FIG UK

searching, pattern-matching and memory management
etc..

All this was done "for fun" in a spirit of research and
yielded some new algorithms, (including a very fast case-
insensitive string search which I have looked for but never
found in any book). However it proved very useful in
keeping one step ahead of my staff, who tend to come to
me when they have run out of ideas (yes, very gratifying).

If you ask me, "Surely all this study could have been done
in a mainstream language?" I would reply, "Yes, but only in
Forth is the work short enough to fit into an article." It is
principally because Forth is small, simple and fun (or you
might say "primitive") that I have felt moved to explore
binary search or memory management. On a Unix
computer, these facilities are provided and taken for
granted.

Forth, for me, has been fun. Its application in my
professional life has been peripheral but real nonetheless. I
shall continue to have fun with Forth and to enjoy the
contact I get with other Forthers who usually turn out to be
more interesting people than most.

I always had fun in creating my own tools and toys. As a
kid and then an adolescent I modelled, designed and built
my own boats and racing cars. Nowadays I am able to use
Forth systems mostly of my own design and a reasonable
knowledge of electronics to create my own toys.

My interest in the behaviour of man and animals can be
expressed using Forth. I design machines (robots),
controlled by Forth with their behaviour built into the
software. Here I use the same methods as before. Forth
allows me to experimentally (intuitively) fathom a
problem. These robots are merely entertaining, but I enjoy
inventing and creating them very much. Although they
have no practical value, the smile and astonishment of the
visitors to an exhibition is worth the trouble of building the
robots.

Through articles for 'Het Vijgeblaadje', manuals and other
books which I spread via the Dutch Forth Users Group, I
am trying with varying success to share this enthusiasm
with others. The 'Egel-workbook is a result of this. Also I

Play and LearnPlay and LearnPlay and LearnPlay and Learn

Willem Ouwerkerk
Editor of
Het Vijgeblaadje,
Chairman of
HCC-Forth-
gebruikersgroup
(Dutch Forth Users)

am trying to keep an element of fun in my professional
work also. An elegantly designed piece of soft- and/or
hardware gives me much pleasure. Especially if it is done
with a minimum use of resources.

A large part of the job in implementing a new Forth means
re-inventing the wheel. Huge portions of Forth are known
territory, but using the existing hardware optimally is an
art in itself. I very much enjoy using it to fathom a
processor and keep it under control with software I wrote
myself (called ByteForth). Personally I think that ByteForth
is at least as good as professional systems in making best
use of scarce resources, even though some compiler-writers
will be smarter than I.

It's strange that many do-it-yourself Forth implementations
suffer from poor documentation. I always write
documentation for each implementation and use it
regularly myself! Maybe it's because I use my own systems
to create robots and do various jobs for others. A neatly
made handbook looks good and it makes the
(non)professional system useful for others also.

Every Forther has asked himself and other Forthers why
they have chosen Forth and no other language, and a
virtual machine of the early seventies as their favourite
means of programming. They all know the answer.

Once a discussion has started and the usual pros and cons
have been exchanged, one always reaches a point where
one consideration appears which I for one am very fond of:
the outlook of the individuals who are exploring Forth.

Friederich Prinz, Editor of Vierte Dimension, Director of
Forth-Gesellschaft (German FIG), Winner of 1995 Swap-
Dragon Award

These people are using the computer to solve problems.
The problems they solve, however, are often not their own
but ones posed to them by others who are looking for help.
Once asked, most Forthers tend to forget time and space
and their own interests and start spending days and nights
on a problem which is not their own. In doing so they
sometimes produce neat little tools and sometimes big and
sophisticated Forth systems. Moreover, generously and
without asking for consideration, they almost always

Forthers helpForthers helpForthers helpForthers help
ForthersForthersForthersForthers

Friederich Prinz
Editor of
Vierte Dimension,
Director of Forth-
Gesellschaft
(German FIG),
winner of 1995
Swap-Dragon Award

distribute their findings to others who might find them
useful.

It seems to me that Forthers are especially used to thinking
in small steps and they act accordingly. Of course, Forthers
also know the methods of reasoning on a large scale as
well as the technique of division of labour widely praised
in computer science. They also, however, have a mind for
being responsible for the small things which are contained
in the big problems they analyse. Forthers feel responsible
for the essentials of the problems they come in contact
with.

I must add that I have rarely known any Forther who
considers himself too great to deal with "trivial" problems.
Of course one can find such people but in my eyes they are
too petty to be regarded as participants in a big project.
The biggest project that Forth and Forthers face is to make
the things we enjoy known and available to as many
people as they can reach.

Forth is fun and great fun comes from Forthers.

I drive my car to school every workday, and I must say that
I totally dislike driving a car. I enjoy to ride my old
motorbike (almost as old as I) much more, over the soft
curves of country roads. What bliss, to accelerate out of a
curve with a slightly spinning rear wheel! (For those, who
are curious: DKW RT 175, 9 brake HP, built in October
1953.) When I got the bike 15 years ago, it came in three
large boxes - it was a "basket case." Fortunately, in those
days I did not know that the rule of restoration says:

"Never buy a dismantled motorcycle!"

In spite of everything, I brought the machine back to
running order and now I know every one of its bolts and
nuts. Really - every one! And all of its functions. But I have
never become a DKW expert who can recognise at a glance
the year and model or relate the history of the firm and the
names of the designers.

It was fun to tinker with such a machine and it is fun to
drive it. Nevertheless, I drive to work with my car - it is
more practical, more comfortable, and (although hard to
admit) more dependable. At the same time, I have little

Forth - or the artForth - or the artForth - or the artForth - or the art
of motorcycleof motorcycleof motorcycleof motorcycle

repairrepairrepairrepair

Martin Bitter
Forth-Gesellschaft
(German FIG),
author of a number of
papers iin Vierte
Dimension,
active co-chatter on IRC
channel #FIGUK

interest to tinker or to work on my car; I leave that to a workshop I can
trust.

It is very much like that with Forth:

With a great deal of pleasure I use the ZF Forth that was developed by
Tom Zimmer a long time ago and that is presently cultivated by the
Forth group in Moers. I don't exactly know every byte of this version of
Forth, but if I were to seriously try to learn, it would be possible. To
decipher the structure of this Forth (and Tom Zimmer's ways of
programming in those days) would be very satisfying, and all I would
need for the task would be ZF Forth itself.

I like the learning possibilities that Forth offers when I try to figure out
its internals, and I can use the new knowledge to help me unravel the
secrets of DOS.

When I first connected with Forth, I knew none of the "golden rules of
programming" nor the mantras of computer science like

"always separate code from data ;-)."
The only rule was:

"Computer runs = good, computer hangs = bad!"
Of course, several books helped me further; among the first were both
of Leo Brodie's classics. Much more help however came from studying
the source code or extracts and snippets of code from other Forth
programmers that were published in Vierte Dimension.

Different programmers showed there their thoughts and their code and
I absorbed everything like a sponge.

The Forths that I use are inexpensive (there are a few others that are
bargains). As an ambitious hobbyist I cannot spend much money for a
computer language program, and, on the other hand, I do not stand to
make much money with Forth either.

So it is just for fun! But sometimes Forth helps me to help my students
or to solve problems for which I cannot obtain any ready-made
solutions.

I have learned much from the code written by others, even when the
code has not always been perfect. It is my unshakeable conviction that
everyone who writes Forth code, whether it be for fun and pleasure or
for earning a living, should publish. The work of "polishing" an article
will be more than compensated for by the feeling to have shared
something with the Forth society.

"Publish or perish" is a slogan widely known among scientists. So it's
not the search for truth that counts, but the fear of perishing? No
kidding. Modern university ranking and evaluation is mostly
based on counting papers in the Science Citation Index. This is
one side of life, the professional one. The other side is the
legitimate desire of a creative individual to do things he likes
even if they don't pursue any purpose.

Skills boost fromSkills boost fromSkills boost fromSkills boost from
recreationalrecreationalrecreationalrecreational

ForthForthForthForth

Like many Forthers, I'm an expert in my own field. I need
no Forth for showing my own expertise. Forth is too
narrow a field for that. I value Forth for recreational
purposes, for leisure activities not too far away from the
topics of my own profession. I like doing things without
purpose. I've chosen Forth to do so. Not by coincidence. I
was once looking for a close-to-the-machine language to
make the digital part of a hybrid computer automatically
maintain the analogue part of the machine. FORTRAN and
ALGOL were no help and Assembler was tedious. So I
invented my own language, DISPRA
(Dialogsystemsprache).

This was in 1969. Later I saw that Forth could have been
THE language for that purpose but I was then already
working in other fields of science. However, I became a
Forth addict. Today, the professional side of my life has
passed and I have discovered that Forth is also good for
retirement. I can remain active without the inhuman
degree of competition needed in serious scientific work.

I am the ubiquitous hobbyist, the "enthusiast who has the
tendency to re-invent the wheel". I like re-invention. It's the
only way that leads me to understand things. Also, I'm the
one who doesn't hesitate to construct "me-too" compilers.
And I didn't care, for instance, whether or not Transputer
Forth could have any future, neither in the past nor at
present. I am curious. I like learning. I like learning by
doing. I've learnt things I couldn't have learnt from books
on their own. I don't have any objection against
"considering Forth as sort of a religion".

I don't consider Forth as a language. For me, it is an idea. I
like a Linux-like evolution of projects done by a group of
enthusiasts on the 'Net. It reminds me of work done within
the international scientific community, only that Forth, for
me, can be done on a more leisure-oriented basis. I don't
like to spend any money for any Forth system, however
cleverly designed. I like Stallman's open source idea.
Science has lived on it for more than two hundred years.
Imagine a mathematician publishing a new theorem
without presenting a proof! I like to get in contact with
other Forthers who like ... see above. I like Forth.

Fred Behringer
FIG US, FIG UK,
Forth-Gesellschaft
(German FIG),
winner of 1999
Swap-Dragon Award

Letters

Dick Pountain

Bill Stoddart

From: Dickp96@aol.com
Sent: 16 November 1999 17:26
To: cjakeman@bigfoot.com
Subject: Re: FIG UK 20th Anniversary

Chris - I'm terribly sorry about that. I was in bed with
some variety of stomach flu and didn't even check my
diary until Monday, by which time it was too late to
email you. Still I'm glad a good time was had.

Dick

Hi Chris

The reunion was brilliant. Wonderful to meet you and
find FIG in such good hands. It's very nice of you to
want to revive my papers, but I think I'll leave them in
peace. I hope to be back on the Forth scene though: I
may need a computer that runs backwards for one of
my research projects in Formal Methods. We had a
little conversation about this over dinner. Gordon
Charlton, who was too tired to speak, conveyed the
details to me telepathically.

As a computer runs a program it throws away
information. For example x := 3 throws away the
previous value of x. Forth's stack based architecture
throws away less information that other architectures,
and we can use is at the basis of a reversible
computing engine. We define Forth primitives which
have the usual functionality but which transfer any
information they throw away to a history stack. For
example DROP now transfers the stack top to the
history stack. We also need ~DROP (DROP run

continued backwards) which moves the top item on the history
stack back to the parameter stack.

We develop, like this, a Forth virtual machine in which
every "code" definition has both a backward and
forward version, and by some ingenious implementation
technique we contrive a Forth system with completely
reversible code.

There is a new command: -> "guard"

-> (flag --)

If flag is true continue forward execution, otherwise
go into reverse. And a new control structure defined
with CHOOSE and END

Example:

CHOOSE WORD1 WORD2 ... WORDN END

If running forwards select any one of the choices
WORD1 to WORDN and continue execution. If running
backwards make a choice that has not been tried
before, and run forwards again. If all choices have
been tried continue running backwards.

The idea is to allow a backtracking search style of
programming, as in Prolog. Andrew Haley gave me a web
reference for the reversible programming community:

ftp://ftp.netcom.com/pub/hb/hbaker/ReverseGC.html

(Some of them know about Forth and sing its praises).

Warm Regards

 Bill

Gordon Charlton From: Gordon Charlton
[gordon@charlton.demon.co.uk]
Sent: 20 November 1999 16:06

Dear Chris,

First of all, thank you for dragging me to the FIG UK
reunion. I enjoyed it very much. I also enjoyed issue
104 of Forthwrite, the first I have read in a long
while, and its articles about the past and future of
Forth, and the Hardware Project and associated
challenge, which set me thinking...

It has been about five years since I last wrote for
Forthwrite, and during that time I have been
exploring some of my other interests. Now, five years
later, my Forth requirements have changed a great
deal. My
first computer, a Jupiter Ace, could do virtually
nothing except run Forth. That suited me well: I was
straight out of college, and eager to explore
computer programming. I spent many happy hours
crouched over the little white plastic box, with a bag
of frozen peas on top to stop it overheating.

Soon I progressed to an Atari ST, and MPE's
excellent GEM Forth. It had a lot of things I continue
to require from a Forth - an easy, intuitive editor, a
well documented manual and a straight forward
approach that made it simple to understand. It
allowed me to continue what Steve Pelc calls "a
personal exploration of the language", much of which
was published in Forthwrite, and it allowed me to take
control over my dot matrix printer.

This I needed, because the word processor I had
available to me did not use anything like the full
capabilities of the printer. But it was a simple enough
matter to embed mark-up commands into the
document I was writing, and run it through a simple
parser written in GEM Forth.

continued Now I no longer need that sort of control. I have a
couple of Macs, and any control I need to exercise
over my machines is available without recourse to
Forth. Equally I am not particularly interested these
days in personal exploration of programming
languages, and the amount of understanding that I
would require to write applications that make
reasonable use of the Mac Operating System means
that such use is rather beyond me.

So where could Forth fit into my life? Not on a Mac.
The commercial Forths available are outside of my
budget and perhaps I am rather jaded, but having
used a proprietary Forth, the shareware offerings
for the Mac are too quirky for my taste, and too
spartan in the programming environment they offer.

I rather hanker for a little computer. One that I can
understand in its entirety. The FIG-UK Hardware
project, the F11-UK, comes some way to what
I imagine, but not far enough. For one, I have no
particular wish to wield a soldering iron. My facility
for that sort of task is strictly limited, and I would
anticipate that, despite my best efforts, I would
destroy more components than I would successfully
solder into place.

Secondly, my primary computer, an iMac, does not
have a serial port. Yes, I could buy a USB to serial
adaptor, but that is another expense. Thirdly
there does not appear to be any prospect of Mac
software with which to talk to the F11-UK.

And then there is the shareware Forth. To be fair I
do not have any experience of Pygmy Forth, but I see
that, for instance, Frank Sergeant has eschewed DO
.. LOOP in favour of FOR .. NEXT. Oh dear,
quirkiness looms. Now that we have a workable
standard, what is wrong with adhering to it?

continued OK, so if I could go to a shop and buy a "Little Forth
Box" (and I mean *little* - I see no reason why it
need be larger than a credit card or thicker than a
USB port, a processor, a battery, some RAM, some
PROM and an interface chip or two) and plug it into
my iMac, and install a piece of software that opens up
a monitor window onto the machine inside a
programmers' text editor (I am thinking of the Mac's
BBEdit, which is ideally suited to the job, and
sufficiently extensible) then what would I do with it?

Well, I hear that there are little chips available that
fit inside light switches and the like that control
simple devices and can talk to one another.
Networking my house sounds like an admirable
project, and, if I could buy a little Forth box, maybe I
could buy a similar-sized box that would let it talk to
my household appliance network. And maybe another
card would let it talk to my telephone, and hence the
Internet. Or perhaps I could sit it amidst some Lego
Technic or Meccano, and have a little robot scurrying
about my floor. I am sure that would amuse the
socks off my eight year old son, and give him an
excellent introduction to computer programming.

Paul Bennett once told me the most excellent maxim -
One Process, One Processor. Much as we all love our
big desktop computers with memory by the bucket-
load and clock speeds to die for, they are not always
the right tool for the job, and when the right tool is a
simple little machine, Forth is the right tool for
programming it. And, of course, that would mean that,
as a hobbyist, I would finally be using Forth for what
it was intended for, for process control, and for
slipping into the tiny spaces where other languages
cannot squeeze.

We have heard much about the computerised house
of the future over the years, and this is where I see
one possible future for Forth.

continued So here is my challenge: At the moment the only
person I know of with a "house of the future" is Bill
Gates (excuse me for a moment while I go and wash
my mouth with carbolic soap) but I think with Forth
we could prove that you don't have to be the richest
man in the world to have process control in the home.

With the right tool at our fingertips, and with the
imagination and flair of the individual membership of
FIG-UK, and the experience and expertise of the
corporate members in embedded systems I could
have my Little Forth Box, and what better way to
meet Steve Pelc's goal for the next five years, of
spreading the Forth word and producing a generation
of Forth programmers?

Yours,

Gordon Charlton

Forthwrite Index
Jack Brien maintains a set of 3 indexes to Forthwrite on the FIG UK
web site. These indexes are sorted by date, by author and by subject
and are updated with each issue. The subject index is repeated in
Forthwrite annually, with the new entries highlighted.

Back issues of Forthwrite may be borrowed from the Library without
charge, so this is a good way for a new member to catch up on
topics of special interest.

Forthwrite Subject Index 1990-1999

algorithms Bennett, Paul 94-06 Fuzz, fibs and forms
algorithms Bennett, Paul 95-06 Fractionally angular
algorithms Charlton, Gordon 93-04 Backwards (psychic programming)
algorithms Charlton, Gordon 95-06 Easter Sunday
algorithms Hersom, Ed 92-10 Advanced course
algorithms Hersom, Ed 93-04 Trees & splines
algorithms Hill, Will 93-06 Solving with Newton-Raphson
algorithms Payne, John 93-12 Approximate pattern matching
algorithms Pochin, David 94-10 First attempts at Fuzzy Logic
algorithms Ramsay, Chris 99-08 Forth and Genetic Programming
applications Anderson, Joe 98-07 Forth In Space
applications Brien, Jack 91-02 Typing tutor (code)
applications Franin, Julio 92-08 Torsion measurement system
applications Green, Roedy 90-08 Abundance (database)
applications Grey, Nigel 91-06 Big Blue on the move IBM CAD (review)
applications Kendall, Les 91-02 Terminal emulator for PC (code)
applications Smith, Graham 91-02 Logic gates
applications Stephens, Chris 93-08 Seven thousand networked micros
applications Trueblood, Mike 99-11 Radio Clock
arithmetic Bennett, Paul 97-02 From the 'Net - Square Roots (code)
arithmetic Brown, Jack 92-10 Floored v symmetric division (tutorial)
arithmetic Filbey, Gil 91-04 Tutorial
arithmetic Filbey, Gil 91-12 Mixed point arithmetic (tutorial)
arithmetic Filbey, Gil 92-02 Mixed point arithmetic (tutorial)
arithmetic Filbey, Gil 92-04 Mixed point arithmetic (tutorial)
arithmetic Filbey, Gil 93-02 Floating point
arithmetic Filbey, Gil 95-02 Cube roots
arithmetic Haley, Andrew 91-04 Function approx. by Chebyshev series
arithmetic Hersom, Ed 98-07 Quad (Fixed-Point) Arithmetic
arithmetic Jakeman, Chris 90-12 A high-level /MOD (code)
arithmetic Payne, John 91-12 Fixed point arithmetic (word set)
arithmetic Preston, Philip 91-02 Multi-cell arithmetic (code)
arrays Brien, Jack 92-02 Ways with arrays (code)
arrays Jakeman, Chris 90-08 Arrays and records (code)
assembly Tanner, P. 96-05 Linking machine code modules with Forth

Forthwrite Subject Index 1990-1999 (2/7)

block tools Charlton, Gordon 94-04 One-screen library load (code)
block tools Filbey, Gil 91-02 Bits and loading blocks (tutorial)
block tools Hainsworth, Chris 91-02 Editing blocks (tutorial)
bons mots Bezemer, Hans 97-08 Th
bons mots Eckert, Brad 97-08 On Off On? Off?
bons mots Elvey, Dwight 98-01 Setting bits with MASK
bons mots Hersom, Ed 97-11 NVars [H] [D]
bons mots Hoyt, Ben 98-03 PLACE is to COUNT as ! is to @
bons mots Luke, Gary 97-08 Tally
bons mots Payne, John 97-11 3rd Swap@ Sgn #>ASCII
bons mots van Norman, Rick 98-03 MANY for debugging
bons mots Wenham, Alan 97-11 Z
bons mots Wenham, Alan 98-01 Printing binary with .SB U1B. U2B.
bons mots Wong, Leo 98-05 Laying down values with COURSE
concurrency Charlton, Gordon 91-10 Co-routine monitors (code)
concurrency Charlton, Gordon 94-04 One-screen concurrent Forth (code)
control flow Bennett, Paul 91-04 High level FOR..NEXT (code)
control flow Brien, Jack 91-02 Extended ANS structures (F83 code)
control flow Brien, Jack 94-06 Extending ANSI control structures
control flow Brien, Jack 95-06 Portable control structures
control flow Carpenter, R.H.S. 92-12 Flow-charting method
control flow Charlton, Gordon 90-04 Universal delimiter (code)
control flow Charlton, Gordon 95-06 Trouble with DO
control flow Jakeman, Chris 96-05 If and begin - ANS style
control flow Preston, Philip 93-06 Shortcuts and drop-outs
database Filbey, Gil 91-08 FIG UK database (tutorial)
database Filbey, Gil 91-08 FIG UK database (tutorial)
design Allwright, R.E. 95-06 Pagination
design Bennett, Paul 94-08 Taking exception ...
design Brien, Jack 91-10 Return stack ENTER ISNOW and aliasing
design Brien, Jack 99-01 Working with Wordlists
design Brien, Jack 99-06 Handling Literals
design Charlton, Gordon 93-04 Upside down
design Flynn, Chris 94-10 Numerical input
design Hersom, Ed 92-10 NVARS
design Hersom, Ed 94-08 Simple user interface
design Jakeman, Chris 95-06 From the 'net
design Matthews, John 94-02 On his September lecture
design Payne, John 90-12 Simpler Forth (comment)
design Smart, Mike 93-10 Computer Shopper Programmer's Challenge
design Telfer, Graham 96-05 The specification method hunt
design Telfer, Graham 99-06 Skeletons - Designing a Recursive
 Application
design Thomas, Reuben 92-06 Forth lifestyle
dynamic data Charlton, Gordon 90-04 Dynamic words (code)
dynamic data Charlton, Gordon 94-06 Work, rest and play
editing tools Brien, Jack 95-06 Full screen editor
editing tools Jakeman, Chris 90-02 Search and replace 1/2 (code)
editing tools Jakeman, Chris 90-04 Search and replace 2/2 (code)
editing tools Lake, Mike 91-02 Full screen editor in one screen (code)

Forthwrite Subject Index 1990-1999 (3/7)

editorial Brien, Jack 97-08 FIG UK Web Site
editorial Hainsworth, Chris 91-04 Forthtalk and EuroFORML report
editorial Hersom, Ed 96-07 Why Forth?
editorial Jakeman, Chris 92-08 Soapbox - "Do it yourself"
editorial Jakeman, Chris 96-05 From the 'net - perceptions
editorial Jakeman, Chris 96-11 Sell-by-date
editorial Jakeman, Chris 97-02 FIG UK joins the World Wide Web
editorial Jakeman, Chris 97-02 Welcome Disk
editorial Payne, John 92-12 Fat, thin or inflatable?
editorial Rush, Peter 95-02 Honeywell Forth Bulletin Board
editorial Wilson, R.J. 93-06 Seeing trees in the wood
encryption Greenwood, Mike 98-03 File Encryption
exceptions Charlton, Gordon 91-04 CATCH and THROW (code)
exceptions Jakeman, Chris 93-10 Portable CATCH and QUIT (code)
exceptions Jakeman, Chris 93-10 Using CATCH and QUIT (code)
FANSI project Bennett, Paul 90-06 Time for a new FIG Forth (comment)
FANSI project Bennett, Paul 90-12 FANSI environs (proposal)
FANSI project Bennett, Paul 91-10 Report on FANSI
FANSI project Brien, Jack 92-02 FANSI (comment)
FANSI project Charlton, Gordon 90-10 High-level /MOD using recursion (code)
FANSI project Charlton, Gordon 90-10 High-level multiply (code)
FANSI project Charlton, Gordon 91-06 FANSI definitions (code)
FANSI project Charlton, Gordon 91-08 FANSI bloomers (code)
FANSI project Charlton, Gordon 91-12 FANSI vocabularies (proposal)
FANSI project Flynn, Chris 90-10 Discussion on REQUIRES
FANSI project Flynn, Chris 90-12 Response to design proposals (comment)
FANSI project Hainsworth, Chris 90-10 FANSI that (proposal)
FANSI project Payne, John 90-12 Response to design proposals (comment)
FANSI project Payne, John 91-08 Notes on FANSI (code)
FANSI project Payne, John 92-02 FANSI (comment)
FANSI project Payne, John 92-12 FANSI QUIT
FANSI project Preston, Philip 92-02 FANSI (comment)
file tools Behringer, Fred 99-01 ANS File Words for Turbo Forth - 1
file tools Brien, Jack 91-02 Loading dependant source (code)
file tools Brien, Jack 95-10 Hierarchical screen filing
file tools Jakeman, Chris 93-02 File access, part 1 (code)
file tools Jakeman, Chris 93-04 File access, part 2 (code)
file tools Jakeman, Chris 93-06 File access, part 3 (code)
file tools Jakeman, Chris 93-08 File access, part 4 (code)
file tools Wong, Leo 98-10 ANS File Words for Pygmy Forth
fractions Charlton, Gordon 90-02 Vulgar words (code)
fractions Charlton, Gordon 90-10 Rational approximation (comment)
fractions Wilson, R.J. 90-04 Rational numbers (code)
fractions Wilson, R.J. 90-06 Transcendental rationale (code)
futures Jakeman, Chris 94-08 Telescript (comment)
futures Jakeman, Chris 94-10 Some future directions (editorial)
futures Jakeman, Chris 96-11 Forth and Java (comp.lang.forth)
futures Pelc, Stephen 99-11 FIG UK - The Next 20 Years
graphics Charlton, Gordon 92-06 Turtle graphics
graphics Charlton, Gordon 93-08 Drawing a line

Forthwrite Subject Index 1990-1999 (4/7)

graphics Charlton, Gordon 93-10 Not drawing a line
graphics Filbey, Gil 90-04 Plotting spirals (tutorial)
graphics Payne, John 92-08 Flood fill
graphics Payne, John 93-10 How Bresenham's line drawing alg. works
graphics Pochin, Dave 99-08 Figuring it out with Win32Forth
graphics Pochin, Dave 00-01 "See Win32Forth scroll the Window"
hardware Bennett, Paul 96-07 Chuck's chips
hardware Fowell, Jeremy 92-08 P20 chip, part 1/2
hardware Fowell, Jeremy 92-10 P20 chip, part 2/2
hardware Fowell, Jeremy 99-01 FIG UK Hardware Project
hardware Fowell, Jeremy 99-04 FIG UK Hardware Project - Progress
hardware Fowell, Jeremy 99-08 FIG UK Hardware Project - Progress
hardware Fowell, Jeremy 99-11 FIG UK Hardware Project - Progress
hardware Fowell, Jeremy 00-01 F11-UK Hardware Project - Progress
hardware Heuvel, Leendert 99-04 The 'Egel Coursebook
hardware Koopman, Philip 90-10 RTX 4000 (publicity)
history Behringer, Fred 99-11 Swap Dragon
history Brien, Jack 99-11 FIG UK - The Last 20 Years
history Hainsworth, Chris 99-01 Forthwrite Issue No. 1 revisited
history Jakeman, Chris 00-01 Did you Know? - EasyWriter
history Powell, Bill 99-01 The Birth of FIG UK
history Rather, Elizabeth 95-04 The evolution of Forth
history Rather, Elizabeth 95-12 The Forth approach to operating systems
humour Allwright, Ray 98-05 A Story of Cowboys
humour Jakeman, Chris 96-05 From the 'net - a drinking song
humour Payne, John 90-12 A program that works the French way
humour Smith, Graham 95-06 Book titles
interfacing Bennett, Paul 98-05 Reading the World - 1
interfacing Bennett, Paul 98-07 Reading the World - 2
interfacing Bennett, Paul 98-10 Writing the World - 1
interfacing Bennett, Paul 99-01 Writing the World - 2
interfacing Robinson, Dave 91-08 Mouse handling (F83 code)
internals Allwright, Ray 98-03 From the 'Net - Minimal word sets
internals Allwright, Ray 99-04 From the 'Net - Turnkey Apps and Docs
internals Bennett, Paul 92-10 Top-down development of a Forth system
internals Bennett, Paul 93-04 QUIT, the story continues...
internals Brien, Jack 97-08 Building a new inner interpreter
internals Charlton, Gordon 91-02 A replacement for DO .. LOOP (code)
internals Flynn, Chris 91-06 Forth engine on 68000
internals Hainsworth, Chris 90-02 Kiss and run (exploring F-PC)
internals Preston, Philip 93-12 RatForth - ANS on F83
internals Preston, Philip 94-02 Ratforth revised etc.
internals Preston, Philip 94-06 Redefining colon
internals Preston, Philip 94-10 Simulating EVALUATE
internals Preston, Philip 95-10 Variables, values & locals
internals Wenham, Alan 95-12 Meandering Forth
interpreting Brien, Jack 96-11 Implementing an outer interpreter
interpreting Jakeman, Chris 95-10 From the 'net - text interpreter
interview Moore, Charles 99-06 1xForth
library Hainsworth, Sylvia91-04 FIG UK library bulletin

Forthwrite Subject Index 1990-1999 (5/7)

library Hainsworth, Sylvia98-05 Purchases and current publications
library Jakeman, Chris 96-11 Library assets
MCFAs Brien, Jack 90-08 Comment
objects Jakeman, Chris 94-12 Objects and so forth
objects Jakeman, Chris 98-11 OOF - A Minimal Approach
objects Prinz, Friederich 99-01 Counting Fruits the Classic Way
performance Jakeman, Chris 98-01 From the 'Net - Speed Demons
permutations Charlton, Gordon 90-02 Permutations, a new algorithm (code)
permutations Hersom, Ed 91-10 Permutations (code)
permutations Hersom, Ed 92-04 Permutations/combinations
presentation Bennett, Paul 91-06 Manual documentation (code)
presentation Brien, Jack 90-02 Locals and more (discussion)
presentation Brien, Jack 91-02 GIST for indexing source (code)
presentation Brien, Jack 94-10 Readable Forth
presentation Charlton, Gordon 93-12 StackFlow
presentation Charlton, Gordon 97-02 From the 'Net - StackFlow
presentation Matthews, Keith 90-12 Stack diagrams (explored)
presentation Tanner, P.H. 94-12 Post indentation
probability Filbey, Gil 90-12 Probability of common birthdays
probability Filbey, Gil 90-12 Random thoughts on probability
probability Payne, John 90-12 Probability of common birthdays
publications Haley, Andrew 91-12 FORML 87, 88 & 89 (review)
puzzles Charlton, Gordon 90-12 Name that word
puzzles Charlton, Gordon 91-02 Puzzle answers (code)
puzzles Filbey, Gil 92-10 Tethered goat puzzle, part 1/2
puzzles Filbey, Gil 92-10 Tethered goat puzzle, part 2/2
puzzles Hainsworth, Chris 90-06 Forth brain teasers
random nos. Filbey, Gil 93-06 Visualising random numbers on Apple II
random nos. Filbey, Gil 93-08 Testing for randomness
random nos. Jakeman, Chris 93-06 Random numbers
random nos. Payne, John 93-08 More on random numbers
review Anderson, Joe 99-06 Forth for Virtual Reality
review Bennett, Paul 97-11 EuroForth '97 Conference
review Bennett, Paul 98-11 EuroForth '98 Conference
review Charlton, Gordon 94-10 Riding the wild 'net
review Charlton, Gordon 95-02 Report from EuroForth '94
review Flynn, Chris 98-10 A Hard Day Garbage Collecting
review Fowell, Jeremy 98-05 Forth Programmers' Handbook
review Jakeman, Chris 98-05 Genetix - The Inside Story
review Jakeman, Chris 98-10 jeForth
review Jakeman, Chris 00-01 FIG UK 20th Anniversary Reunion
review Payne, John 98-07 FORML Proceedings 94 & 95
review Wenham, Alan 98-01 Vierte Dimension
review Wenham, Alan 99-01 Vierte Dimension
review Wenham, Alan 99-11 Vierte Dimension
review Wenham, Alan 00-01 Vierte Dimension 4/99
roots Behringer, Fred 98-03 Square roots once more
roots Behringer, Fred 98-05 Cubic roots without division
roots Brien, Jack 97-11 From the Net - More on square roots
roots Charlton, Gordon 90-10 Square root (code)

Forthwrite Subject Index 1990-1999 (6/7)

roots Jakeman, Chris 00-01 Cube Roots Again
roots Jakeman, Chris 00-01 From the 'Net - Cube Roots
roots Trapp, John 91-02 Square-roots for double/floating point
roots Wilson, R.J. 90-08 Root of rational numbers (code)
searching Charlton, Gordon 90-12 A faster string search (code)
searching Charlton, Gordon 91-10 A binary search (code)
searching Charlton, Gordon 93-02 Shift-AND string search (code)
searching Charlton, Gordon 94-02 Best string search (code)
searching Hersom, Ed 91-12 Recursive BINSEARCH (code)
searching Jakeman, Chris 95-06 Linear search
sets Charlton, Gordon 90-06 Set manipulation (code)
sorting Charlton, Gordon 90-08 Radix, an extravagant sort (code)
sorting Charlton, Gordon 90-10 Sorting strings with qsort (code)
sorting Charlton, Gordon 91-10 Heapsort (code)
stacks Barr, Stan 95-12 A third stack
stacks Charlton, Gordon 94-04 Stacrobaticus exotica
stacks Filbey, Gil 94-08 Stacks (tutorial)
stacks Hersom, Ed 97-11 Multi-precision Stack Operators
stacks Jakeman, Chris 95-08 Stack manipulation
stacks Joseph, Neville 95-10 Stack manipulation
stacks Preston, Philip 92-12 Stocking fillers - stacks & write-only
standards Jakeman, Chris 91-06 Portable code (code)
state machinesCharlton, Gordon 90-10 Variables for state machines (code)
state machinesDunbar, Graeme 98-07 Finite State Machines 1/3
state machinesDunbar, Graeme 98-10 Finite State Machines 2/3
state machinesDunbar, Graeme 99-08 Finite State Machines 3a
strings Borrell, Richard 98-03 Deferred Language Translation
strings Brien, Jack 93-06 Comment on Blockl & Tack
strings Brien, Jack 96-07 String handling
strings Charlton, Gordon 91-04 A string pattern matcher (code)
strings Charlton, Gordon 93-04 ANSI and portability - STRLIT (code)
strings Charlton, Gordon 93-06 Similarity
strings Jakeman, Chris 95-12 From the 'net - please
strings Jakeman, Chris 97-02 Pattern matching - 1/3 (tutorial)
strings Jakeman, Chris 97-08 Pattern matching - 2/3 (FoSM with
Forth)
strings Jakeman, Chris 97-11 Pattern matching 3/3 (Rex)
strings Leibniz, David 91-02 String stack routine (code)
strings MacLean, Ruaridh 91-02 High level DIGIT (tutorial)
strings Oakford, Howerd 98-11 Multiple Language Programs Made Easy
strings Payne, John 92-04 Text processing
strings Preston, Philip 92-10 TACK and BLOCKL
structures Brien, Jack 98-01 Building Forth Structures
systems Behringer, Fred 97-08 Forth for the Transputer
systems Bennett, Paul 92-02 Pygmy Forth (review)
systems Besemer, Hans 98-05 4th - The Alternative Compiler
systems Green, Roedy 90-08 BBL Forth (review)
systems Hersom, Ed 93-02 Pocket Forth (review)
systems Jakeman, Chris 99-01 Web Forth Project
systems Jakeman, Chris 99-06 Web Forth Project

Forthwrite Subject Index 1990-1999 (7/7)

systems Lancaster, Garry 99-04 Forth for the Z88
systems Ouwerkerk, Willem 99-08 ByteForth for MCS51 cpu's
systems Payne, John 95-02 A 32-bit Forth for Windows (review)
systems Stephens, Chris? 95-02 Forth for the Transputer (review)
systems Tanner, P.H. 93-06 URForth (review)
systems Tanner, Philip 92-04 As in a glass darkly
systems Worthington, Thom.98-01 Aztec - A Forth For Windows '95
tools Abrahams, David 95-10 General purpose utilities for F-PC
tools Bennett, Paul 93-06 +MOD! (LOG?) and commenting words
tools Bennett, Paul 94-02 Spooling and browsing
tools Brien, Jack 93-10 Utilities for F83 on Amstrad PCW
tools Charlton, Gordon 93-04 Wrong way round!
tools Charlton, Gordon 94-12 16-bit cyclic redundancy checksums
tools Flynn, Chris 94-06 Conditional compilation
tools Franin, Julio 95-02 MC51 Forth debugging
tools Jakeman, Chris 90-06 Patch programming aid (code)
tools Jakeman, Chris 90-10 Run-time operators (code)
tools Jakeman, Chris 92-12 Also and -Also (code)
tools Jakeman, Chris 93-12 Shell (code)
tools Jakeman, Chris 94-02 .Call and Assert (code)
tools Jakeman, Chris 94-04 Check (code)
tools Jakeman, Chris 95-08 Limit variables (code)
tools Jakeman, Chris 99-06 From the 'Net - Iterative Interpretation
tools Preston, Philip 91-12 ALIAS ALIAS ALIAS (F83 code)
tools Preston, Philip 94-08 More fun with EVALUATE
tools Smith, Graham 95-06 MARK
tools Stott, Barrie 97-02 Stack checking (code)
tutorial Brown, Jack 92-06 An indefinite loop example
tutorial Charlton, Gordon 92-04 Two geese and a car
tutorial Charlton, Gordon 93-12 Create .. does> ..
tutorial Filbey, Gil 92-12 Escape codes and printing
tutorial Filbey, Gil 93-02 A conjuring trick
tutorial Filbey, Gil 93-04 Some old words revisited
tutorial Filbey, Gil 93-10 Floating point
tutorial Filbey, Gil 93-12 Postfix
tutorial Filbey, Gil 94-02 Editorial & Tu
tutorial Filbey, Gil 94-12 Floating point
tutorial Filbey, Gil 95-08 Immediacy
tutorial Filbey, Gil 95-10 Editorial
tutorial Hainsworth, Chris 93-02 Shallow end
tutorial Jakeman, Chris 98-11 jeForth Project
tutorial Jakeman, Chris 99-11 Clock Challenge
tutorial Jakeman, Chris 00-01 Clock Challenge - 2nd installment
tutorial Pochin, Dave 99-01 Forth for the New Year
tutorial Pochin, Dave 99-01 Guide to Getting Started
tutorial Pochin, Dave 99-04 Getting Stuck Into Win32Forth
tutorial Telfer, Graham 98-07 Wondrous Numbers
vectoring Allwright, Ray 97-11 From the Net - Defer and Is
vectoring Bennett, Paul 92-10 Vectoring with DOER and MAKE
vectoring Charlton, Gordon 90-10 Resolving forward references (code)
vectoring Jakeman, Chris 91-02 Deferred words (code)
vectoring Preston, Philip 91-04 Forgettable vectors and smart compiling

	PUBLICATIONS
	Electronic Design Online magazine, Nov 99 issue, includes an article by Tom Napier on the role of Forth in embedded systems. This is available online at
	http://www.elecdesign.com/Pages/magpages/nov2299/embed/1122es1.htm
	WEB SITES
	http://www.forth.hccnet.nl
	Web Ring
	The Web Ring approach to linking web-sites with a common interest appeared in the June issue of Forth News. By mid-October, 25 Forth sites had joined the Forth Web Ring including FIG UK, FIG Russia and International FIG.
	FREE SYSTEMS
	COMMERCIAL SYSTEMS
	Eserv
	Version 2 of the Eserv Forth Web-Server is now available from:
	http://www.eserv.ru/

