
ISSN 0265-5195

Issue 106 April 2000

 Editorial

 Forth News

 21st FORML Conference Federico de Ceballos

F11-UK, FIG UK Hardware Project Jeremy Fowell

 32-bit GCD without Division Fred Behringer

 The FIG UK Awards

All you need to know about

 STATE, IMMEDIATE and POSTPONE Jack Brien

 Vierte Dimension 1/00 Alan Wenham

 From the 'Net

 An Introduction to Machine Forth John Tasgal

 From the 'Net - Cube Roots

 Cube Roots Again Chris Jakeman

 Letters

1

Editorial
I'm sorry this issue is late - my fault, not
your contributors - but I'm sure it was worth
the wait.

A new development to report - you can now download Forthwrite
from the web-site. You don't need to lend you precious copies to
friends and colleagues any more. This is an experiment, so please
tell us what you think. We do not see any threat to the printed
copy which will always remain one issue ahead of the electronic
version.

IRC has been flourishing, with Forthers from France and The
Netherlands joining our regulars from Germany. Do give it a try.

Dave Pochin's web-site has recorded 5,000 hits for his Getting
Started guide - an effective measure of Forth's popularity.

Welcome to some more new members - Christian Hellon in
Bradford and Arthur Berg in Aberdeen.

News of two projects from recently-joined members. Matt
Gumbley (mgumbley@enigmadata.co.uk) is working with 2 others
on an hForth port to the Psion Series 5. Jan Coombs is a digital
designer who is experimenting with "digit serial" processors.

Please get in touch if you don't receive monthly e-mail from me
(IRC reminders, job offers etc.) as it means I don't know your
current e-mail address and you're missing out.

Until next time, keep on Forthing,

2

Web Sites

How many people know that
there is a Chat RoomChat RoomChat RoomChat Room for Forth
in ICQ?

This was first announced in
Forth News in June 99.

Computer Solutions (Comsol)
have added a new resource to
their web site for all designers
of embedded micro-processorsembedded micro-processorsembedded micro-processorsembedded micro-processors.
This is intended to have a
European (i.e. non-USA) bias
and provide a suitable starting
point for locating resources.

http://www.computer-
solutions.co.uk

Ulrich Hoffman has set up an
experimental “Wiki” web site
for the exchange of ideas about
Forth.

Wiki Web ServersWiki Web ServersWiki Web ServersWiki Web Servers allow
everyone to change pages and
so their content will grow in a
collaborative effort.

http://hammer.prohosting.com/
~uho/wiki/html/Forth/FrontPage.
htm

International FIG have
announced a web-based searchsearchsearchsearch
serviceserviceserviceservice for Forth practitioners.
Visitors can enter keywords
and retrieve details of FIG
members operating in that
field. International FIG
members must remember to
enter their own details - it
won't be done for you.

http://www.forth.org/forthexperts.
html

If you are looking for Forth
expertise in the UKexpertise in the UKexpertise in the UKexpertise in the UK, see
http://forth.org.uk for a list of
training services and contact
FIG UK to pass on your
requirements to FIG UK
members who have registered
their availability.

Forth Applications and
Utilities

The Open Terminal
Architecture project
undertaken by Forth Inc and
MPE Ltd for Europay

Dave Abrahams
0161 477 2315

d.j.abrahams@cwcom.net

Forth NewsForth NewsForth NewsForth News

3

International "is in increasing
use in Europe. The technology
itself has just become an ISOISOISOISO
standardstandardstandardstandard". Europay is Europe's
largest financial services
company.

Elizabeth Rather reports that
the hand-held package tracking
devices used by Federal
Express have been
programmed in Forth since
1986 and Forth Inc. are
currently working on the 3333rdrdrdrd

generation designgeneration designgeneration designgeneration design.

Database access via SQLSQLSQLSQL is not
a common feature in Forth.
Here is sample code to access
any ODBC database.

ftp://forthcad.com/pub/web682c3/
forth/

files: ODBC-DB.F

 ODBC-TEST.F

WinCVWinCVWinCVWinCV is a Windows
shareware utility written in
Win32Forth. It is a File
Manager and Picture Viewer.

http://netcity.hinet.net/lccw/wincv
023.exe

A parser that will translate
Forth into CForth into CForth into CForth into C can be found at:

http://www.complang.tuwien.ac.at
/projects/forth.html

Projects

To join a project to build a
Forth-based operating systemoperating systemoperating systemoperating system,
visit ...

http://www.onelist.com/communit
y/fcvm

VHDL is a language for
building chips such as small
micro-processors. Don Golding
has started a design for a ForthForthForthForth
processorprocessorprocessorprocessor and is looking for
assistance.

dgolding@angelusresearch.com

Free Systems

Quartus Forth for the Palm
Pilot runs on Unix, Windows,

and the Mac OS using the PalmPalmPalmPalm
OS EmulatorOS EmulatorOS EmulatorOS Emulator now available for
all three platforms.

http://www.quartus.net/

DELTA Forth 1.0 is now
available. This is the latest in a
series of updates for this Java-Java-Java-Java-
based Forthbased Forthbased Forthbased Forth. Help in

4

developing it further is
welcome.

DELTA Forth was rated 5 stars
at SuperShareware
(www.supershareware.com) and
Top 25% at JARS
(www.jars.com)

You may download your free
copy from:

http://www.dataman.ro/dforth

A new release of Ralph
Hempels pbForth for LegoLegoLegoLego
MindstormsMindstormsMindstormsMindstorms is now available.
Download version 1.1.1 from:

http://www.hempeldesigngroup.co
m/lego/pbFORTH

Wonyong Koh's hForth is a
well-respected ANS Forth for a
variety of processors. Now
available to suit ZMASM forZMASM forZMASM forZMASM for
Z80Z80Z80Z80.

http://www2.whidbey.net/

~beattidp/

HolonJForth gives a new twist
on mixing languages and
enables you to write in Forth,

use Java libraries and compile
to run on a Java VirtualJava VirtualJava VirtualJava Virtual

MachineMachineMachineMachine with no performance
penalty.

http://holonforth.com/tools/java/

holonj.htm

Rick Hohensee has made Linux
available on a single floppysingle floppysingle floppysingle floppy
with 2 Forths. Look forward to
hearing more about this
technology.

ftp://linux01.gwdg.de/pub/

cLIeNUX/interim

eFortheFortheFortheForth is now available direct
from the web site of Bill
Muench, its author.

This version includes much
material missing from the
previous 1997 version.

http://members.aol.com/forth/

Quartus Forth, well-known for
Palm Pilot, is available for the
Royal Royal Royal Royal da Vincida Vincida Vincida Vinci PDA. It was

previewed in the Nov. issue of

5

Forth News and is now
available from

http://www.royal.com/davinci/

The free evaluation version can
be found at:

http://www.quartus.net/files

Commercial Systems

iForthiForthiForthiForth is a high-performance
32-bit ANS Forth available for
several platforms including
Linux and Windows NT. Full
details including graphics
output are on the web site.

http://www.iae.nl/users/mhx/

support.html

iForth costs 200 Guilders
(currently about £56).

Have a look at this page on the
same site for 6 examples of
classic programsclassic programsclassic programsclassic programs in ANS Forth.

www.iae.nl/users/mhx/

programs.html

Is VFX the fastest ForthVFX the fastest ForthVFX the fastest ForthVFX the fastest Forth yet?
Published benchmarks give 4 -
10 times faster than nearest
commercial rival and within
25% of hand-crafted assembler

You can now try out MPE's
performance claims for free by
downloading the very latest
ProForth for Windows with the
VFX code generator:

www.mpeltd.demon.co.uk

Hardware

Elizabeth Rather reports on
comp.lang.forth that the
RTX2000RTX2000RTX2000RTX2000 is only available in
the RAD-hard (and very
expensive) version.

"But it is certainly alive in that
niche market, and getting some
new design wins for space &
defense use. We are in the
process of adapting our SwiftX
cross-compilers to support it" ...

"ShBoomShBoomShBoomShBoom survives as the
PSC1000, and appears to be
thriving thanks to being
promoted as a 'Java chip'."

http://www.forth.com

A variant of Chuck Chuck Chuck Chuck Moore's P32Moore's P32Moore's P32Moore's P32
has been designed expressly for
packet switching. The P32
router was designed to route
packets and provide protocol
translation on multiple gigabit
data streams on a chip that
could be mass produced for
around $1.

Jeff Fox has re-organised his
UltraTechnology web siteUltraTechnology web siteUltraTechnology web siteUltraTechnology web site and
added new material. Current
work focusses on the F21d
which is performing slightly
better than expected.

http://www.UltraTechnology.com

6

fcebcab@ciccp.es

 The 21st FORML Conference
Forth and the Internet

Federico de Ceballos

I am grateful to Federico for this personal report of FORML, which I
think is the first to appear in Forthwrite.

This last November, I took the opportunity of 'crossing the Pond' and visiting sunny
California, the home of FIG. I went not only to present a paper at the 21st FORML
Conference but also to have first-hand knowledge of the main characters behind the
scenes. It did pay off: I met Chuck, Elizabeth, Ting and a number of other Forthers.
What follows is a short remembrance of what happened there.

A Long Journey
For me, getting to the Conference has been the longest journey I have ever made in
such a short time. To arrive at the site I had to go down to Madrid, up to London,
west to Los Angeles and up again to Monterey.

Of course, this is not the easiest way, but it allowed me to be at the 20th Anniversary
Reunion and also do some shopping at London. At the same time, flying to Los
Angeles instead of San José gave me the opportunity to do some driving along the
Pacific coast.

The Monterey Peninsula and Pacific Grove
The conference was held at the Asilomar Conference Center, a camp and
conference site for the YWCA dating from 1913 and now operated by the State of
California. The name itself is a coined term, trying to mean 'a refuge by the sea' in
Spanish (well, not quite...).

The Centre is a complex of meeting halls, dining facilities and guestrooms situated
on 105 secluded acres of scenic forest and sand dunes. It is a curious place, with
buildings having names the like of 'Scripps', 'Crocker' or 'Manzanita' (this last is real
Spanish, it means little apple) and a lot of little roads which can make you lose your
way at night.

The XXI Conference
The first conference was held in London in January 1980, but moved the following
year to Asilomar and has stayed there since.

Robert R. Reiling, who had directed the conference for the last nineteen years, died
recently and was duly remembered at the beginning of the first session. Richard C.
Wagner has taken the torch for this year, but it appears that there will be greater
rotations in years to come.

7

Papers Presented
Wil Baden talked about one of his favourite topics: data encryption. In a paper
called SHA-1 Secure Hash Algorithm, he presents an ANS-Forth implementation of
that algorithm trying to get the simplest code from a reader's point of view. Even if
you are not interested in this subject, it is a fine example of Wil's coding style.

In another paper, Wil talked about "the most powerful text editor that he's ever
used". It is written in Forth, is directly integrated with Forth and has the ability to
submit a line of text to be interpreted. This way he doesn't have to leave the editor,
since almost all work can be done in it.

Yet he had something more to present, and this was Solitaire. This is not a card
game, but a powerful way of encrypting messages. Having in mind the dictum
"cheap, fast, good: choose two", he left aside the middle one and produced an
algorithm, which doesn't need a computer. Of course, it does need a pack of cards.
As Wil puts it: "soon the secret police will seize and torture anyone with a deck of
cards. A card deck is a munition and criminal to export".

As an alternative, of course, you can use your Forth system.

Apart from all this, Wil and his anagrammatical friends Neil Bawd and Albin Dew
presented some impromptu papers. The shortest one showed how to determine
whether a machine is big-endian or little-endian.

Wil's (or Albin's) solution is: : LITTLE-ENDIAN (-- flag) BASE C@ 0<> ;

Glen B. Haydon discussed Forth Philosophy in the real world. He made a short
walk through the history of the language and the conflict between natural change
and standardisation.

Everett F. Carter explained how to subset TCP/IP. He did a short review of the
different layers involved and showed what kind of applications could benefit from
using one or more layers instead of the whole lot.

Of all papers, the one that had the least relationship with Forth was the one
presented by Philip J. Daunt. He is a practising attorney whose only relationship
with computers is as an end user. He talked about the problems that may be
encounter by someone who tries to start a new business (or the ones that might
appear later, if he or she chooses to go back to their previous job).

John R. Hart gave a rather technical presentation about building a network
transceiver using Forth as an HDL. Thanks to Forth's versatility, he manages to get
a clean solution that could be designed in three days and fits into a low cost PLD.

Charles Esson presented several papers about ColdForth, a Forth OS for the
ColdFire family of processors. In the first one, he explains the design goals of
ColdForth and the kernel details of his TCP/IP implementation.

8

Another paper of his describes ColdForth Multi-tasking. This system employs a pre-
emptive version as opposed to the co-operative behaviour found in most systems.
By using pre-emption he is able to assign a low priority to the TCP/IP stacks. The
author goes on and discusses the problems involved in generating a time-based
waveform in a heavily loaded system.

In his last paper, Charles describes ColdForth heap management, something that is
necessary with the TCP/IP protocol. He is primary concerned with avoiding
fragmentation and this is achieved by a simple way (even if not necessary the most
memory efficient).

In ColdForth, memory buffers are memory blocks with a size that is a power of two.
Furthermore, the address of a memory block has bits below its size set to zero.
This way, it is easy to split a block into to equal ones or to join them again when
both have been freed.

C. H. Ting presented several papers, one of them being quite short. It has a short
title ('Tao of Forth'), a short summary (it states that this paper attempts to simplify
Michael Ham's description of Forth1) and a text shorter still.

The text proper is reproduced to the right of this paragraph. I don't have
Ting's written permission to reproduce the entire paper, but I believe that
you cannot copyright a character. With this symbol, the author wants to
convey the idea that the essence of Forth lies in its ability to define new
words.

 :
Fortunately, the author was more explicit when talking. His sense
of minimisation comes from the Tao Teh King. Being Chinese
himself, he was able to quote directly from Chapter XLVIII
(reproduced to the left). The symbols mean something like 'do
learn daily increase', 'do Tao daily decrease', 'decrease and
decrease until nothing' and 'do no do and no no do'. I hope this
makes more sense.

In another paper, Dr. Ting presents eForth v2, the first serious enhancement since
1990. The main changes concern speed improvements (achieved by means of using
low level words for more utilities and switching in some processors to subroutine
threading) and simplification of the most complex aspects (name and code space
are now mixed, CATCH and THROW are not implemented, there is only one
vocabulary and multi-tasking is forgotten).

Ting argues that multi-tasking is required in very few embedded applications. My
opinion in this matter is that one of the advantages of Forth is its ability to offer
effective multi-tasking at a very low cost. It also happens that the number of small

1 "Forth is like Tao; it is a Way, and is realised when followed. Its fragility is its
strength; its simplicity is its direction."

9

tasks in an embedded application can be greater than the few main tasks found in
desktop programs.

Have you ever wondered what does the 'e' stands for? It was neither 'easy' nor
'educational'. The program was to be called PIGForth, so the 'e' is the tail of the pig.
From now on, however, eForth means embedded Forth.

As an extension to the new work done in eForth, Ting has prepared the "Firmware
Engineering Workshop". This is a short tutorial that tries to teach hardware
engineers the art of building firmware for embedded systems. The author is quite
strong in his views:

Twenty years ago when I was first exposed to Forth, I was completely convinced
that it was the ultimate software tool that allows us human beings to realise the
full potential of computers. I still have not seen anything coming even close to its
expressiveness and power. [...] We have the tool. We only need the will to use it.

Ting devoted another paper to the P8 Microprocessor. This in a modification of the
P16 (discussed in Volume 22 from Offete Enterprises) with an 8-bit external data
bus. He manages to get a working computer with only the XS40 board, a XC4005
FPGA (with 5000 gates) and a 32KB RAM chip.

An interesting point in the design is the 'no-cost UART', which uses the right shift
instruction 2/ to send data serially out and to receive serial data into the T register.

Elizabeth D. Rather spoke about how OOP has been incorporated into Forth Inc.
compiler, in a paper called SwiftForth Foundation Classes.

My own paper, about accessing an Ethernet network from a Siemens AS990
system, appeared to be the longest in print. In it I describe a system which has a
narrow application field (safety related systems in nuclear power plants) and the
coding technique needed to access some utilities which were planned to be used
from C functions and which relied in an operating system that, in my case, isn't
there.

I won't say more about it here, but any further questions about my paper (or request
for more information from others) can be directed to my e-mail address.

Richard E. Haskell talked about the philosophy of WHYP, a subroutine-threaded
implementation for the 6812. The target contains the code (obviously), but the
heads reside in a PC host. By means of a C++ program, the PC sends commands
that are executed in the target (something similar to SwiftX line of cross-compilers).

All this is documented in Richard's new book: Design of Embedded Systems Using
68HC12/11 Microcontrollers, available from Prentice-Hall. The only question that
arises is: why did he have to use C++ in the host? We all know of a better choice for
this kind of task, don't we?

John Carpenter talked about mixing Java and Forth. Because Java takes some
time to come up, he has decided to have Java up all the time and let it call Forth

10

when needed. In his paper he explains the requirements (he is using SwiftForth) to
make a DLL and shows a simple example of its usage.

John Rible presented a short paper about CARDIAC 2000. CARDIAC is a cardboard
illustrative aid to computation that was developed at Bell Labs in the late '60s to be
used in various classroom settings. John has prepared a new instruction set based
on the technology of the '90s.

Charles Moore didn't give a proper presentation. Instead, he talked about what he
has been doing lately. This is mostly programming in Color Forth. He showed us one
screen of code and complained about Color Forth not having a large number of
followers.

This is a good topic for a flame war (and indeed, shortly after the conference, Wil
Baden posted a message in comp.lang.forth stating that Color Forth was "three
years waste of Chuck's time"). Whatever your view may be, hearing its inventor talk
about it you get the feeling of "something" being there.

He also gave an impromptu talk about 100x. This was a reflection about the
relationship between secondary storage space and main memory, which has kept
more or less constant through time (640 KB memory and 40 MB disk, or 64 MB
memory and 6 GB disk).

One thing I noticed about Chuck: During the first session, he was sitting by my side
(actually, I was the one who sat by his side). The next session, however, he moved
to another place far away. The following day he moved yet again and he did the
same in the rest of the sessions. The last day he remarked that everybody else
appeared to have sat in the same place throughout the conference. He thought that
sitting in a different place gave a different perspective. This may sound funny, of
course, but it gives an idea of how far you should go when you are interested in
getting the "whole picture".

Life After Forth
Contrary to what this heading says, there doesn't appear to be much life after Forth
(at least in FORML). We spent all the available time talking about Forth-related
subjects; not only during the 'Wine and Cheese' parties but also afterwards until two
or three in the morning.

Anything was allowed, from our opinions towards Microsoft (ah, ah) or when should
the next millennium be celebrated.

Other Issues
It appears that FIG is having some trouble with keeping their current members and
getting new ones. Their grand total is now around seven hundred and they think that
they might have a problem if that number is allowed to decrease further. One of
FIG's assets is Forth Dimensions, which could be compromised if it doesn't have
adequate funding.

Another problem is FORML itself. This conference managed to attract quite a few
papers and two dozen attendees. However, as you can see in the previous pages,

11

several were from the same author. It appears that some people are more
interested in renewing friendships that in "Forth Modification".

Everybody is encouraged to attend this year, if only for the fun. Of course, it is a
long journey from here...

It is a custom at the conferences to award some prizes for various reasons. This
year, bottles of Chilean wine were given to the shortest paper (Ting, of course), to
punctuality (it went to Elizabeth Rather, who managed to arrived in time directly from
France after some delays at the airport) and to the person coming from furthest
away (this was given, ex aequo, to Charles Esson - from Australia - and myself).

As an additional memento, newcomers were given the FIG T-shirt. I'm looking
forward to the summer; but then I suppose we all are.

Chris Jakeman
cjakeman@bigfoot.com

Did you Know? - Novell

While other parts of Forthwrite bring you all the news and the latest
ideas and developments, the Did You Know? section highlights

achievements in Forth, both recent and historical (taking care always
to distinguish hearsay from attested fact).

Initially I found this item difficult to credit but it does check out.

The original Novell network system was written in Forth
(1980-81 or so) on special S-100 computers - Dean Miller

Dean reports: " When I booted the Novell network it came
up with the Forth prompt and I was able to execute normal
Forth words.

Note that this pre-dated the PC. It was S-100 (Z80)
hardware with dumb terminals. There was a server box
and client boxes. I don't recall what network hardware or
physical layer protocol was used.

I also don't recall whether or not the client computers were
running Forth as the OS or were running CP/M. I wrote a
couple of add-ons for it (the network was being installed in
an attorney's office in the Denver area)."

12

Jeremy Fowell
0121-440-1809

Jeremy.Fowell@btinternet.com

F11-UK, FIG UK Hardware Project
Jeremy Fowell

A brief update as Jeremy reaches the end of his "to do" list.

Documentation Progress
I now have the Glossary for Pygmy
HC11 finished in ASCII text format.
It seemed to take forever. It
contains around 300 entries
spanning 19 A4 pages. Fortunately I
now have Adobe Acrobat on my PC
and so intend to provide all
documentation in PDF format. It
should bring that 19 page total
down a bit I hope.

Not all of these items are executable
Forth words, I have tried to include
system constants and anything
which might crop up in the code,
even though there are a number that
you would never use in any
application programs that you write.

Stepping up onto soapbox ...
There is nothing worse than
coming across an obscure
name in some Forth code that
takes ages to track down and
explain. I'm sure this sort of
thing causes quite a few
newcomers to give up on
Forth altogether; it's certainly
caused me a few problems.

On-Board A/D
The code for the on-board 8-bit A/D
converter is up and running.

At first I noticed quite a bit of
quantisation noise (is that the
correct term ?) when I connected a
potentiometer to an input and
displayed the result on the PC
screen. The value kept hopping
around by more than +/- 1 digit and
wouldn't settle. After various
attempts at smoothing the value I hit
upon the rather obvious idea of
using the built in function where 4
consecutive readings are taken and
saved in separate memory locations.
These are then placed on the stack
with A/D@ and their average
calculated by:

: 4FILTER (b1 b2 b3 b4 -- b5)
+ + + 4/ ;

4/ is a code word I have written to
avoid normal division (which is a bit
slow) by using the assembler shift-
right instruction.

The complete phrase is:

VOLTAGE-INPUT READ-ONCE A/D@
4FILTER

mailto:Jeremy.Fowell@btinternet.com

13

Text Output From LCD
There is also code now to drive a 16
character x 2 line LCD. The unit I
am using has a LED backlight (80
mA - hardly low power), and looks
very smart indeed. It is connected to
the HC11-E1 via the SPI serial bus
using a single 74HCT595 shift
register. The maximum SPI clock
rate of 1 MHz is used and it worked
first time.

Well, almost. In fact I spent more
than one evening struggling to get it
to display anything at all. It turned
out that the DWOM bit (where do
they get these names from ?) in the
SPI control register had been
overlooked. It has to be cleared to
zero to select push-pull outputs on
Port-D rather than open-drain (slow
rise time with 10 k pull-up resistors).

 The code uses a special version of
EMIT, LCD-EMIT which sends
characters to the LCD rather than
the PC screen. To make things as
simple as possible I now have to
write 2 code words, >LCD and >SCR,
which will quickly redirect output to
the LCD or back to the PC screen.
Then most of the existing output
words such as TYPE, . , U. and U.R
etc. can still be used. The source
code is included in a file of
extensions as part of the F11-UK kit.

The LCD also demonstrates the
principle of adding another 8-bit
output port to the F11-UK board
using the SPI bus.

I did the LCD work at this point
because I needed it for a commercial
project I am also working on.

However what we really really really really need is for
the documentation to be finished off
ASAP . . .

Help Wanted
Graeme and anyone else who might
know, I have tried to post a message
to the Motorola HC11 News Group
using the email address:

68HC11@oakhill-cisc.sps.mot.com

and it bounced straight back with:
Returned mail: Host unknown
(Name server: oakhill-
cisc.sps.mot.com: host not found).

Could you help please ?Could you help please ?Could you help please ?Could you help please ?

14

Fred Behringer
behringe@mathematik.tu-muenchen.de

32-bit GCD without Division in
ZF and Turbo Forth

Fred Behringer

Fred's work is familiar to all of us and here he shares with us his twin
passions of Forth and mathematics, endeavouring as always to
make them accessible to the largest possible audience.

There is much ado about tutorials for the novice. Yet, what
is this novice like? There are so many "novices" out there
who aren't really novices. Novices they are only with
respect to Forth. The best "tutorial", so I hold, is a small
program which the novice can test and analyse.

This is a "fun program" in the sense of Hugh Aguilar (see
Forthwrite Issue 105). It surely has a definite purpose but
it was fun writing it and nobody told me to do so.

The program below is a Forth version of an algorithm in
the book "Prime Numbers and Computer Methods for
Factorization" by Hans Riesel (Boston, Stuttgart, 1985). It's
for determining the greatest common divisor (G.C.D.) of
two 32-bit integers. The special feature of this program is

"it doesn't need division""it doesn't need division""it doesn't need division""it doesn't need division"
that is doesn't need division. All that's needed is done by
subtractions and binary shifts only. (Divisions need 40 CPU
cycles whereas subtractions can do with 1 CPU cycle. With
Pentiums, the ratio still is 10/1.)

I'll take Forth (ZF and Turbo Forth) for the purpose of
comparison only. My main purpose is to show how directly
machine code can be incorporated in a Forth program, and
32-bit machine code in a 16-bit Forth at that. I don't care
about portability. I'm working with a PC clone. The G.C.D.
is a basic mathematical concept sophisticated enough so
that casting it in a CODE definition is vital. I'm not afraid
of reinventing the wheel. If anybody can tell me where

Forth ForForth ForForth ForForth For
more Funmore Funmore Funmore Fun

15

exactly this approach has been published in the Forth
literature, I would not hesitate to renounce priority.

My second purpose is to show how easily 32-bit code can
be incorporated in a 16-bit Forth. The whole package of
"32-bit extensions" that I needed with respect to the (16-
bit) ZF or Turbo Forth assembler was done in form of two
(Yes only two!) extra colon definitions.

I'm fully aware of the fact that what I'm doing is just using
(mis-using?) Forth as an easy and easy-to-modify way of
assembling and using machine code.

There are many papers on code optimisation in the existing
Forth literature. The best optimisation, however, is the one
that optimises the algorithm underlying the code. So let's
take this as a challenge to everyone whether he or she can
find the G.C.D. in less time or by using less code.

The program first tests whether the entries are positive.
Any negative entry is converted to its positive counterpart.
If at least one entry is zero, the program skips to the end
and yields zero as the "greatest common divisor".

With respect to the algorithm, I take the liberty of quoting
from the book just mentioned:

"Another way of avoiding division and multiplication of multi-
precision integers is to apply the binary form of Euclid's algorithm.
It uses subtractions only, coupled with the fact that it is
particularly easy in a binary computer to divide integers by a
power of 2. The integer has only to be shifted s positions to the

right to effect division by 2s. The scheme for finding d = (a,b)
according to this algorithm is:

1. Suppose that a ends in u binary zeros and b in v binary zeros.

2. Let d = 2min(u,v).

3. Form a' = a/2u and b' = b/2v, i.e. shift a and b to the right until all binary
zeros at the right ends are shifted away.

4. Now both a' and b' are odd numbers. Form c = a'-b' which is even. Shift
away the trailing zeros of c and repeat step 3, this time with the reduced c
and min(a',b'). When the result of the subtraction becomes 0, the current
value of a' is the largest odd factor d' of (a,b).

5. Finally, put (a,b) = dd'.

The AlgorithmThe AlgorithmThe AlgorithmThe Algorithm

16

It is quite easy to show that the binary form of Euclid's algorithm
takes at most about ln max(a,b) = 3.32 * log max(a,b) steps.

However, as in the case of the ordinary Euclidean algorithm, the
average number of steps is smaller, approximately 2.35 * log
max(a,b) and thus, because of the simplicity of the operations
performed in each step, the binary form competes very favourably
with the standard version of the algorithm." - End of quotation.

The program was tested with ZF and Turbo Forth. There
was no noticeable difference between the two. The
program was also tested with two different machines, an
80486/66 and a K6-2/350. The ratio of execution times
exactly reflected the ratio of CPU operation frequencies.

I have tested the worst case behaviour only. To achieve
this, I've taken 31 one bits for the first entry
(2,147,483,647 decimal) and 30 one bits for the second
(119,304,647 decimal). These two entries are relatively
prime, i.e. their G.C.D. equals 1, and the determination of
the G.C.D. takes the maximum number of steps, i.e. 31 .
Furthermore, I have employed

: XXX 30000 0 DO GCD LOOP ;
: YYY 100 0 DO XXX LOOP ;

for determining the overall time of executing 300,000
times the GCD , and

: XXX 30000 0 DO LOOP;
: YYY 100 0 DO LOOP;

for subtracting the loop overhead in order to get to the
actual execution time of GCD.

The numbers are given in decimal. In order to avoid stack
overflow and stack overhead, I have added two immediate
stack entry PUSH operations to the program's entry POP
operations, and deleted the PUSHing of the G.C.D. result on
the stack. The execution times of PUSH and POP can be
neglected. Here are the worst case test results:

Execution time of GCD is
! 157 microseconds on the 80486/66 machine, and
! 21.5 microseconds on the K6-2/350.

Following is the program listing (works in ZF as well as
Turbo Forth):

17

\ Greatest common divisor (G.C.D.).
\ Stack entries = 32 bit signed integers.
\ Negative integers will first be converted to positive ones.
\ Zero integers will lead to a zero G.C.D. result on the stack.

ONLY FORTH ALSO
ASSEMBLER DEFINITIONS
HEX

\ Only two assembler extensions needed. Anything else with respect
\ to the 32-bit register access can be done with the ZF (or Turbo
\ Forth) inherent 16-bit assembler

: OPSIZE: 66 C, ; \ 32 bit data access;
\ EAX instead of AX, etc.

: BSF (xX yX --) \ bit search forward;
\ yX shows first 1 bit in

 0F C, MOV \ xX (from the right)
 0BC HERE 2- C! ; \ replace MOV opcode by 2nd part of BSF opcode

FORTH DEFINITIONS

CODE GCD (ud1 ud2 -- ud3)
 10 # CL MOV \ load CL for 2 byte shift
 OPSIZE: BX POP \ ud2 in EBX
 OPSIZE: BX CL ROL \ swap for "little endian"
 OPSIZE: AX POP \ ud1 in EAX
 OPSIZE: AX CL ROL \ swap for "little endian"
 OPSIZE: DX DX XOR \ EDX = 0
 OPSIZE: DX INC \ EDX = 1
 HERE \ jump address for JS
 OPSIZE: AX NEG \ renders AX positive
 JS \ repeat if negative
 HERE 5 +
 JNE \ if EAX = 0, then
 OPSIZE: DX DX XOR \ EDX = 0
 HERE \ jump address for JS
 OPSIZE: BX NEG \ renders BX positive
 JS \ repeat if negative
 HERE 5 +
 JNE \ if EBX = 0, then
 OPSIZE: DX DX XOR \ EDX = 0
 OPSIZE: DX BX XCHG
 OPSIZE: BX BX OR \ if at least one input = 0,
 0<> \ then jump to the end,
 \ --
 IF \ with the result DX = 0

18

 OPSIZE: BX DX XCHG
 OPSIZE: BX CX BSF \ e.g.: BX=8 -> CX=3
 CL DL MOV \ save CL
 OPSIZE: BX CL SHR \ BX = BX/2^CL
 OPSIZE: AX CX BSF \ e.g.: AX=4 -> CX=2
 OPSIZE: AX CL SHR \ AX = AX/2^CL
 DL CL CMP \ CL >= DL ?
 HERE 4 +
 JGE \ if not, then CL -> DL
 CL DL MOV \ DL = min(CL,DL) in any case
 \ --
 BEGIN
 OPSIZE: AX CX BSF \ e.g.: AX=2 -> CX=1
 OPSIZE: AX CL SHR \ AX = AX/2^CL
 OPSIZE: BX AX CMP \ AX > BX ?
 HERE 4 +
 JG \ swap if not
 OPSIZE: AX BX XCHG \ now AX >= BX at any rate
 OPSIZE: BX AX SUB \ AX = AX-BX
 0=
 UNTIL
 \ --
 DL CL MOV
 OPSIZE: BX CL SHL \ BX = BX*2^DL
 10 # CL MOV \ load CL for 2 byte shift
 OPSIZE: BX CL ROL \ swap for "little endian"
 THEN

 \ --
 OPSIZE: BX PUSH \ BX = ud3 = G.C.D.
 NEXT END-CODE

19

Nominations for the
FIG UK Awards

The FIG UK Awards of 1998 were won by Philip
Preston and Paul Bennett. These awards are

given to encourage effort and recognise
achievement. Now is the time to look back and

send in your nominations for 1999.

To nominate your candidate, send in a note of
who, in your opinion, most deserves an award and
why. The recipient of each award will receive a
place in FIG UK web-site's Hall Of Fame, a
mention in Forthwrite and a year's freea year's freea year's freea year's free
membershipmembershipmembershipmembership.

The Achievement Award is given to the member
who has made the best contribution towards Forth
during 1999. The contribution may include a
published article, a library of code or an idea
which inspires others. Whatever form it takes, the
contribution must support the goals of FIG UK.

The Forthwrite Award is given to the member who
has made the best contribution to Forthwrite
during 1999. The contribution may be judged on
quality of writing, tutorial potential,
entertainment value or any criteria which seems
appropriate.

The awards are judged by the officers of FIG UK.
All who are members on 31st Dec. 1999 are
eligible candidates (except the judges).

FreeFreeFreeFree
membershipmembershipmembershipmembership

AchievementAchievementAchievementAchievement

ForthwriteForthwriteForthwriteForthwrite

20

Jack Brien
jackbrien@bmallard.swinternet.co.uk

All you need to know about STATE,
IMMEDIATE and POSTPONE

Jack Brien

The issues which Jack reviews here by special invitation have been
the source of confusion and many postings to comp.lang.forth. Jack

provides us with the definitive reference to this thorny topic.

Using and Controlling STATE
STATE is the flag which tells programs whether the text interpreter is interpreting or
compiling (i.e. making a new definition).

STATE @ IF compiling ELSE interpreting THEN

While compiling, STATE can be temporarily turned off with [to begin interpreting, and
restored with] to return to compiling. This may be done, for example, to calculate a
literal value, e.g.

VARIABLE FOO
...
: BAR ... [foo @] LITERAL ;
: BAR1 ... foo @ ;

"Foo @" is interpreted at compile time in the definition of BAR, and the result compiled
by LITERAL. In the definition of BAR1, "foo @" is compiled to be executed later, at run
time. BAR always returns the same initial value of FOO, whereas BAR1 returns whatever
FOO holds when it is executed.

 ' name returns name's execution token (xt) which represents its behaviour
 ' name EXECUTE performs name's behaviour

EXECUTE does not either know or care about the current STATE, so, given the same xt, it
will perform the same behaviour whether interpreting or compiling. That's how the text
interpreter treats IMMEDIATE words, and normal words when interpreting. If it
encounters a normal word while compiling, the text interpreter adds its behaviour to the
current definition. The Standard word to do this, given an xt, is COMPILE, .

mailto:jackbrien@bmallard.swinternet.co.uk

21

Immediate Words
When an immediate word is met during compilation, it is executed instead of compiled.
They are easy to create - all you have to do is use the word IMMEDIATE directly after the
definition. (IMMEDIATE changes the most recent definition). You can have IMMEDIATE
colon definitions, IMMEDIATE variables, IMMEDIATE constants, IMMEDIATE anything that
has a name. FIND can distinguish between immediate and normal words. It returns the xt
and a flag of -1 for normal words; the xt and a flag of 1 for immediate words. That is
the only difference between normal and immediate words. Neither EXECUTE nor
COMPILE, know or care if the xt they receive comes from a normal or an immediate
word.

Here's a simple text interpreter (so simple, it gives up at the first unknown word):

BEGIN
BL WORD FIND DUP WHILE

 STATE @ IF \ compiling?
 -1 = IF \ normal word?

COMPILE, ELSE \ add its behaviour to the definition
 EXECUTE THEN \ immediate - perform its behaviour
 ELSE \ interpreting
 EXECUTE THEN \ perform its behaviour
REPEAT
2DROP

That's all you need to create a simple compiler on most Forths. In fact, you would also
need just one immediate word - [- to switch from compiling to interpreting. Normal
words can switch in the other direction. But it would be more convenient to have a
number of immediate words:

! Structure Words: BEGIN , DO , IF , THEN , etc.

! Literal Words: ['] , [CHAR] , LITERAL , S" etc.

! Words to stop compiling: [, ;

! Comment Words: (, \ , [IF] etc.

Compile-Only Words
However, you will notice that most of these words have behaviours that make no sense
while interpreting. Only the comment words can actually be executed regardless of
STATE. The rest are "compile-only" words which should never be invoked (by executing
them either directly, or in a definition in which they've been compiled) when

22

interpreting. It's possible to implement compile-only words as normal or immediate
definitions (and most Forth systems do) but you have to be careful never to invoke them
in the state for which they were not intended.

It's not g
compile
own com

Using P
There is

P

POSTPON

If name

If name
compile

If name
executed

In any c
interpre

:

will wor

:

which is

So, does
example

:

N

Rule 1: Never try to get or use the xt of a compile-only word
ood practice - and on some systems it may not even be possible - to re-define
-only words. Fortunately, these restrictions only matter if you want to write your
piling text interpreter - and that's outside the scope of the present article.

OSTPONE
 a Standard way to get a compile-only word's compilation action:

OSTPONE name

E itself is also compile-only.

is compile-only, its compilation action is added to the current definition.

is immediate, code equivalent to ' name COMPILE, will be executed at
-time.

is a normal word, will be code equivalent to ' name COMPILE, will be
 at run-time.

ase, code compiled by POSTPONE should itself never be invoked while
ting. The only possible exception is where name is an immediate word:

 MY(POSTPONE (; IMMEDIATE

k on every system I know, because it could be equally well defined as:

 MY(['] (EXECUTE ; IMMEDIATE

 better practice.

 the use of POSTPONE make a definition compile-only? Not quite. A simple
 comes from the Standard document:

 NOP : POSTPONE ; IMMEDIATE ;

OP ALIGN NOP ALIGNED

NOP is a defining word that creates do-nothing colon definitions and makes them
immediate, so they do nothing regardless of STATE (they are never compiled into other
words). Here STATE gets switched when NOP executes - : turns it on, and the
POSTPONEd ; turns it off . So although NOP performs the compilation action of ; it
does so when STATE is ON.

The sa

State-
STATE
the use
compi

The co
equiva
to POS
restric
POSTP
it's inv

Otherw

Say yo

Interpr

Test it
other d
smart,
build a
Rule 2: Words defined with POSTPONE are usually compile-only.
23

me principle is used in so-called STATE-smart words.

Smart Words
-smart words are a high-level convenience. They are good when you don't want
r to have to remember two separate words - one for interpreting and one for

ling. So F83 had a word ASCII which could be defined:

: ASCII STATE @ IF POSTPONE [CHAR] ELSE CHAR THEN ;
IMMEDIATE

mpilation action of ASCII is guarded by the test of STATE. When compiling, it's
lent to [CHAR]. When interpreting, ASCII invokes CHAR instead. It's also safe
TPONE ASCII and other STATE-smart words, so long as you observe the
tion on never invoking the resulting code while interpreting. Then what you have
ONEd will always use the compilation action, since STATE will always be on when
oked.

ise, here's an example of what can go wrong:

u want a word CONTROL that returns a control code instead of an ASCII value.

et version:

: CONTROL POSTPONE ASCII \ OK. ASCII is an immediate word
 >CONTROL ; \ Convert the ASCII value returned

 and it works. CONTROL invokes CHAR while interpreting, and it also compiles into
efinitions which also work while interpreting. However because ASCII is state-
the phrase POSTPONE ASCII can lead to problems later on. For example, we can
 compile-only version [CONTROL] - by analogy with

: [CHAR] CHAR POSTPONE LITERAL ; IMMEDIATE

2

we get:

: [CONTROL] CONTROL POSTPONE LITERAL ; IMMEDIATE

Doesn't work as you might expect. CONTROL only invokes CHAR if STATE is OFF. When it
is executed by [CONTROL] it will invoke the compilation action of [CHAR], which is
certainly not what is required.

It wouldn't have helped to write

: CONTROL ['] ASCII EXECUTE ;

['] , ' or FIND cannot unaided distinguish a STATE-smart word from any other
immediate word, and so extract the STATE-dumb interpretation action. There's no easy
way to invoke the interpretation action of a STATE-smart while compiling. The safest
option is to treat STATE-smart words like compile-only words and not mess with their
xt's.

C
h
i
a

1

h
f
d

Rule 3: State-smart words defined with POSTPONE are always compile-only.
4

OMPINT below is an un-easy option, inspired1 by Anton Ertl's combined words at
ttp://www.complang.tuwien.ac.at/forth/combined.zip It's messy, but it's a good
llustration of the power of POSTPONE. COMPINT is an enhanced POSTPONE which will
void these problems:

: [[POSTPONE [; \ Turn STATE off at run time, not compile time

: COMPINT \ Compile code equivalent to the interpret
\ action of a STATE-smart word

' \ Get the xt
POSTPONE STATE POSTPONE @ POSTPONE IF
 POSTPONE [[\ Code to turn STATE off if it is ON
 DUP COMPILE, \ Compile the xt
 POSTPONE] \ and restore STATE
 POSTPONE ELSE \ Interpreting already; don't mess with STATE

 See also Anton Ertl's comments http://www.complang.tuwien.ac.at/forth/dpans-
tml/comment-semantics.html. and Mitch Bradley's proposal on 'syntactic elements'
tp://ftp.minerva.com/pub/x3j14/proposal/99-032-proposal-impl-q5-7-8-9.txt for a
ifferent perspective.

 COMPILE, \ Just do it
POSTPONE THEN ; IMMEDIATE

Used as : CONTROL COMPINT ASCII >CONTROL ; this produces the code:

: CONTROL STATE @ IF [[ASCII] ELSE ASCII THEN >CONTROL ;

B
a

T

.
Rule 4: COMPINT is a safe version of POSTPONE
etter still, avoid state-smartness altogether and just factor the interpretation action into
 definition of its own and compile that instead!

his brings us to the last and simplest rule:
Rule 5: Avoid state-smart words.
25

26

 01932 786440
101745.3615@compuserve.com

Vierte Dimension 1/00
Alan Wenham

Alan provides a look at the latest issue of the German FIG magazine.
To borrow a copy or to arrange for a translation of an individual

article, please call Alan.

Miscellaneous

Henry Vinerts Letters, publicity inserts for FIG UK, FIG USA and Dutch FIG
together with a report from Henry Vinerts on recent meetings
of Silicon Valley FIG.

Structural Resonance Analysis

Johannes
Reilhofer

Reprint of a report by Johannes Reilhofer from the last
German Forth meeting in Oberammergau concerning the
non-destructive vibration testing of automobile drive shafts.
The test system was programmed in Forth and has found
approval among several American firms.

CF2NAME

Wolfgang Allinger This inspiring article is by Wolfgang Allinger, well known to
the members of Forth Gesellschaft. It was designed for F-PC
but is also fundamentally applicable to other Forths and it
concerns multi-tasking. When one is in the interactive
testing phase of a program which is not yet working, one
often has great need to obtain the name of the calling word
(the word which may be causing the system to hang) from
the addresses left on the return stack. It is a type of “inverse
problem”.

Hashing

Hugh Aguilar This is the second and final part of an article by Hugh
Aguilar, translated by Fred Behringer, which originally
appeared in Forth Dimensions, Vol 20, Nos 5 & 6, of Jan/Apr
1999. It covers the interactive breaking of coded text with
keys of the type used in the American Civil War. These are
rich Forth programs.

27

Forth For Fun

This is the German version of the item which appeared in
Forthwrite 105.

Reed-Solomon Error Correction - Part 2

Glenn Dixon This is the second part of the paper by Glenn Dixon,
translated by Fred Behringer, which appeared in Forth
Dimensions Vol 20, Nos 5&6, of Jan/Apr 1999. It concerns
error recognition and correction in ZIP drive operations,
compact discs etc..

From The 'Net
This snippet came from comp.lang.forth. I love this sort of thing.

> The ability to set BASE to anything from 2 to 36 is useful for
> giving a tutorial on number bases but I wonder if it has any other
> utilitarian value. In practice do any of you people use number
> bases other than 2, 8, 10 and 16? If so can you tell us about it?

How about converting a time in seconds to a string HH:MM.SS? As in:

DECIMAL

: SIX 6 BASE ! ;

: .HMS (n --)
 0 <# DECIMAL # SIX # [CHAR] . HOLD
 DECIMAL # SIX # [CHAR] : HOLD
 DECIMAL # # #> TYPE SPACE ;

: >SEC (h m s -- n)
 ROT 60 * ROT + 60 * + ;

10 30 5 >SEC .HMS (10:30.05)

28

John Tasgal
0161 7739365

john@tcl.prestel.co.uk

An Introduction to Machine Forth
John Tasgal

There has been a lot of interest in Chuck Moore's recent work on
special processors and the languages that go with them (see issue

June 1999 for an interview with Moore). These are Forths that
deviate from the classical model to match the hardware more

closely. The differences challenge our assumptions about standard
Forth; could it become both simpler and better?

John Tasgal has researched both Machine Forth and Color Forth
and expounds these differences. Alongside the Color Forth article (in
the next issue) is a commentary on some of Chuck's published code,

showing how complex code can be written with a simpler Forth.

Machine Forth (MF) is a development, principally by Charles Moore and Jeff
Fox, of classical Forth. Its aim is to simplify both the design of stack chips and
the Forth-style languages they use. It is a low-level Forth closely mapped to the
underlying hardware.

There are two quite separate parts to this language:

The first part is a core which is the instruction set of a MISC (Minimal
Instruction Set Computing) chip. The second part is an extension to the
instruction set to allow word and dictionary building etc.

As far as I know there is no standard and so I have chosen to use the Ultra
Technology F21 chip as the 'reference' for the MF instruction set. This article
describes the 'programming model' of a MISC chip. I only describe hardware
where relevant.

Notation
T(n) The n'th bit of register T
T(n1 .. n0) A bitfield in register T from bit n1 down to bit n0

Phrases

To present the structural templates below in compact form these abbreviations
are used for phrases, that is, a sequence of tokens :

flag? A phrase which leaves a value in T(19..0) for use by IF
carry? A phrase which leaves a value in T(20) for use by -IF

29

<tt The phrase executed when IF is true
<ff The phrase executed when IF is false

The MISC Chip
! There are 5 registers, 2 circular stacks, and a 5-bit opcode with 27

instructions decoded.

! All on-chip registers are 21 bits wide.

! The MSB, bit 20, is used for memory control for instructions which access
external memory; as carry for the add instruction; and as an ordinary bit
for the others.

! IF reads bits 19..0 and jumps if they are false. It does not pop the stack
(unlike a classical IF). It is therefore called 'non-destructive'.

! -IF jumps if bit 20 is false. This too is non-destructive.

! 2/ on the F21 shifts all bits T(20..0) right. It can therefore be used either
as 2/ or U2/, or for multiple-precision arithmetic.

The Registers

! PCPCPCPC The Program counter

! AAAA The Address register for memory access

! TTTT Top of data stack, the implied operand for arithmetic, logic and IF
 instructions

! SSSS The 'subtop' register, the second on the data stack.

! RRRR Top of return stack

The Circular Stacks

! The Data StackThe Data StackThe Data StackThe Data Stack (S2 .. S11) (S2 .. S11) (S2 .. S11) (S2 .. S11) A 16-element circular stack below T
 and S

! The Return StackThe Return StackThe Return StackThe Return Stack (R1 .. R10) (R1 .. R10) (R1 .. R10) (R1 .. R10) A 16-element circular stack below R

The Instruction Set

Control

! ELSE Unconditional jump

! IF Non-Destructive IF. Jump if T(19..0) is false (leaves stack
untouched)

! -IF Non-destructive jump if-carry-false

30

! CALL A Subroutine call. Push PC+1 to R

! RET Return from Subroutine. Pop R to PC

A Register

! A (-- A ; T = A) Push A to T

! @A (-- n0 ; T = ^A) Fetch contents of memory at
address A and push to T.

! @A+ (-- n0 ; T = ^A, A=A+1) Fetch A and push to T.
Increment A.
('Auto Post-Increment')

! !A (n0 -- ; mem(A) = n0) Pop T to memory at address A

! !A+ (n0 -- ; mem(A) = n0, A=A+1) Pop T to memory at
address A. Increment A

! A! (a0 -- ; A = T) Pop T to A

R Register and the Return Stack

! POPPOPPOPPOP (-- r0 ;(-- r0 ;(-- r0 ;(-- r0 ; r0 -R- r0 -R- r0 -R- r0 -R- ; ; ; ; T = R) T = R) T = R) T = R) Pop R and push to T

! PUSHPUSHPUSHPUSH (n0 -- ;(n0 -- ;(n0 -- ;(n0 -- ; -R- n0 ; -R- n0 ; -R- n0 ; -R- n0 ; R = T) R = T) R = T) R = T) Pop T and push to R

! @R+@R+@R+@R+ (-- n0 ; T = ^R, R=R+1)(-- n0 ; T = ^R, R=R+1)(-- n0 ; T = ^R, R=R+1)(-- n0 ; T = ^R, R=R+1) Fetch from address in R, push to
T. Increment R

! !R+!R+!R+!R+ (n0 --(n0 --(n0 --(n0 -- ; ; ; ; mem(R) = n0, R=R+1)mem(R) = n0, R=R+1)mem(R) = n0, R=R+1)mem(R) = n0, R=R+1)Pop T to memory
at address R. Increment R

Data Stack Manipulation

! DUPDUPDUPDUP (n0 -- n0 (n0 -- n0 (n0 -- n0 (n0 -- n0 n0)n0)n0)n0) Push T to T

! DROPDROPDROPDROP (n0 --)(n0 --)(n0 --)(n0 --) Pop T

! OVEROVEROVEROVER (n1 n0 -- n1 n0 n1)(n1 n0 -- n1 n0 n1)(n1 n0 -- n1 n0 n1)(n1 n0 -- n1 n0 n1) Push S to T

Arithmetic

! ++++ (n1 n0 -- n0'(n1 n0 -- n0'(n1 n0 -- n0'(n1 n0 -- n0' ; T = T + S) ; T = T + S) ; T = T + S) ; T = T + S) Add S to T.

! +*+*+*+* (n1 n0 -- n1 n0'(n1 n0 -- n1 n0'(n1 n0 -- n1 n0'(n1 n0 -- n1 n0' ; T = T + S ; T = T + S ; T = T + S ; T = T + S {T(0)=1}) {T(0)=1}) {T(0)=1}) {T(0)=1}) If T(0) is true, add
S to T non-destructively.
A multiply step.

 ((((n1 n0 -- n1 n0 n1 n0 -- n1 n0 n1 n0 -- n1 n0 n1 n0 -- n1 n0 ; {T(0)=0}) ; {T(0)=0}) ; {T(0)=0}) ; {T(0)=0}) If T(0) is false,
do nothing.

31

Bitwise

! COMCOMCOMCOM (n0 -- n0' ; T = NOT(T))(n0 -- n0' ; T = NOT(T))(n0 -- n0' ; T = NOT(T))(n0 -- n0' ; T = NOT(T)) Complement T.
Invert each bit.

! ANDANDANDAND (n1 n0 -- n0' ; T(n1 n0 -- n0' ; T(n1 n0 -- n0' ; T(n1 n0 -- n0' ; T = S AND T) = S AND T) = S AND T) = S AND T) AND S to T

! -OR-OR-OR-OR (n1 n0 -- n0' ; T = S XOR T)(n1 n0 -- n0' ; T = S XOR T)(n1 n0 -- n0' ; T = S XOR T)(n1 n0 -- n0' ; T = S XOR T) Exclusive OR S to T

! 2*2*2*2* (n0 -- n0' ; T = T * 2)(n0 -- n0' ; T = T * 2)(n0 -- n0' ; T = T * 2)(n0 -- n0' ; T = T * 2) Shift Left one bit.
Write 0 to T(0)

! 2/2/2/2/ (n0 -- n0' ; T = T div 2)(n0 -- n0' ; T = T div 2)(n0 -- n0' ; T = T div 2)(n0 -- n0' ; T = T div 2) Shift Right one bit.
WriteT(20..1) to T(19..0).
Write 0 to T(20).

Miscellaneous

! #### (-- n0 , | <number)(-- n0 , | <number)(-- n0 , | <number)(-- n0 , | <number) Fetch a number from PC+1 and push
to T. Increment PC .

! NOPNOPNOPNOP (((()))) Do nothing for 1 cycle.

The Extensions
Very few words need to be added to an assembler based on the above instruction
set to produce a working Forth system. The main categories are:

Definitions
! : Colon starts a new definition

! ; Return. Does not end a definition

! CREATE ... DOES To allow new types

! CODE ... ENDCODE For machine code

Control Structures
These structures have the same meanings as Classical Forth but the flag/carry
remain on the stack after execution.

! flag? IF <tt THEN <ff If flag? is true execute <tt

! carry? -IF <tt THEN <ff If carry? is true execute <tt

! flag? IF <tt ELSE <ff THEN If flag? is true execute <tt, else execute
<ff

! carry? -IF <tt ELSE <ff THEN If carry? is true execute <tt, else
execute <ff

32

! (index) BEGIN ... NEXT A loop with an single index

! BEGIN flag? WHILE <tt REPEAT While flag? is true execute <tt

! BEGIN carry? -WHILE <tt REPEAT While carry is true execute <tt

! BEGIN ... flag? UNTIL Loop until flag? is true

! BEGIN ... carry? -UNTIL Loop until carry? is true

These allow words of various types to be defined; a dictionary to be built; and
for the control of program flow. Numerous other words for arithmetic, logic, and
Operating System functions can then be added to this extension.

Differences From Classical Forth

The Semicolon

This doesn't end a definition; it means simply 'return'. Definitions run into one
another.

The Address Registers

This moves addressing from the the data stack to a register, either A or R.
Both registers also have auto-post-incrementing instructions.
This changes the style of Forth as pointer arithmetic becomes the method of
choice over the use of DO ... LOOP's with indexes.

Non-Destructive Conditionals

In Classical Forth, IF destroys the top of stack. However in Machine Forth IF,
and therefore all the conditionals based on it, are non-destructive. This removes
the need to use DUP when conditionals repeatedly test a flag.

But, it may lead to more use of DROP to remove a flag which would have been
destroyed by a conventional conditional. This suggests that the behaviour of
other words and if necessary the program structure itself should be adapted to
optimise the use of non-destructive conditionals, rather than simply copying a
program written using the destructive versions.

This is another example of a change in programming style.

33

Tail-Recursion Optimisation

In any definition the return action of the word before a semicolon, and of the
semicolon itself, can always be compiled into a single return.

word1 lastword ;

As nothing happens between lastword returning and ';' returning, the lastword
return is superfluous.

A more elaborate example is the recursive call at the end of a WHILE loop. If we
have a series of nested calls then the last instruction is in each case a return. At
runtime this produces '; ; ; ; ;' viz. a sequence of returns.

The point is that when these calls unwind all that happens is that a sequence of
returns are executed, one after the other. Nothing is done between them. The
only necessary return is the first one pushed onto the return stack (and so the
last to be executed).

Removing these superfluous returns is known as tail-recursion optimisation. Most
Machine Forth compilers (and also Color Forth) contain a 'tail-recursion
optimiser'.

Two syntaxes are currently in use to indicate that this optimisation is to be
carried out:

! A special token '-;' (hyphen semicolon)

! A smart semicolon, which involves recognising the 'lastword ;' pattern.

Tail-recursion optimisation is achieved through a compiler optimisation, and also
by the syntax itself. The syntax is so designed that the programmer, simply by
writing a semicolon after a recursive jump, causes the compiler to build a single
return instead of nested returns. Therefore nested returns are eliminated at the
design stage through a syntactical feature.

This is really a very unusual and elegant approach to this problem.

Next Issue
The remaining two articles in this series appear in the next issue of Forthwrite,
describing Charles Moore's newest Forth, Color Forth, which builds on Machine
Forth. This is followed by a detailed commentary on some of Chuck's Color Forth
code to see how it is used in practice.

34

Dutch Forth Users GroupDutch Forth Users GroupDutch Forth Users GroupDutch Forth Users Group

Reading Dutch is easier than you might think. And as Forth is
an international language, reading Dutch code is easier still for
a Forth enthusiast. Are you interested? Why not subscribe to

HCC-Forth-gebruikersgroep

For only 20 guilders a year (£6.30), we will send you 5 to 6
copies of our "fig-leaf" broadsheet 'Het Vijgeblaadje' . This
includes all our activities, progress reports on software and

hardware projects and news of our in-house products.

To join, contact our Chairman:
Willem Ouwerkerk

 Boulevard Heuvelink 126
 6828 KW Arnhem, The Netherlands
 E-Mail: w.ouwerkerk@kader.hobby.nl

The easiest way to pay is to post a 20 Guilder note direct to Willem.

35

Chris Jakeman
01733 753489

cjakeman@bigfoot.com

From the 'Net - Cube Roots
Chris Jakeman

The extracts from comp.lang.forth repeated here show the
newsgroup operating at its co-operative best. An unusual but real

problem is posed, radically different solutions are offered from
around the world and compared in performance. The best performer

turns out to be based on previously published work with an
interesting twist. FIG UK play a significant part in reaching a solution.

What more could you ask!

FIG UK member Paul Bennett has a real problem which isn't covered by any
textbooks I've seen. The simple technique he mentions for solving integer square
roots appeared in Forthwrite not long ago. TIA is short for "Thanks In Advance".

From: Paul Bennett peb@amleth.demon.co.uk
Date:

I have a need for a cube root calculation method that works well
with integer maths of either 16 or 32-bit numbers. It is to form
part of a calculation routine for a programme I am constructing.
Despite a search for suitable material in the books I have that
are not in store (still in chaos after the move).

I already know about using logarithm's for the task but this
seemed a little long-winded. I am hoping for something that is as
simple as counting the odd numbers to obtain the square root.

TIA

The calculation routine is needed for a problem in hydrodynamics - the flow of
fluids.

Our newsgroup readers quickly responded with three very different solutions,
two from the USA and one from another FIG UK member. There is only room for
a portion of the whole thread here, but the rest can be found on www.dejanews.com.

First to appear is a solution from Dr. Julian Noble, author of Scientific Forth,
who uses Forth in his training material.

His solution uses the technique invented by Sir Isaac Newton and relies on the
mathematical relation2 that the rate of increase of x^3 at any value of x is

2 For details, see Jon Bentley, More Programming Pearls pp148-149

36

3x^2. The initial guess is improved by cycling round a loop until it stops
changing.

From: Julian V. Noble jvn@virginia.edu
Date:

Here is a little routine using Newton's method--fairly short &
sweet:

\ Integer cube root
\ version of October 12th, 1999
\ ---
\ (c) Copyright 1999 Julian V. Noble. \
\ Permission is granted by the author to \
\ use this software for any application pro- \
\ vided this copyright notice is preserved. \
\ ---

\ This is an ANS Forth program requiring the CORE wordset

: ^2 DUP * ;

: guess (n -- guess) \ calculates a first guess
 0 >R 1 SWAP (1 n)
 BEGIN 8 /MOD ?DUP 0>
 WHILE SWAP 0> IF OVER R> + >R THEN
 SWAP 2* SWAP
 REPEAT
 0> AND R> + ;

: icube_rt (n -- root) \ Newton's method
 DUP guess (n guess)
 BEGIN 2DUP ^2 / (n guess n/guess^2)
 OVER 2* + (n [n/guess^2]+2*guess)
 3 / (n guess guess')
 TUCK =
 UNTIL NIP ;

The second line of attack came from veteran Wil Baden, who offered a solution
along the lines suggested by Paul - "counting the odd numbers".

Author: Wil Baden <wilbaden@netcom14.netcom.com>
Date: 1999/10/09

The following should do for single numbers when efficiency
is not important.

 : CUBEROOT (u -- r)
 >R 0 0 (root cube -- root)
 BEGIN DUP R@ U< WHILE

37

 1 UNDER+
 OVER DUP 1+ * 3 * 1+ +
 REPEAT
 R> DROP DROP ;

Whereas "counting the odd numbers" is sufficient for square roots, for cube roots
the numbers are more complicated. (For a simpler version of this algorithm, see
elsewhere in this issue.)

FIG UK member, Philip Preston, pointed out that there were only a small
number of answers for the range of 0 to 65535, so the results could be pre-
computed and found when needed using a fast binary search.

Author: Philip Preston <philip@preston20.freeserve.co.uk>
Date: 1999/10/10

Hi Paul,

For 16 bit numbers I would construct a table of cubes at compile
time (only 41 cells) and do a binary search on it at run time -
the index of the nearest match to the search key would be its cube
root. The same method would work for 32 bit numbers but the size
of the table would have to increase to 1626 cells which might be
too expensive.

Soon afterwards, Philip came back with a better variant still. I am especially
pleased that this improved version is based on a previous item in Forthwrite.

From: Philip Preston
Date: 1999/10/10

Whoops! I must remember to drink at least two cups of coffee
before posting when I get home on a Saturday night :-)

Of course a table isn't necessary because the cubes can be
calculated on the fly almost as quickly as they could be fetched
from a table. The following is based on Gordon Charlton's
BINSEARCH from Forthwrite #62, October 1991:

\ 40 CONSTANT MAX-CUBE-ROOT (for 16-bit numbers)
1625 CONSTANT MAX-CUBE-ROOT (for 32-bit numbers)

: CUBE-ROOT (u1 -- u2)
 >R 0 MAX-CUBE-ROOT 1+ BEGIN
 2DUP 1- < WHILE
 2DUP + 2/
 R@ OVER DUP DUP * * U< 0= IF (: CUBE DUP DUP * * ;)
 -ROT
 THEN

38

 NIP
 REPEAT
 R> 2DROP ;

Marcel Hendrix provided a way to compare these offerings on performance.

Author: Marcel Hendrix <mhx@iaehv.iae.nl>
Date: 1999/10/10

Here are some measurements (using iForth) that may be interesting
to some:

1000000 VALUE loops

3e 1/F FCONSTANT 1/3
: CUBRTEST (--)
CR TIMER-RESET loops 0 ?DO 4294901760 CUBEROOT DROP LOOP
.ELAPSED CR TIMER-RESET loops 0 ?DO 4294901760 CUBE-ROOT DROP
LOOP .ELAPSED CR TIMER-RESET loops 0 ?DO 4294901760 S>F 1/3 F**
FDROP LOOP .ELAPSED ;

FORTH> cubrtest
5.611 seconds elapsed. \ Wil Baden's solution
3.952 seconds elapsed. \ Philip Preston's second solution
5.517 seconds elapsed. \ Floating point calculation

The co-processor is out-classed (on a P55-166 at least) by
Philip's / Gordon's implementation. If you don't need the extra
precision, don't have the co-processor and when your Forth is not
at least twice faster than iForth it is clear (wrt efficiency and
size) what to do.

Paul Bennett acknowledged all these contributions, but we don't yet know which
one he adopted.

Author: "Paul E. Bennett" <peb@amleth.demon.co.uk>
Date: 1999/10/11

To all those who responded, many many thanks. I have enough to try
out and see what works in my program. I will try and post later
with information about the one I elected to use. Thanks again all.

Editor's Note: Forthwrite May '98 included an article from Fred Behringer on
integer Cube Roots Without Division. An index with this and other articles back
to 1990 can be found on our web-site and is re-printed every January.

39

Chris Jakeman
cjakeman@bigfoot.com

Cube Roots Again
Chris Jakeman

This item was inspired by the thread on comp.lang.forth (elsewhere in
this issue).

I think the algorithm to find an integer square root by counting odd numbers is a
classic piece of Forth. It may not be efficient or important, but the algorithm is so
simple and neat and makes such good use of +LOOP, that it shines.

Here is the version for square-root, explained in detail in Forthwrite 93 and 94.

: SQRT (square -- root)
 -1 \ Initial Count
 SWAP -1 DO
 2 + \ Increase Count
 DUP +LOOP \ Add Count to Loop Index and test >= square?
 2/ ; \ Extract the result from Count

Cube roots are a little more complex, but I found a solution which has a similar
approach though with an extra value on the Data Stack. With the square root,
we were incrementing the count using 2 +, with a final 2/ to get the result; with
the cube root, we increment using 6 + and finally divide by 6.

: UNDER+ (n1 n2 n3 -- n1+n3 n2) \ As featured in Bons Mots
 ROT + SWAP ;

: CBRT (cube -- root)
 -6 1 \ initial Count & initial Increment
 ROT -1 DO
 6 UNDER+ \ Increase Count
 OVER + \ Add Count to Increment
 DUP +LOOP \ Add Increment to Loop Index and test >= cube?
 DROP \ Increment
 6 / ; \ Extract the result from Count

Letters

John Hayhow From: jhayhow@freezone.co.uk
Sent: 1 March 2000
To: cjakeman@bigfoot.com
Subject: Forth micro-controller development

Dear Chris,

Many thanks for inviting me to the reunion last November and
nudging me into re-joining FIG(UK).

Reading Gordon Charlton's letter in Issue 105 prompted me to
revive a project which I have been considering for some time,
namely applying FORTH to the programming of micro-
controllers.

Micro-controllers such as the Microchip PIC series are being
used everywhere, generally not recognised as computer
systems but as flexible hardware replacements in a wide range
of consumer goods and industrial instruments.

Applying FORTH to these devices raises some significant
problems.

 1) RAM available is at best a few hundred bytes.
 2) Program memory is generally not large enough to
 hold even a modest FORTH system.
 3) Program memory is generally in ROM, requiring
 programming or re-programming to be done
 outside the development system.

John Hayhow describes a project which pulls together published efforts and makes Forth
available on very small, fast micro-controllers. He would be happy to collaborate with other
FIG UK members and work has already begun.

This project differs significantly from the F11-UK being run by Jeremy Fowell. F11-UK
supports a full Forth system and 64K of RAM whereas John's micro-controllers are cheaper
and far smaller. One of the interesting technical options would be the use of multiple
communicating micro-controllers, each executing a dedicated task.

continued One of the major benefits of FORTH as a development system
is the ability to perform incremental compiling. Instead of the
conventional development cycle of Edit-Link-Compile-Test-
Groan-Edit_again...etc. it is possible to switch development to
COMPILE state (simply by calling a compiling word such as
'colon'), add small
extensions to the application program and immediately test
them. The system automatically returns to the INTERPRET
state when the compiling words have finished their work.

To apply this technique to micro-controllers would require a
development system which would:

 1) Partition the FORTH system into a HOST
 contained in the development platform (a PC or
 some other computer system) and a TARGET
 containing the micro-controller hardware. HOST
 and TARGET will be running on different
 processors and the HOST will cross compile to the
 TARGET.
 2) Link HOST and TARGET by a serial means which
 would provide for both communication and
 switching the TARGET between COMPILING
 (programming) and INTERPRETING mode.

Until recently this would have been difficult to realise but
current new micro-controllers are being designed with FLASH
program memory. Erasing memory does not now require placing
the device in a UV lamp box. Re-programming can generally be
performed "in situ" through a serial link. Switching between
erasing, programming, verification and communication can be
done by fairly simple hardware which itself uses a micro-
controller.

There have been several FORTH programs published on
preparing code for programming into micro-controllers.

Tim Hendtlass described a 'Nanocomputer Optimising Target
Compiler' (NOTCH) using FPC to prepare code for the
Microchip PIC16C84 device. Michael Josefson has written
'F2P' which converts FORTH source to assembler source for

continued the Microchip MPASM assembler.

Both of these programs use the conventional batch
processing method, simply preparing input for a separate
assembler-based development system.

Frank Sergeant described a 'Three Word Forth' using the
HOST/TARGET approach with the Motorola HC11 as
TARGET.

Dave Taliaferro recently wrote a series of articles on
'Remote Target Compiling' in which his end target was the
Motorola 50002 DSP device.

Richard Mayer has described a PIC assembler in FORTH and
a PIC programmer using FORTH code and the PC parallel port.

All these articles describe in part the means to build a stand-
alone development system for micro-controllers. All that is
required is to extract the relevant parts and to stitch them
together with any additions as required.

It should be possible to design a development system
adaptable to any micro-controller device, but there are some
devices which would ease the design process and benefit
particularly from its application.

Microchip PIC16F84 is the later FLASH version of the widely
used PIC16C84. It is a simple low cost device with 68bytes
RAM, 1K program memory and 1 1/2 I/O ports.

The articles referred to above are generally concerned with
this device and would be an ideal base to develop the
hardware link and basic communications.

Microchip 16F877 is one of the upper range PIC devices. It
has 368bytes RAM, 8K program memory and 4 1/2 I/O ports,
some of which serve alternatively as 10bit A-D converters,
timers and serial communications.

continued
 This device could be programmed for complex applications
such as a stand-alone data logger. It might hold a self-
contained FORTH system.

The SX28 device from Scenix Semiconductor uses an
instruction set compatible with the PIC devices. It is
blazingly fast, the standard part running at 50 Million
Instructions Per Second (MIPS).

The SX28 has 137bytes RAM, 2K program memory and 2
1/2 I/O ports. It is intended that all peripheral functions
will be realised in software and a number of Virtual
Peripherals(TM) are freely available. The serial
programming arrangements are different to the PIC
devices, making use of the oscillator inputs and avoiding
using any of the I/O ports for programming.

The Atmel 89C51 is a FLASH version of the long
established MCS8051 device. It is not a RISC processor like
the PIC and SX but is widely established in applications. It
has 128bytes RAM, 4K program memory and 4 I/O ports,
some of which have alternative peripheral functions. This
device would be useful in developing expansion of the
development system to other processors.

The FORTH system used by the HOST is open to personal
choice. My preference is to use HOLON by Wolf Wejgaard
as this was originally designed as a HOST for target
compiling, has versions for the XX86 and HC11 processors
and has now been placed in the public domain.

The choice of FORTH system for the TARGET is limited by
the processor memory structure. My preference here is for
eForth developed by Bill Muench and intended as a portable
system to be easily moved between different processors.

The latest revision by Dr Ting recognises that many
applications will be in stand-alone micro-controllers; the
FORTH code has been simplified and the code structure
changed from direct linked to subroutine linked.

continued The project is now at the stage described above. I have
reviewed the requirements and made some choices. I am
now ready to begin constructing a simple TARGET and
develop the code required for the TARGET monitor,
communications and programming.

A Development System of this performance should have
commercial potential. However as much of the ideas have
been freely given by the FORTH community and in the
FORTH spirit of sharing, any practical results of this
project will be placed in the public domain.

If any members are interested in assisting me in this
project I would be pleased to hear from them. I can be
contacted by email to jhayhow@freezone.co.uk .

The next step in developing Gordon's "automatic house" is
to link micro-controllers into a distributed intelligence
network. The means to do this have already been described
and there are various options for the transmission links.
This however is another significant project.

Best regards,

John Hayhow

FIG UK Services to Members

Magazine

Library

Web Site

IRC

Members

Beyond the
UK

Forthwrite is our regular magazine, which has been in
publication for more than 100 issues. Most of the
contributions come from our own members and Chris
Jakeman, the Editor, is always ready to assist new authors
wishing to share their experiences of the Forth world.

Our library provides a service unmatched by any other FIG
chapter. Not only are all the major books available, but also
conference proceedings, back-issues of Forthwrite and also
of the magazine of International FIG, Forth Dimensions. The
price of a loan is simply the cost of postage out and back.

Jack Brien maintains our web site at http://forth.org.uk. He
publishes details of FIG UK projects, a regularly-updated
Forth News report, indexes to the Forthwrite magazine and
the library as well as specialist contributions such as “Build
Your Own Forth” and links to other sites. Don’t forget to
check out the “FIG UK Hall of Fame”.

Software for accessing Internet Relay Chat is free and easy
to use. FIG UK members (and a few others too) get together
on the #FIG UK channel every month. Check Forthwrite for
details.

The members are our greatest asset. If you have a problem,
don’t struggle in silence - someone will always be able to
help. Do consider joining one of our joint projects.
Undertaken by informal groups of members, these are very
successful and an excellent way to gain both experience and
good friends.

FIG UK has links with International FIG, the German Forth-
Gesellschaft and the Dutch Forth Users Group. Some of our
members have multiple memberships and we report
progress and special events. FIG UK has attracted a core of
overseas members; please ask if you want an accelerated
postal delivery for your Forthwrite.

