

ISSN 0265-5195

Issue 108 August 2000

 Editorial
 Forth News
 Launch of F11-UK
 euroFORTH Chris Jakeman
Logging On Statistically Speaking Paul Bennett
 The FIG UK Awards of 1999
 Did You Know? - Forth v C
 FIG UK – Treasurer’s Report Keith Matthews
 A Web-Server in Forth Bernd Paysan
 More on International FIG
 Letters

Chair Chris Hainsworth, Microplex Ltd., 5a Riverfield Road, STAINES TW18 2EE

 01784 457565 chris.hainsworth@dial.pipex.com
Secretary Doug Neale, 58 Woodland Way, MORDEN SM4 4DS

 020 8542 2747 dneale@w58wmorden.demon.co.uk
Editor Chris Jakeman, 50 Grimshaw Road, PETERBOROUGH PE1 4ET

 01733 753489 cjakeman@bigfoot.com
Treasurer Keith Matthews, 20 Spindlebury, CULLOMPTON EX15 1SY

 01884 34818
Webmaster Jenny Brien, Windy Hill, Drumkeen, BALLINAMALLARD,
 Co Fermanagh BT94 2HJ

 02866 388 253 jennybrien@bmallard.swinternet.co.uk
Librarian Sylvia Hainsworth, Microplex Ltd., 5a Riverfield Road, STAINES

 01784 457565 sylvia.hainsworth@dial.pipex.com

Membership enquiries, renewals and changes of address to Doug.
Technical enquiries and anything for publication to Chris.
Borrowing requests for books, magazines and proceedings to Sylvia.

 For indexes to Forthwrite, the FIG UK Library and much
 more, see http://forth.org.uk

 Payment entitles you to 6 issues of Forthwrite
 magazine and our membership services for that
 period (about a year). Fees are:

National and international £12
International served by airmail £22
Corporate £36 (3 copies of each issue)

 Your membership number appears on your envelope
 label. Please quote it in correspondence to us. Look

out for the message "SUBS NOW DUE" on your sixth and last issue and please
complete the renewal form enclosed.

Overseas members can opt to pay the higher price for airmail delivery.

the material in a v

FIG UK Committee

FIG UK Web Site

FIG UK Membership

Forthwrite Deliveries

Copyright
 Copyright of each individual article rests with its author.
 Publication implies permission for FIG UK to reproduce

ariety of forms and media including through the Internet.

http://forth.org.uk/

 1

Editorial

The big news this time is that Jeremy has
launched our F11-UK, the controller board for
our FIG UK Hardware Project. Already kits

have been delivered, assembled and tested and we hope that
this will lead to a number of projects about control which are
documented and published on the web site. Jeff Penn intends to
report his experiences in building the kit in the next Forthwrite.

Paul Bennett returns with some more Forth as used in industry
and Bernd Paysan has graciously allowed us to reprint a paper on
using Forth to serve up web pages.

The on-line publication in June of the April Forthwrite has
brought us readers and feedback from the USA and Russia and
we plan to continue this experiment. An amazing 614 people have
visited the download page so far.

Don’t forget the monthly IRC session. Our next one is Saturday
2nd September on channel #FIGUK from 9:00pm.

Welcome to some more new members – Graham Bowler and Alex
Holden, both interested in embedded systems and Robin Francis
whose letter is reprinted in this issue. As ever, I strongly
recommend that new members raid our Library to borrow books
and back-numbers of Forthwrite and the US Forth Dimensions.
It's the biggest and best Forth library anywhere.

Until next time, keep on Forthing,

 2

Feedback

Feedback is always welcome and
we have received helpful
comments from Marcel Hendrix
and Michael Gassanenko - thanks.

FIG UK News

F11-UK
Top item has to be the release of
F11-UK kit – this photo shows
the assembled board.

"F11-UK, the long-awaited
controller board using an adapted
version of Pygmy, has been
released by FIG UK member
Jeremy Fowell. Special price to

members is £47 plus postage but a
Pygmy Forth and $20 licence are
also required (download from

www.eskimo.com/~pygmy
Already several members have
now assembled the board and
already have Pygmy running.
 F11-UK provides a multi-
tasking Forth which can be
programmed from your PC, 32K
of RAM and 32K of FLASH
PROM and a wide range of
features such as UART and 8-bit
A to D convertor.
 For full details sign up to
the mailing list by sending the
message:
"subscribe fig-forth-uk"
to maiser@eee.rgu.ac.uk.

Web Site
Our Webmaster has been busy re-
vamping the FIG UK web-site.
The aim is to provide a more
polished look whilst ensuring
continued access for those with
older browsers and low
bandwidth connections.
 The re-vamp coincides with
newly downloadable material,
including Forthwrite which is in
PDF and one issue behind the
paper copy posted to members.

Dave Abrahams
0161 477 2315

d.j.abrahams@cwcom.net

Forth News

 3

The download pages have
received over 600 visitors.

AGM
This annual meeting is open to all
members on Sat 23rd Sept.. Doug
Neale has offered his hospitality
once more - see Aug Forthwrite
for details.

FIG UK and Forthwrite magazine
are now listed in the on-line
directory of computer industry
resources at

www.iversonsoftware.com/
tabularium.htm

under the category Languages and
Tools.

UK News

The date and venue for the
euroFORTH 2000 Conference
have been changed to avoid the
season of higher air-fares.The
venue and date are now
Winchester, 3-5 Nov., though this
has still to be confirmed.

New Products from MPE
See the MPE web site

www.mpeltd.demon.co.uk
for details of the following new
products and free ProForth
downloads.

1. Forth Stamp 51 - 89S8252
board plus Forth compiler,

assembler, disassembler, ISP
programming, interactive
compilation and testing. Yours for
only US $99, UK pounds 63.75,
Euro 105.

2. Windows Forth development
system is now at version 3.1.
ProForth VFX for Windows
features a completely new Forth
kernel written to the ANS Forth
standard.

3. The Windows-based Forth 6.1
Cross Compilers are now
available, providing an interactive
development system for
embedded targets.

International News

Forth News from FIG UK is no
longer the only archive of UK and
international news about Forth.

RUFIG, the Russian FIG, has a
news archive too with a mix of
items in English and Russian at

www.forth.org.ru

 4

“The Unofficial Guide to LEGO
MINDSTORMS Robots” by
Jonathan Knudsen provides 5
construction projects and 3
“alternative programming
environments like NQC,
pbFORTH and legOS to develop
powerful software for your
robots.” Ralph Hempel's
pbFORTH gets a whole chapter to
itself. The book, ISBN 1-56592-
692-7, is published by O'Reilly at
£16.60.

FIG International
FIG International is being re-
organised following the
resignation of President Skip
Carter and Editor Marlin
Ouverson. Please send offers of
advice and assistance to
board@forth.org.
 Board member Elizabeth
Rather posted to comp.lang.forth:
“If FIG is important to you, now
is the time to step forward and see
what you can contribute, not only
in terms of money, but also
logistical support and effort to
make things happen.”

Systems

Dave Pochin has revamped the
"Getting Started" web site at
www.sunterr.demon.co.uk/guide.htm

The guide has now received
over 6,000 visitors!

Australian company Colour
Vision Systems have developed a
Forth OS with TCP/IP capability
and are now making this freely
available. It makes good use of
object-oriented Forth and is used
for industrial work. For details,
see http://forth.cx

SMAL32 is a DOS based, 32 bit,
direct-threaded forth compiler/
interpreter for developing
programs in the DOS
environment. A collaborative
project between English speaker
Bruce Hoyt hoyt@voyager.co.nz
and Russian speaker Alexandr
Larionov laric@forth.ru
“The real power of this system
lies in the compiler. SMAL32 can
produce very small compiled 32
bit DOS programs containing only
the Forth words actually used by
the application program plus a
9Kb compressed DPMI interface
and loader. The compiler
produces code with or without
headers.”

Forth on the WWW

The WebForth and eForth for
Java pages have been moved to:
 webdev.amsystech.com/mlosh/
and
 webdev.amsystech.com/mlosh/

webforth.htm

 5

At the Silicon Valley Forth
Interest Group meeting in
February a group led by John
Peters japeters@pacbell.net got
together for the purpose of
developing a web page that will
act as a command-line Forth. This
would permit anyone to try out
Forth online and to collaborate on
a project. See:

www.forth.org/svfig/online.html
 Editor’s Note: The first
project is a client-side Forth
executing on the client's computer
source code from the host's
HTML pages. The second is a
server-side Forth executing on
the host computer source code
from the client.

StrongForth is a static type-
checked Forth with operator
overloading created by Dr.
Stephan Becher who hopes to
have a web site running soon but
meanwhile you can email him to
request a copy at:

s.becher@get2net.dk

Derrick Shearer reports on
comp.lang.forth that a Forth-
based MUD system called MUF is
available at

www.furry.com/telzey/fuzzball/
muftutor.htm

"MUD" stands for Multi-User
Dungeon game (or game-building
tool).

Support Material

The ForthChip.com website is
now open at

www.forthchip.com
The site provides a range of
articles concerning M.I.S.C.
(Minimal Instruction Set
Computer) Architecture, and how
it is involved with Forth. Much
of the content is provided
courtesy of Jeff Fox at
UltraTechnology.

For a ANS Forth tutorial on the
web try Anton Ertl’s work at:
www.complang.tuwien.ac.at/anton/tm

p/gforth.html#Tutorial

David Williams of the University
of Michigan has made available
“a reorganized, copy-lefted
version of my C-compatible
structures”. The package is
available at
ftp://feynman.physics.lsa.umich.edu/p

ub/williams/forth/cstructures/

 6

0121 440 1809
jeremy.fowell@btinternet.com

Launch of F11-UK
FIG Hardware Project

Jeremy officially launched this
long-awaited project on the
30th June with an e-mail to the
Mailing List. There was a lot of
enthusiasm shown at the
monthly IRC session and
responses have started to
arrive.

John Tasgal was one of the first
to assemble a board, reporting:
“I've just finished putting
together Jeremy's excellent
F11-UK kit. The PCB is of
very high quality and easy
to solder.”

Paul de Bak, one of our
Swedish members, was also
quick with the soldering iron,
“I've now finished
assembling the F11-UK board
and downloading Jeremy's
code to it. Both the
assembly of the board and
the downloading of the
code went smoothly, apart
from one problem I had with
downloading (due to
Windows: Ed.).

Of course, no product is perfect
first time around and the
Mailing List now carries some
useful feedback messages

intended to make every
installation go smoothly.

Mike Trueblood has resumed
work on the Clock Challenge
using his kit and I’m sure we’ll
hear some more about that
soon.

Jeremy has several ideas for
applying the F11-UK, saying,
“As a thank you for your
support I am including a
free thermistor with every
kit, which can be connected
very easily to one of the
HC11 A/D inputs to measure
temperature. Microchip
have an application note on
the subject, AN685, which I
assume is available on
their web site.

Pressure sensors are down
to around £10 now and I
have also requested a
sample of the new Analog
Devices accelerometer,
ADXL202.

There could be a lot of
interesting projects
waiting out there . . .”

provides everything needed in a
professional-quality low-cost Forth
controller board.

Use it in industrial or hobby
projects to control a wide range of
devices using the well-known multi-
tasking Pygmy Forth.

Designed for hosting from a
DOS or Windows PC, you can test your
application as it runs on the F11-UK
board itself. The board was developed
by FIG UK members to provide an easy
way to explore the world of controlled
devices – a niche where Forth excels.

The kit includes both hardware
and software and is supported and sold
to members at a nominal profit through
a private company.

Software

PC-based PygmyHC11 Forth compiler
running under DOS produces code for
Motorola HC11 micro-controller.

Code is downloaded via standard serial
link from the PC to the FLASH memory (or
RAM) on the F11-UK single board computer
(SBC).

No dongle or programming adaptor of any
kind is required.

Forth running on the SBC is interactive
which makes debugging and testing much
easier.

Multitasking and Assembly included.

The serial link can be disconnected to
enable the SBC to function as a stand alone
unit.

All source code provided - 78 pages or so
(unlike many commercial systems).

Around 30 pages of additional
documentation is supplied including a full
glossary of the 300 or so Forth words in the
system.

Email mailing list for discussion and
limited support.

Hardware:

Processor: Motorola HC11 version E1 –
8 MHz (2 MHz E-Clock).

Memory: 32k x 8 FLASH
 32k x 8 battery backed SRAM
 512 x 8 EEPROM onboard HC11.

I/O: 20 lines plus 2 interrupts (IRQ and
XIRQ).

Analogue in: up to 8 lines using onboard
8-bit A/D.

Serial: 1) RS232, UART onboard HC11

2) Motorola SPI bus onboard
 HC11.

Expansion: Via HC11 SPI serial bus using
 2 or more of 20 available lines.

Timer system:
 Inputs: 3 x 16-bit capture channels
 Outputs: 4 x 16-bit compare channels.

PCB size: 103 x 100 mm.

Price to FIG UK members: £47.0 plus postage and packing (£2 UK, £4 overseas) plus

$25.0 (US Dollars) for registration of 80x86 Pygmy Forth with
the author Frank Sergeant.

 De

 More inform

F11-UK
7

livery: ex-stock.

ation: jeremy.fowell@btinternet.com and 0121 440 1809

 8

01733 753489
c.jakeman@bigfoot.com

euroFORTH
Chris Jakeman

As preparations take place for euroFORTH 2000 in Winchester, we

take a look at last year’s event.

EuroFORTH ‘99 took place at St.Petersburg which allowed
a strong input from Eastern Europe, where Forth has
always appealed more than resource-hungry alternatives. A
personal and fascinating report by Reuben Thomas can be
found on the euroFORTH site at

http://dec.bournemouth.ac.uk/forth/euro/ef99/report.html

This year, all the papers are published as PDFs at the site
above (thanks to Peter Knaggs). For those without Internet
access, the papers have been downloaded, printed, bound
in a suitable form for photocopying1 and are available for
borrowing from the FIG UK library.

Thinking about Forth

��Is Forth Code Compact? A Case Study, by M. Anton Ertl

��Threaded Code Execution and Return Address Manipulations from the
Lambda Calculus Viewpoint, by M. L. Gassanenko

��Dynamically Structured Codes, by M. L. Gassanenko

��Perspective MetaFORTHness, by Mikhail Kolodin.

Anton Ertl tackles the issue of comparing Forth with other
languages. This is a thorny issue, as a perfect comparison
would require matching developments by equally
competent teams. Instead, Anton looks at a number of
parser generators in Forth and 7 other languages and
makes some quantitative comparisons.
 He finds that the Forth implementations require
much less source code and identifies a number of
restrictions that Forth doesn’t have, which give Forth users
a real advantage for parser design.

1 The copyright remains with International FIG who permit the copying of
individual articles for personal research.

http://dec.bournemouth.ac.uk/forth/euro/ef99/ertl99.pdf
http://dec.bournemouth.ac.uk/forth/euro/ef99/gassanenko99a.pdf
http://dec.bournemouth.ac.uk/forth/euro/ef99/gassanenko99a.pdf
http://dec.bournemouth.ac.uk/forth/euro/ef99/gassanenko99b.pdf
http://dec.bournemouth.ac.uk/forth/euro/ef99/kolodin99a.pdf

 9

Michael Gassanenko presented two substantial papers, the
first building on work by member Bill Stoddart among
others. Previously Michael had developed a scheme for
reasoning about the effect of executing a Forth word. The
new paper allows a compiler or program verifier to reason
about a Forth word including return stack manipulations.
 The “dynamically structured codes” in his second
paper refer to code that is generated and executed on the
fly. This is an unusual technique which offers benefits in
reducing the complexity of software. It is closely related to
Gordon Charlton’s FoSM (see Forthwrite Feb, Aug & Nov
97).

“Perspective MetaFORTHness” by Mikhail Kolodin is a brief
paper discussing the ability that modern Forths often lack –
the ability to write Forth totally in Forth.

Firmware Development

��sTTAck: Stack Transport Triggered Architecture, by Aliaksei V.
Chapyzhenka.

��OpenBoot Dropin Modules, by Michael Milendorf.

��Interrupt mechanism for threaded code interpreter, by Alexey A.
Burtsev

��Assemblers for firmware systems, by Dr. Sergei A. Sidorov.

��Machine Forth for the ARM processor, by Reuben Thomas

��The TpForth project, by Reuben Thomas.

Aliakesi Chapyzhenka’s paper reports the design of a Forth
processor using TTA, an architecture that allows more
optimisation opportunities even than RISC and is clearly
described by Dick Pountain in Byte Feb. ’95. Sadly,
Chapyzhenka fails to explain why he has chosen Forth as
the language to implement for his TTA design although the
stack is clearly central to his work.

Michael Milendorf works for Sun in the USA and his paper
discusses the history and development of OpenBoot DropIn
technology. Firmware is the ROM-based software that
controls a computer before the operating system takes over
and OpenBoot is Forth-based. “The implementation of
DropIn technology is elegant and simple and shows the
advantages Sun Microsystems Inc gains by using OpenBoot
for its boot firmware.”

http://dec.bournemouth.ac.uk/forth/euro/ef99/chapyzhenka99.pdf
http://dec.bournemouth.ac.uk/forth/euro/ef99/milendorf99.pdf
http://dec.bournemouth.ac.uk/forth/euro/ef99/burtsev99.pdf
http://dec.bournemouth.ac.uk/forth/euro/ef99/sidorov99.pdf
http://dec.bournemouth.ac.uk/forth/euro/ef99/thomas99a.pdf
http://dec.bournemouth.ac.uk/forth/euro/ef99/thomas99b.pdf

 10

Alexey Burtsev describes an interrupt mechanism that has
many advantages over the traditional one, because the
interrupt routine is not taken until the threaded interpreter
reaches NEXT. A cunning arrangement minimises the
overhead required to achieve this.
 The interrupt routine may be either assembler or
high-level source which is a key advantage for Forth. I
wonder how this paper compares with “Zero-Overhead
Forth Interrupts” by G.Wilson in Forth Dimensions July ’94.

Sergei Sidorov describes a portable assembler as a useful
but unusual extension to a machine-level debugger. The
assembler has been used with 6 different instruction sets.

Reuben Thomas offered two papers, as well as the personal
report already mentioned. The first describes a port of
Chuck Moore’s Machine Forth to the ARM processor. He
writes “MF’s judicious mixture of novelty and classic
simplicity merits careful study, though I for one will not be
abandoning the traditional combination of Forth and
assembler in its favour.”
 Reuben also describes the development and current
status of the TpForth Project, which delivers a Windows-
based IDE for developing Forth to run on a target platform
(currently 3 processors are supported). Unusually, the
system is “available under a novel ‘community licence’
which aims to build a community of users while protecting
commercial interests.” Five Forth companies are already
participating and private use is free.

Standards

��Forth in Russia: present state and standardization efforts, by Mikhail
Kolodin.

��ANS Forth Internationalisation proposal (sixth revision), by Stephen
Pelc, Willem Botha, Nick Nelson, and Peter Knaggs.

��ANS Forth and large characters, by Stephen Pelc, Steve Coul and
Peter Knaggs.

Mikhail Kolodin gives an overview of Forth as it is used in
Russia, where its frugal use of resources has made it
popular. He includes a list of books and home-grown
systems (see Smal32Forth in Forth News) and mentions
the commercial intranet server E-Serv.
 ANS Forth has been influential and a collaborative
project is under way to deliver a Russian translation.

http://dec.bournemouth.ac.uk/forth/euro/ef99/kolodin99b.pdf
http://dec.bournemouth.ac.uk/forth/euro/ef99/pelcetal99a.pdf
http://dec.bournemouth.ac.uk/forth/euro/ef99/pelcetal99b.pdf

 11

Mikhail notes that an official ANS document costs about a
year’s salary!

Stephen Pelc, Steve Coul and Peter Knaggs presented two
papers on using Forth around the world. The first proposes
an optional LOCALE word set which covers language, font,
date/time formatting etc..

They identify 3 different characters sets – that
Development Character Set (DCS) assumed never to
change, the Operating Character Set (OCS) of the
underlying OS and the Application Character Set (ACS). In
many parts of the world, these are unlikely to be the same.

An interesting proposal is L”, a word which converts
text in DCS into a string identifier suitable for ACS. This
enables the source to contain DCS text information (easier
to maintain than identifiers) and yet deliver ACS text.

Another aspect of the proposal is the use of macros to
embed times, dates etc. formatted according to the current
locale within a text string.

The second paper proposes a scheme for Forth to
operate in an environment with 16-bit Unicode or even
multi-byte characters.

In the Internet environment, these considerations
become important (our own WebForth team have tackled 4
locales) and I, for one, am grateful that others are willing
to tackle these thorny issues so that I won’t need to.

Diary Date
euroFORTH 2000 3-5 Nov. in Winchester

To avoid travelling (especially by air) at an expensive time of year,
this event has been postponed and a new venue found. The date
has still to be confirmed. Look for details closer to the event on

http://dec.bournemouth.ac.uk/forth/euro/ef00.html

 12

01235-814586
peb@amleth.demon.co.uk
www.amleth.demon.co.uk

www.feabhas.com

Logging On Statistically Speaking

Paul Bennett

Another contribution from Paul which reveals the techniques used to
apply Forth in an industrial environment.

Data Logging and Statistics
In working with production machinery it is often required to monitor and record
the number of times and duration of particular machine states. The data so
obtained may be used to provide information to management information
systems. In this article, which is based on work I did some years back, I am only
going to deal with logical states.

The collected information can be displayed on local screens or communicated to
a central host computer where a number of similar machine states can be
monitored. It is useful in the distributed control systems used in factories and
process plant.

NOTE:- I have not necessarily included all the code to provide an immediately running
demonstration but what is included, I hope, explains the technique well enough. The
code examples included are extracted from the files of a real application and altered
sufficiently to hide the client identity. It therefore is probably a suitable follow-on to the
"Real World" series of articles I published earlier.

Scenario
A PLC2-type machine controller has access to machine states via limit switches
which are represented by single bits within a block of memory. For this example
we shall use a 64-bit array of states which we wish to track. A 16-bit processor is
also assumed.

2 Programmable Logic Controller – the PLC was initially developed as an
electronic replacement for relays and timers. Typically supporting only low-level
programming, its flexibility and reliability make it the most common system for
controlling machinery.

 13

Logging Facilities

Current State Table

This provides the input states to the logging process. If the states of interest are
spread about the I/O system, it would be well to gather them into a coherent
block of states so that they might be managed more easily. This can often save
processing time despite the period spent copying states to the CURRENT_STATES
table.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

W0 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

W1 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

W2 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

State
Ident

W3 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

Figure 1. Map of States (4 cells)

Last State History

This is a copy of the state table to keep track of what the state was last time
around and to ensure that changes of state can be detected. This table is
identified as PREVIOUS_STATES and is a full copy of the CURRENT_STATES table.

Count of Events

An event is defined as the transition from false state to true state of the bit of
interest. The count of events is the number of false to true transitions that have
occurred.

Accumulated Event Duration

Number of centi-seconds the event state has been at the true value.

Memory Space Requirements
Naturally, the amount of memory space required to provide the logging facilities
is greater than the simple collection of the state itself, but the added value is that
we now have some statistical information about the states we are monitoring.

 14

The memory requirements listed above add up
to

= 2N(1+(1/W)) cells

where N is the number of bit-states to be
monitored and

 W is the cell width in bits.

As we have seen, in order to keep a historical
track (for one cycle anyway) of states, a second
similar sized array is required. We then require
a variable for each state in the table to hold the
count of transitions we notice. Finally, there are
the count and timing storage cells where the
logged data of interest will be recorded.

The memory map begins to look something like
the diagram here.

Figure 2. Memory Block Allocation

We do not want to have to spend a lot of time creating this sort of array in a
painstaking piecemeal fashion and then have to keep in mind its structure when
we wish to access it.

The areas BUFF and BUFF' are created normally with CREATE and ALLOT to
make the appropriate amount of space available. If you need range-checking on
these buffers you can employ it in a similar fashion to that in LOGGED (shown
below). This is where a little help from CREATE and DOES> comes in handy to
generate an active array that will, given an index, return the appropriate address
to access the array directly. We may then manipulate the data at the address as
appropriate. The word LOGGED defined below will help create several named
arrays of this sort so we may have more than one array that behaves this way.

To ensure we have an address in returned in range, some calculations are
performed to range-check the array prior to returning the address of a cell. Each
array created with LOGGED returns two valid cell addresses which relate to the
count and timer values respectively.

Input Buffer

Input Buffer

History

Buffer Length

Count 1

Time 1

L+0

L+1

L+2

Count 2

Time 2

L+3

L+4

Count 3 L+5

BUFF

BUFF’

 15

\ Logging Task - Active Data Arrays PEB 01/07/93

 : RESERVE 0 DO 0 C, LOOP ; \ Allocate some cleared
 \ memory space

 : LOGGED CREATE (S n ---) \ Compiling
 DUP , 1+ CELLS CELL+ 2* RESERVE

 DOES> (S n --- addr1\addr2) \ Interpreting
 DUP CELL+ >R >R
 CELLS R> @ CELLS
 UMIN 2* R> + DUP CELL+ ;
 (G Compiling: Creates an active double stream data array
 for storage of n count and time items.

 Interpreting: Return the addresses of a counter {addr2}
 and timer {addr1} for the data items indexed by n to be
 accessed.)

Listing 1. Active Data Array Creation LOGGED

Editor’s Note:- Paul uses the comment words (S and (G which are identical to (but
allow his documentation tools to extract stack comments and glossary entries out of the
code (an idea more recently appearing in Sun’s JavaDoc tool)

.
Having created the arrays, we need to be able to access and manipulate the data
in the cells. We must first deal with the input data. At the beginning of each
cycle, it has to be collected from the state inputs, checked for validity and then
placed in the state table at BUFF (that bit I do leave to the reader). We then
need to do a comparison between this cycle and the previous one. We also need
to be careful about initialisation so that we do not count state changes falsely.
The initial pass should therefore copy the states to BUFF' from BUFF so that no
inadvertent changes are recorded during the first pass. Thereafter, the
comparisons should reflect the differences between scans and be able to
correctly account for them.

The initial pass may look a bit like:-

: [] (S n1\n2 : <name> -- n3)
 (G Store the given offset n1 in <name> and calculate the
 new offset n3 from the given size n2 and old offset
 n1.)
 OVER CELLS CONSTANT + ;

 16

0 \ Initial offset for offset calculator
1 [] W0
1 [] W1
1 [] W2
1 [] W3
\ Create the main and history buffers
CELL+ \ Add a one cell buffer-zone at end of array.
DUP CREATE BUFF ALLOT
DUP CREATE BUFF' ALLOT
16 * 1 CELLS / \ Calculate size of logging array array.
LOGGED LOGBUF

Listing 2. Input and History Buffer Initialisation

Extracting The Results
Having set up the buffers we can set about examining the individual bits to
detect change of states and add time increments since last observations. The
word (LOG?) detects the state change and sets bits accordingly. In the code
below, a is the main buffer data items from BUFF and b is the history buffer
item from BUFF'. If the bit was set and remains set the time increment indicator
bit t is set. If the bit has changed state from a zero last time to a one this time
the log-count bit c is set.

: (LOG?) (S a\b --- t\c)
 2DUP AND -ROT
 OVER XOR AND ;
(G For each of the bits in the two cells a and b
 set the corresponding bits in t and c to indicate
 the requirement to increment the associated event
 counter or add the latest time interval.)

: LOGGABLE (S offset --- t\c)
 BUFF OVER + @ SWAP
 BUFF' + @ (LOG?) ;
(G Resolve, from the buffer bit states, as
 indicated by the offset provided, the need or
 otherwise for incrementing the associated event
 counter or adding the latest time interval.)

Listing 3. Resolving Changed States Data

The code in Listing 4 below shows how the application might use the code. LOG-
IT is just a simple example word that works its way through all bits in the state
buffers BUFF and BUFF' and logs the counts and time increments accordingly.

 17

+LOG is performed only when the t and c bits are set for the state of interest.
The variable TIME-INTERVAL should be updated just prior to calling LOG-IT
during each scan cycle. This may be performed by hardware or software and
should be at the time granularity you are using for the system.

VARIABLE TIME-INTERVAL
: TIMER-UPDATE (S time-acc-addr\flag ---)
 IF TIME-INTERVAL @ SWAP +!
 ELSE DROP
 THEN ;

: COUNTER-UPDATE (S counter-addr\flag ---)
 IF 1 SWAP +!
 ELSE DROP
 THEN ;

: +LOG (S counter address\timer address\mask\offset --)
 LOGGABLE 2DUP OR
 IF THIRD AND >R
 AND ROT R>
 COUNTER-UPDATE
 TIMER-UPDATE
 ELSE 2DROP 2DROP DROP \ Nothing to log.
 THEN ;

: (LOG-IT) (S offset\index --)
 OVER 16 * OVER + LOGBUFF
 ROT 2^N >R ROT R> SWAP
 +LOG ;

: LOG-IT (S --)
 3 0
 DO 16 0
 DO J I (LOG-IT)
 LOOP
 LOOP ;

Listing 4. Including Logged Data

Summary
This article has just touched on a small part of a statistical data-logging function
that is part of a SCADA type application. Combined with other data gathering
and processing methods, it can form the basis of effective machine monitoring
and management. The "real-life" application from which the code extracts have
been taken was completed over seven years ago as a replacement for an earlier

 18

(flawed) implementation (the previous implementation obtained inaccurate data
which was only established during a thorough audit of the machines and host
recorded data).

What you do with the data you have collected depends on the application. Quite
often in SCADA type systems, the data is passed via a communications network
to a central host where the data is used for long term trending and archiving.
Alarms for out of tolerance readings or non-communication can be raised at the
host. That way a large number of similar production machines can be monitored
effectively with just a few staff members present.

Paul Bennett specialises in the control and monitoring of safety-critical systems and
offers audits and training courses in addition to software development.

A few weeks back we had an enquiry through our web site. Could we put Patrick
Hoverstadt of Syncho Ltd. (management consultancy) in touch with Forthought?

We sent this out to members on e-mail with a request for assistance, had several useful
replies and came up with a corrected name and a current phone number. Thanks to
everyone who responded.

1The program was C

Hi Chris,
Many thanks for your help in tracking down Richard Olney.
One of the phone numbers supplied was the right one, and we have had
a couple of conversations exploring how we might take things forward.

Best regards,
Patrick Hoverstadt

Hi Doug,
I'm trying to track down a firm called Forthought who were operating
in the UK 10 years ago. They worked on a program1 for my company,
which we are interested in re-developing. The only other name I have
is Richard Ocney.
Have you heard of them or him, do you have any information as to what
happened to the company ?
Any information gratefully received.
Regards
Patrick Hoverstadt
yberfilter for real-time process performance measurement.

 19

 The FIG UK Awards
of 1999

The FIG UK Awards of 1998 were won by Philip Preston
and Paul Bennett. These awards are given to encourage

effort and recognise achievement.

To everyone who sent in their nominations -
"thank you". Our judges, the officers of FIG UK
have now chosen the winners for 1999. They each
receive

��a place in our web site’s Hall of Fame
��this mention in Forthwrite
��a year's free membership.

Jeremy Fowell: for his efforts in leading the FIG
UK Hardware Project.

Alan Wenham: for his work in making German
FIG accessible to all.

Our congratulations go to Jeremy and Alan on
winning and appreciation for their efforts.

Free
membership

Achievement

Forthwrite

 20

Chris Jakeman
cjakeman@bigfoot.com

Did you Know? – Forth v C

While other parts of Forthwrite bring you all the news and the latest
ideas and developments, the Did You Know? section highlights

achievements in Forth, both recent and historical (taking care always
to distinguish hearsay from attested fact).

Attempts are often made to compare Forth and C3 but
reliable comparisons are difficult to make as few projects are
done more than once. However Elizabeth Rather is able to
report one comparison that seems sound.

“We had an excellent real-world comparison a few years ago,
when we and Paul Curtis were both writing OTA4 virtual
machines (VMs), conforming to a very detailed spec. We
were writing in Forth, of course, and Paul in C. What makes
this interesting is that Paul is an outstanding C programmer,
one of the best I know. Our VMs were 32K on 8-bit CPUs,
and about 45K on a 68K. Paul's were 64K on average.
Performance was equivalent on equivalent platforms. In my
opinion, this type of real-world challenge is far more
meaningful than ‘benchmarks’”.
Source - Elizabeth Rather, Forth Inc.

Clearly these days Forth can hold its own regarding speed
and size in embedded systems.

3 See Is Forth Code Compact? A Case Study, by M. Anton Ertl in the euroFORTH
1999 report earlier in this issue

4 OTA – Open Terminal Architecture

 21

FIG UK – AGM

The Annual General Meeting will be held on Saturday 23rd
September at Doug Neal’s home, 58 Woodland Way, Morden
from 2:30pm.
 All members who wish to attend are cordially invited to do
so. If you cannot attend, but wish to comment on the way FIG is
going or the direction you would like it to take, write or e-mail
Chris or myself before the meeting.
 Anyone who lives in the London area can get to my house
easily by Underground as we are just ten minutes walk from the
southern terminus of the Northern Line. Please phone for
directions (020 8542 2747) if you can’t find us in your A-Z.

Some of the topics likely to be discussed are:

��Joint projects such as Clock Challenge and WebForth
��Ideas for the Web Site
��Re-vamp for Forthwrite
��Finances – see Treasurer’s report opposite
��How problems with International FIG affect FIG UK
��EuroFORTH 2000

More Editorial
Have you noticed the new look on our web-site? The idea is to
provide a common style for the main pages of the site, while
keeping our reputation for rapid downloads and access from old
browsers as well as new ones.

 22

Forth Interest Group UK: Revenue Account for year to 31 March 2000

Treasurer's report to the members of FIG-UK
I certify that the above Revenue Account for the year to 31 March 2000 and
Balance Sheet as at that date have been prepared in accordance with my own
records of transactions for the year. I have not examined stocks (which are held
by other members of the Committee); books for lending, ForthWrite back issues
and printed listings have been written off in full.

The subscription rate was increased from £10 to £12 with effect from 1 Jan
2000. Subscriptions received in advance are recognised as revenue in six
instalments, when the production and distribution costs of the six relevant
ForthWrite issues are incurred. ForthWrite advertising revenue is treated in a
similar way.

Keith Matthews, Treasurer 10 August 2000
20 Spindlebury, Cullompton, Devon EX15 1SY

 Revenue Costs Surplus/Deficit to
 (see note) 31-Mar-00 31-Mar-99
 £ £ £ £
Membership
Subscriptions

766 766 898

Forthwrite with
advertising

24 845 -821 -888

Library Purchases etc. 0 0 -162
Sale of back-issues (one
off)

0 0 0 45

Interest on bank deposit 3 3 23
Committee travelling
expenses

0 0 -85

Totals for year 793 845 -52 -169
Previous Accumulated
surplus
at 31 Mar

579 748

Accumulated surplus
at 31 Mar

527 579

Balance sheet at 31 Mar 00 31 Mar 99
Cash at bank and in
hand

 1221 1091

Less: Creditors -40 -85
 Revenues
received in advance

 -654 -427

Net Liquidity 527 579
Stock: Stationery at cost 0 0
Accumulated surplus at
31 Mar

 527 579

 23

bpaysan@mikron.de
www.jwdt.com/~paysan/

A Web-Server in Forth
Bernd Paysan

Bernd Paysan is well-known to many Forth users for his work with

Anton Ertl on Gforth, his own bigFORTH and his impressive graphics
work (MINOS). I asked his permission to re-print this edited paper

from the Hamburg conference to emphasise the quality of work being
done in Germany and to show also that Forth has a place in the

interconnected world of the Internet.

Abstract
An HTTP-Server in Gforth is presented as an opportunity to show that you can
do string-oriented things with Forth as well. The development time (a few
hours) shows that Forth is an appropriate tool for this kind of work and delivers
fast results.
This is an edited translation of the paper presented at the Forth Tagung 2000
conference in Hamburg and available at http://www.jwdt.com/~paysan/httpd-en.html.

Introduction
Since I have always given bigFORTH/MINOS-related presentations in the last
few years, I'll do something with Gforth this time. Gforth is another tool you can
do neat things with, and in contrast to what you here elsewhere, Forth is suitable
for almost anything. Even a web-server.

In this age of the “new economy”, the Internet is important. Everybody is “in
there” except Forth, which hides in the embedded control niche. There isn’t any
serious reason for that. The following code was created in just a few hours of
work and mostly operates on strings. The old prejudice, that Forth was good at
biting bits, but has troubles with strings, is thus disproved.

Motivation
What do you need a web-server for in Forth? Forth is used for measurement and
control in remote locations such as the sea-bed or the crater of a volcano. Less
remotely, Forth may be used in a refrigerator and, if that stops working, things
soon get messy. So a communication thingy is built in.

How much better would it be if instead of “some communication thingy built in”,
there was a standard protocol. HTTP is accessible from the web-cafe in Mallorca,
or from mobile yuppie toys such as PDAs or cell phones. Perhaps one should
build such a web-server into each oven and into the bath, so that people can use
their cell phone on holidays to check repeatedly (every three minutes?) if they
really turned their oven off.

 24

Anyway, the customer, boss or whoever buys the product, wants to hear that
there is some “Internet-thingy” build in, especially if one isn't in e-Business
already. And the costs must be zero too.

But let's take this slowly, step by step.

A Web Server, Step by Step
Actually, you have to study the RFC5 documents. The RFCs in question are RFC
945 (HTTP/1.0) and RFC 2068 (HTTP/1.1), which both refer to other RFCs.
Since these documents alone are much longer than the source code presented
below (and reading them would take longer than writing the sources), we will
defer that for later. The web server thus won't be 100% RFC-conforming (i.e.
implement all features), and conforms only as far as necessary for a typical client
like Netscape. However additions are easy to achieve.

A typical HTTP-Request looks like this:

GET /index.html HTTP/1.1
Host: www.paysan.nom
Connection: close

(Note the empty line at the end). And the response is

HTTP/1.1 200 OK
Date: Tue, 11 Apr 2000 22:27:42 GMT
Server: Apache/1.3.12 (Unix) (SuSE/Linux)
Connection: close
Content-Type: text/html

<HTML>
...

This looks quite trivial, so let's start. The web server should run under
Unix/Linux. That takes one problem out of our hands - how we get to our socket
- since that's what inetd, the Internet daemon, does for us. We only need to tell it
on which port our web server expects data, and enter that into the file
/etc/inetd.conf:

Gforth web server
gforth stream tcp nowait.10000 wwwrun /usr/users/bernd/bin/httpd

5 RFC: Request For Comments -Internet standards documents are all named like this.

 25

We won't replace the default web server just yet (something might not work
straight away), so we shall need a new port and that one goes into the file
/etc/services:

gforth 4444/tcp # Gforth web server

When we do a restart or a killall -HUP inetd, inetd will realize the changes
and start our web server for all requests on port 4444. What we need next is an
executable program. Gforth supports scripting with #!, as is common for
scripting languages in Unix. In the line below, the blank is significant:

#! /usr/local/bin/gforth

warnings off

We had better disable any warnings. Let's load a small string library:

include string.fs

We shall need a few variables for the URL requested from the server, the
arguments, posted arguments, protocol and states.

Variable url \ stores the URL (string)
Variable posted \ stores arguments of POST (string)
Variable url-args \ stores arguments in the URL (string)
Variable protocol \ stores the protocol (string)
Variable data \ true, when data is returned
Variable active \ true for POST
Variable command? \ true in the request line

A request consist of two parts, the request line and the header. Spaces are
separators. The first word in a line is a “token” indicating the protocol, the rest
of the line, or one/two words are parameters.

Since we can process a request only once the whole header has been parsed, we
save all the information. Therefore we define two small words which take a
word representing the rest of a line and store it in a string variable:

: get (addr -) name rot $! ;
: get-rest (addr -)
 source >in @ /string dup >in +! rot $! ;

As told above, we have header values and request commands. To interpret them,
we define two wordlists:

wordlist constant values
wordlist constant commands

But before we can really start, the URL might contain spaces and other special
characters, what to do with them? HTTP advises to transmit these special

 26

characters in the form %xx, where xx are two hex digits. We thus must replace
these characters in the finished URL:

\ HTTP URL rework

: rework-% (add -) { url } base @ >r hex
 0 url $@len 0 ?DO
 url $@ drop I + c@ dup '% = IF
 drop 0. url $@ I 1+ /string
 2 min dup >r >number r> swap - >r 2drop
 ELSE 0 >r THEN over url $@ drop + c! 1+
 r> 1+ +LOOP url $!len
 r> base ! ;

So, that's done. But stop! URLs consist of two parts: path and the optional
arguments. Separator is ‘?’. So first split the string into two parts:

: rework-? (addr -)
 dup >r $@ '? $split url-args $! nip r> $!len ;

So we've defined the basics and can start. Each requests fetches a URL and the
protocol, splits the URL into path and arguments and replaces the special
character glyphs by the real characters (but those in the arguments remain as we
don't yet know what should happen to them). Finally, we must switch over to
another vocabulary, since the header follows after the request.

: >values values 1 set-order command? off ;
: get-url (-) url get protocol get-rest
 url rework-? url rework-% >values ;

So now we can define the commands. According to the RFC, we only need GET
and HEAD, POST is then a bonus.

commands set-current

: GET get-url data on active off ;
: POST get-url data on active on ;
: HEAD get-url data off active off ;

And now for the header values. Since we need a string variable for each value,
and otherwise want only to store the string, we build that with CREATE DOES>.
Again: we need a variable and a word, which stores the rest of the line there. In
two different vocabularies; the latter with a colon behind.

Fortunately, Gforth provides NEXTNAME, an appropriate tool for this. We
construct exactly the string we need and call VARIABLE and CREATE afterwards.

 27

: value: (-) name
 definitions 2dup 1- nextname Variable
 values set-current nextname here cell - Create ,
 definitions DOES> @ get-rest ;

And now we set to work and define all the necessary variables:

value: User-Agent:
value: Pragma:
value: Host:
value: Accept:
value: Accept-Encoding:
value: Accept-Language:
value: Accept-Charset:
value: Via:
value: X-Forwarded-For:
value: Cache-Control:
value: Connection:
value: Referer:
value: Content-Type:
value: Content-Length:

There are some more (see RFC), but these are all we need for the moment.

Parsing a Request
Now we must parse the request. This should be completely trivial, we could just
let the Forth interpreter chew it but for two little caveats:

1. Each line ends with CR LF, while Gforth under Unix expects lines to end
with an LF only. We thus must remove the CR. And

2. each header ends with an empty line, not some executable Forth word.
We must therefore read line by line with refill, remove CRs from the
line end, and then check if the line was empty.

Variable maxnum

: ?cr (-)
 #tib @ 1 >= IF source 1- + c@ #cr = #tib +! THEN ;

: refill-loop (- flag)
 BEGIN refill ?cr WHILE interpret >in @ 0= UNTIL
 true ELSE maxnum off false THEN ;

So, the key things are done now. Since we can't let the Forth interpreter loose on
the raw input stream stdin, we pre-process the stream ourselves. We initialize a

 28

few variables which we need to interpret anyway, and steal some code from
INCLUDED:

: get-input (- flag ior)
 s" /nosuchfile" url $! s" HTTP/1.0" protocol $!
 s" close" connection $!
 infile-id push-file loadfile ! loadline off blk off
 commands 1 set-order command? on ['] refill-loop catch

Waiiiit! The request isn't complete yet. The method POST, which was added as
bonus, expects the data now. The length fortunately is stored as base 10 number
in the field “Content-Length:”.

active @ IF s" " posted $! Content-Length $@ snumber? drop
 posted $!len posted $@ infile-id read-file throw drop
 THEN
 only forth also pop-file ;

Answer a Request
OK, we've handled a request, and now we must respond. The path of the URL is
unfortunately not as we want it; we want to be somehow Apache-compatible, i.e. we
have a ``global document root'' and a variable in the home directory of each user, where
he can put his personal home page. Thus we can't do anything else but look at the URL
again and finally check, if the requested file really is available:

Variable htmldir

: rework-htmldir (addr u - addr' u' / ior)
 htmldir $!
 htmldir $@ 1 min s" " compare 0=
 IF s" /.html-data" htmldir dup $@ 2dup '/ scan
 nip - nip $ins
 ELSE s" /usr/local/httpd/htdocs/" htmldir 0 $ins THEN
 htmldir $@ 1- 0 max + c@ '/ = htmldir $@len 0= or
 IF s" index.html" htmldir dup $@len $ins THEN
 htmldir $@ file-status nip ?dup ?EXIT
 htmldir $@ ;

Next, we must decide how the client should render the file - i.e. which MIME
type it has. The file suffix is all we need to decide, so we extract it next.

: >mime (addr u - mime u') 2dup tuck over + 1- ?DO
 I c@ '. = ?LEAVE 1- -1 +LOOP /string ;

Normally, we'd transfer the file as is to the client (transparent). Then you tell the
client how long the file is (otherwise, we'd have to close the connection after
each request). We open a file, find its size and report that to the client.

 29

: >file (addr u - size fd)
 r/o bin open-file throw >r
 r@ file-size throw drop
 ." Accept-Ranges: bytes" cr
 ." Content-Length: " dup 0 .r cr r> ;

: transparent (size fd -) { fd }
 $4000 allocate throw swap dup 0 ?DO
 2dup over swap $4000 min fd read-file throw type
 $4000 - $4000 +LOOP drop
 free fd close-file throw throw ;

We do all the work with transparent, using TYPE to send the file in chunks to
support “keep-alive” connections, which modern web browsers prefer. The
creation of a new connection is significantly more “expensive” than to continue
with an established one. We benefit on our side also, since starting Gforth again
isn't for free either. If the connection is keep-alive, we return that, reduce
maxnum by one, and report to the client how often he may issue further requests.
When it's the last request, or no further are pending, we send that back, too.

: .connection (-)
 ." Connection: "
 connection $@ s" Keep-Alive" compare 0= maxnum @ 0> and
 IF connection $@ type cr
 ." Keep-Alive: timeout=15, max=" maxnum @ 0 .r cr
 -1 maxnum +! ELSE ." close" cr maxnum off THEN ;

Now we just need some means to recognise MIME file suffixes and send the
appropriate transmissions. For the response, we must also first send a header.
We build it from back to front here, since the top definitions add their stuff
ahead. To make the association between file suffixes and MIME types easy, we
simply define one word per suffix. That gets the MIME type as string.
transparent: does all that for all the file types that are handled using
transparent:

: transparent: (addr u -) Create here over 1+ allot place
 DOES> >r >file
 .connection
 ." Content-Type: " r> count type cr cr
 data @ IF transparent ELSE nip close-file throw THEN ;

There are hundreds of MIME types, but who wants to enter all of them? Nothing
could be easier than this, we steal the MIME types that are already known to the
system, say from /etc/mime.types. The file lists the mime type on the left
paired with the file suffixes on the right (sometimes none).

: mime-read (addr u -) r/o open-file throw
 push-file loadfile ! 0 loadline ! blk off

 30

 BEGIN refill WHILE name
 BEGIN >in @ >r name nip WHILE
 r> >in ! 2dup transparent: REPEAT
 2drop rdrop
 REPEAT loadfile @ close-file pop-file throw ;

One more thing we need: for active content we want to use server side scripting
(in Forth, of course). Since we don't know the size of these requests in advance,
we don't report it but close the connection instead. That relieves us of the
problem of cleaning up the trash the user is creating with his active content
(that's Forth code!).

: lastrequest
 ." Connection: close" cr maxnum off
 ." Content-Type: text/html" cr cr ;

So let's start with the definition of MIME types. Get a new wordlist. Active
content ends with shtml and is included. We provide a few special types and
the rest we get from the system file mentioned above. For unknown file types,
we need a default type, text/plain.

wordlist constant mime
mime set-current

: shtml (addr u -) lastrequest
 data @ IF included ELSE 2drop THEN ;

s" application/pgp-signature" transparent: sig
s" application/x-bzip2" transparent: bz2
s" application/x-gzip" transparent: gz
s" /etc/mime.types" mime-read

definitions

s" text/plain" transparent: txt

Error Reports
Sometimes a request goes wrong. We must be prepared for that and respond
with an appropriate error message to the client. The client wants to know which
protocol we speak, what happened (or if everything is OK), who we are, and in
the error case, a error report in plain text (coded in HTML) would be nice:

: .server (-) ." Server: Gforth httpd/0.1 ("
 s" os-class" environment? IF type THEN .")" cr ;

 31

: .ok (-) ." HTTP/1.1 200 OK" cr .server ;

: html-error (n addr u -)
 ." HTTP/1.1 " 2 pick . 2dup type cr .server
 2 pick &405 = IF ." Allow: GET, HEAD, POST" cr THEN
 lastrequest
 ." <HTML><HEAD><TITLE>" 2 pick . 2dup type
 ." </TITLE></HEAD>" cr
 ." <BODY><H1>" type drop ." </H1>" cr ;

: .trailer (-)
 ." <HR><ADDRESS>Gforth httpd 0.1</ADDRESS>" cr
 ." </BODY></HTML>" cr ;

: .nok (-) command? @ IF &405 s" Method Not Allowed"
 ELSE &400 s" Bad Request" THEN html-error
 ." <P>Your browser sent a request that this server "
 ." could not understand.</P>" cr
 ." <P>Invalid request in: <CODE>"
 error-stack cell+ 2@ swap type
 ." </CODE></P>" cr .trailer ;

: .nofile (-) &404 s" Not Found" html-error
 ." <P>The requested URL <CODE>" url $@ type
 ." </CODE> was not found on this server</P>" cr .trailer ;

Top Level Definitions
We are almost done now. We simply glue together all the pieces above to
process a request in sequence - first fetch the input, then transform the URL,
recognize the MIME type, work on it including error exits and default paths. We
need to flush the output, so that the next request doesn't stall. And do that all
over again times, until we reach the last request.

: http (-) get-input IF .nok ELSE
 IF url $@ 1 /string rework-htmldir
 dup 0< IF drop .nofile
 ELSE .ok 2dup >mime mime search-wordlist
 0= IF ['] txt THEN catch IF maxnum off THEN
 THEN THEN THEN outfile-id flush-file throw ;

 32

: httpd (n -) maxnum !
 BEGIN ['] http catch maxnum @ 0= or UNTIL ;

To make Gforth run that at the start, we patch the boot message and then save
the result as a new system image.

script? [IF] :noname &100 httpd bye ; is bootmessage [THEN]

Scripting
As a special bonus, we can process active content. That's really simple: We just
write our HTML file as usual and indicate the Forth code with “<$” and “$> ”
(the space for the closing parenthesis is certainly intentional!). Let's define two
words, $> , and to get the whole thing started, <HTML>:

: $> (-)
 BEGIN source >in @ /string s" <$" search 0= WHILE
 type cr refill 0= UNTIL EXIT THEN
 nip source >in @ /string rot - dup 2 + >in +! type ;
: <HTML> (-) ." <HTML>" $> ;

That's quite enough, we don't need more. The rest is all done by Forth, as in the
following example:

<HTML>
<HEAD>
<TITLE>GForth <$ version-string type $> presents</TITLE>
</HEAD>
<BODY>
<H1>Computing Primes</H1><$ 25 Constant #prim $>
<P>The first <$ #prim . $> primes are: <$

: prim? 0 over 2 max 2 ?DO over I mod 0= or LOOP nip 0= ;

: prims (n -) 0 swap 2
 swap 0 DO dup prim? IF swap IF ." , " THEN true swap
 dup 0 .r 1+ 1 ELSE 1+ 0 THEN
 +LOOP drop ;

#prim prims $> .</P>
</BODY>
</HTML>

 33

Outlook
That was a few hundred lines of code - far too much. I have delivered an
“almost” complete Apache clone. That won't be necessary for the sea-bed or the
refrigerator. Error handling is ballast, too. And if you restrict to single
connection (performance isn't the goal), you can ignore all the protocol
variables. One MIME type (text/html) is sufficient -- we keep the images on
another server. There is some hope that one can get a working HTTP protocol
with server-side scripting in one screen.

Appendix: String Functions
Certainly we need some string functions, it doesn't work without. The following
string library stores strings in ordinary variables, which then contain a pointer to
a counted string stored allocated from the heap. Instead of a count byte, there's a
whole count cell, sufficient for all normal use.

The string library originates from bigFORTH and I've ported it to Gforth (ANS
Forth). But now we consider the details of the functions. First we need two
words bigFORTH already provides:

: delete (addr u n -)
 over min >r r@ - (left over) dup 0>
 IF 2dup swap dup r@ + -rot swap move THEN + r> bl fill ;

delete deletes the first n bytes from a buffer and fills the rest at the end with
blanks.

: insert (string length buffer size -)
 rot over min >r r@ - (left over)
 over dup r@ + rot move r> move ;

insert inserts as string at the front of a buffer. The remaining bytes are moved
on. Now we can really start:

: $padding (n - n')
 [6 cells] Literal + [-4 cells] Literal and ;

To avoid exhausting our memory management, there are only certain string
sizes; $padding takes care of rounding up to multiplies of four cells.

: $! (addr1 u addr2 -)
 dup @ IF dup @ free throw THEN
 over $padding allocate throw over ! @
 over >r rot over cell+ r> move 2dup ! + cell+ bl swap c! ;

$! stores a string at an address; if there was a string there already, that string
will be lost.

: $@ (addr1 - addr2 u) @ dup cell+ swap @ ;

 34

$@ returns the stored string.

: $@len (addr - u) @ @ ;

$@len returns just the length of a string.

: $!len (u addr -)
 over $padding over @ swap resize throw over ! @ ! ;

$!len changes the length of a string. Therefore we must change the memory
area and adjust address and count cell as well.

: $del (addr off u -) >r >r dup $@ r> /string r@ delete
 dup $@len r> - swap $!len ;

$del deletes u bytes from a string with offset off .

: $ins (addr1 u addr2 off -) >r
 2dup dup $@len rot + swap $!len $@ 1+ r> /string insert ;

$ins inserts a string at offset off.

: $+! (addr1 u addr2 -) dup $@len $ins ;

$+! appends a string to another.

: $off (addr -) dup @ free throw off ;

$off releases a string.

As a bonus, there are functions to split strings up.

: $split (addr u char - addr1 u1 addr2 u2)
 >r 2dup r> scan dup >r dup IF 1 /string THEN
 2swap r> - 2swap ;

$split divides a string into two, with one char as separator (e.g. ‘?’ for
arguments)

: $iter (.. $addr char xt - ..) { char xt }
 $@ BEGIN dup WHILE char $split >r >r xt execute r> r>
 REPEAT 2drop ;

$iter takes a string apart piece for piece, also with a character as separator. For
each part a passed execution token (xt) will be called. With this you can take
apart arguments -- separated with ‘&’ - with ease.

Bernd Paysan is a member of German FIG – Forth Gesellschaft – and posts regularly to
comp.lang.forth.

 35

More on International FIG

After the brief report on International FIG in the last Forthwrite, you may be
wondering how things have developed. In the absence of any official
communication from the Board of Directors, we have to fall back on a
comp.lang.forth message from Elizabeth Rather of Forth Inc. (4-Aug) which is
worth reporting in full:

FIG isn't dead, but it's on life support right now. I forwarded this
message to the rest of the board hoping others would respond. Please
regard this as a personal response to the question, not an official
statement of the board of FIG (of which I am a member).

FIG is suffering from a severe lack of support, both in terms of money
and also time/energy. For the last several years it has been running
at a deficit financially, continuing to operate thanks to the
dedication and financial support of Skip and Trace Carter of Taygeta.
They tried everything they knew to improve membership, but it
dwindled. Marlin gave up trying to pull FD together 4 times a year
because of lack of good articles.

Ironically, the decline in FIG membership and support doesn't
necessarily reflect a decline in Forth usage: only a tiny fraction of
Forth users are members of FIG. I have tried to explore ways of
making FIG more relevant to the Forth programmers who are
professionals using Forth in their jobs, as well as the hobbyists who
have been the FIG mainstays, but it's a difficult chicken-egg
solution. Few professional Forth programmers have time to write
articles about their work, so they look at FD and see nothing from
their peers and go away.

Last winter, exhaustion set in, and Skip resigned as President,
requesting that the office be moved from Taygeta. It is in the
process of being moved back into John Hall's keeping, but it's unclear
how to really set up for handling sales, etc. Marlin has also
resigned as FD editor. We have at least one possible volunteer to
help, and suggestions regarding electronic publication. We have a
final edition of FD ready to publish very soon (Marlin has had it
finished since last winter, but it has been awaiting official notice
of such things as a new board election and FORML).

If FIG is important to you, now is the time to step forward and see
what you can contribute, not only in terms of money, but also
logistical support and effort to make things happen.
Please respond to <board@forth.org>.

Thanks,
Elizabeth

 36

It is sad to see such a valuable organisation brought low and I am sure we all
want to see International FIG overcome their difficulties, recover the key position
they hold and resume their support of Forth users worldwide.

You may be wondering why they should be in crisis with around 700 members
where FIG UK and Forth Gesellschaft are comfortable with 100-200. I suspect
(and this is only a personal interpretation) that International FIG have financial
commitments for staff and premises and the reducing number of members has
tipped them into a deficit. The current paralysis may be because they cannot
agree on how to proceed.

Two points I ought to make:

1. FIG UK (and I suspect Forth Gesellschaft too) do not have financial
commitments of this kind. Our costs are in proportion to our numbers and
we have been careful to keep it that way.

2. FIG UK no longer has a declining membership and numbers have been
steady for the past two years.

As I hope the pages of Forthwrite make clear, Forth itself continues to be used,
to grow and develop and FIG UK is very well placed to promote the interests of
Forth users throughout the UK.

Chris Jakeman

More Editorial
In the last issue, Dave Pochin’s “Floating Point Fudge” article came some
test cases for checking the code (as mentioned in the article), which I left
out by accident. If anyone would like copies of these, please contact Dave
directly.

 37

Dutch Forth Users Group

Reading Dutch is easier than you might think. And as Forth is
an international language, reading Dutch code is easier still for
a Forth enthusiast. Are you interested? Why not subscribe to

HCC-Forth-gebruikersgroep

For only 20 guilders a year (£6.30), we will send you 5 to 6
copies of our "fig-leaf" broadsheet 'Het Vijgeblaadje' . This
includes all our activities, progress reports on software and

hardware projects and news of our in-house products.

To join, contact our Chairman:
 Willem Ouwerkerk
 Boulevard Heuvelink 126
 6828 KW Arnhem, The Netherlands
 E-Mail: w.ouwerkerk@kader.hobby.nl

The easiest way to pay is to post a 20 Guilder note direct to Willem.

 38

 Letters

Graeme Dunbar

From: g.r.a.dunbar@eee.rgu.ac.uk
Sent: 27 June 2000
To: F11-UK Mailing List
Subject: Book and Software

A rep from Prentice Hall came to see me a few weeks back and
I told him I was looking for books on the 68HC12 to support
our courses. He sent me a copy of:

"Design of Embedded Systems Using 68HC12/11
Microcontrollers" by Richard Haskell, Prentice Hall 1999.
ISBN 0 13 083208 1.

It uses a version of Forth called WHYP that comes on a floppy
disc with the book. This looks like a useful way of learning
about the hardware and machine code of the 68HC11 and
68HC12 with a Forth "wrapper". It reminds me a bit of
Loeliger's and John Matthews' books in the way in which the
code evolves from assembly language beginnings.

I haven't had time to try WHYP out properly, but it look
promising. The hardware side of the book looks good and does
not shy away from modules like the SPI interface (as provided
by F11-UK) and the timers.

Unfortunately it is only the Forth that prevents me re-
commending it as a book on our courses as it does not match up

Graeme Dunbar has a new book to report and Robin Francis is a new member and tells us of
his interests. Meanwhile Nicholas Nemtsev from Russia is one of our new on-line readers who
has comments on an item by Fred Behringer in the first issue of Forthwrite to be published on-
line.
with our syllabi.

Regards, Graeme

 39

Robin Francis

From: remfrancis@rdplus.net
Sent: 07 July 2000

Hi Chris,

Many thanks for the welcome. My interest has been purely
academic up to date although I am now taking a more lively
interest in learning Forth. It was the young son of a friend
(living in South Africa) who said he was interested in
programming robots that woke me up from my slumbers and
sent me looking at the Forth.org web site for him. So while he
is over here with his parents I am giving him my copy of Brodie
plus F83 to make a start. That is how I found out about FIG
UK. I shall make a gift subscription if he takes to it as I
suspect he will (Now there’s a good idea! Ed.)

My main interest is intellectual history and I have also
wondered if anybody has thought of starting a computer
museum which would include a software museum. My visit to
Bletchley Park was encouraging in that respect. It is
certainly the right place to start one and maybe that is what
they are going to do. It is rather a long way from where I am
but I shall make sure of going back and see how they are
getting on. If they do, you must make sure they have all kinds
of Forth in their software museum. Then I might be able
to run that complex 3D stuff on the 8086 I have just been
reading about.

I shall come back when I have found my way about a bit more.
I had no idea there was such a lively Forth community still in
being. What is it about TILs that is so intellectually
fascinating?

Regards for now,

Robin Francis

 40

Nicholas Nemtsev

From: nn@vdk.psc.ru
Sent: 10 August

Dear Chris,

I have read the article "32-bit GCD without Division in ZF and
Turbo Forth" by Fred Behringer in Forthwrite's issue # 106.
Obviously, Fred is treating 0/a, where a is non-zero, as an
exceptional case along with a/0 and 0/0. However, I think it is
better to assign the value <a> to the GCD in cases where 0/a,
instead of Fred's exception-signalling 0, in order to be able to
continue with the calculation in mind since it is not really
necessary to consider 0/a as an exceptional case.

The following is my version of a GCD program (InfoForth, 16-
bit operands, postfix x86 assembler).

CODE GCD (N1 N2 -- GCD)
 BX POP AX POP
 CX, CX XOR CX INC DX, CX MOV
 AX, AX OR 1$ JNS AX NEG (ABS A)
 1$: BX, BX OR 2$ JNS BX NEG (ABS B)
 2$: AX, AX OR 10$ JZ BX, BX OR 10$ JZ (zero?)
 3$: AL, # 1 TEST 4$ JNZ AX, # 1 SAR CX, # 1 SAL 3$ JMP
 4$: BL, # 1 TEST 5$ JNZ BX, # 1 SAR DX, # 1 SAL 4$ JMP
 5$: CX, DX CMP 6$ JLE CX, DX MOV
 6$: AX, BX CMP 9$ JE 7$ JA AX, BX XCHG
 7$: AX, BX SUB
 8$: AL, # 1 TEST 6$ JNZ AX, # 1 SAR 8$ JMP
 9$: CX MUL AX PUSH NEXT,
 10$: AX, BX ADD 9$ JNZ
 AX INC 9$ JMP
 END-CODE

 Best regards,
 Network Administrator
 MUP "Gorvodokanal", Pskov
 Nicholas Nemtsev

 41

FIG UK Services to Members

Magazine

Library

Web Site

IRC

Members

Beyond the
UK

Forthwrite is our regular magazine, which has been in publication
for more than 100 issues. Most of the contributions come from
our own members and Chris Jakeman, the Editor, is always
ready to assist new authors wishing to share their experiences
of the Forth world.

Our library provides a service unmatched by any other FIG
chapter. Not only are all the major books available, but also
conference proceedings, back-issues of Forthwrite and also of
the magazine of International FIG, Forth Dimensions. The price of
a loan is simply the cost of postage out and back.

Jack Brien maintains our web site at http://forth.org.uk. He
publishes details of FIG UK projects, a regularly-updated Forth
News report, indexes to the Forthwrite magazine and the library
as well as specialist contributions such as “Build Your Own
Forth” and links to other sites. Don’t forget to check out the “FIG
UK Hall of Fame”.

Software for accessing Internet Relay Chat is free and easy to
use. FIG UK members (and a few others too) get together on the
#FIG UK channel every month. Check Forthwrite for details.

The members are our greatest asset. If you have a problem,
don’t struggle in silence - someone will always be able to help.
Do consider joining one of our joint projects. Undertaken by
informal groups of members, these are very successful and an
excellent way to gain both experience and good friends.

FIG UK has links with International FIG, the German Forth-
Gesellschaft and the Dutch Forth Users Group. Some of our
members have multiple memberships and we report progress
and special events. FIG UK has attracted a core of overseas
members; please ask if you want an accelerated postal delivery
for your Forthwrite.

	Structured bookmarks
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

