

 ISSN 0265-5195

news events people reviews projects programming

April

FIGUK magazine:
Generating Combinations

FIG Hardware Project
Solving a Riddle

Vierte Dimension 1/01
Letters

Forthwrite Index

2001
Issue 111

Six Easy Fonts
An exercise in Win32Forth

 2

 1

euroFORTH 2001 ����..�.. 12

FIG Hardware Project �..��.. 8

Forth News ��������... 3
Vierte Dimension 1/01 .�..��. 19

Did you Know?
� NEAR Space Probe .���� 17
Forthwrite Index ������.. 35

Six Easy Fonts
An exercise in Win32Forth �.. 5
Generating Combinations �� 14
Solving a Riddle ������.. 23

FIG UK Awards - 2000 ���.� 13

Moving On ���������. 18
Letters ����������� 31

news

reviews

programming

people

events

projects

April
2001
Issue 111

 2

Editorial
Here we are at last.

We welcome Leo Wong back into print � his
subject may be lightweight but his treatment

repays study. Thanks to Leo and Fred Behringer, Ed Hersom�s
permutations turn up twice more in this issue � surely a record!
Dave Pochin also returns with yet another contribution on using
the Windows environment. This issue contains some start-of-
year material held over from January.

Do take a close look at the Index printed at the end of this
issue. It shows how much good work has been published and also
reveals some gaps to be filled. The Letters section also includes
some interesting suggestions.

Welcome to three new members, Gianluca Massotti of London
who is studying 3D graphics, Boris Fennema from Ireland and
Erik Johansson, who is our third member from Sweden.

Look out for the June issue with David Abraham�s review of the
new Mindstorms book, a report of my visit to the German FIG 2-
day Conference and details of Forth on the NEAR space probe.

Don�t forget the monthly IRC session. There�s now a countdown
reminder on our web site.

I�ll finish this time by thanking those many members who
accompany their renewals with words of encouragement. It�s
great to know our efforts are appreciated.

 3

 Forth News

FORTH PUBLICATIONS

John Hall has revised the FIG web site,
http://www.forth.org and has organised a
new searchable database of Forth
publications. There are 138 entries so far
and he is looking for help particularly
from authors who have articles in
electronic format - contact:
jdhall@mac.com

BETA TESTERS NEEDED

In a posting to comp.lang.forth(clf),
Albert Lee Mitchell states:

"We are on the cusp of releasing our first
family of tethered Forths, the 8051
family, under the LGPL license. Anyone
interested in being a Beta tester?"
contact: alm@amresearch.com

At the moment we are considering a port
of amrFORTH to the Motorola
6805/6808 microcontrollers if the
demand is sufficient.

http://www.amresearch.com

PERSONAL FORTH ROBOT

Don Golding of Angelus Research
announced on clf:

�� the introduction of our new personal
robot:: Bugsy AI. It uses our real-time
Artificial Intelligence control system and

of course is a Forth-based machine.�

http://www.angelusresearch.com

SIGPLAN

An article by FIG UK member Julian
Noble on jump tables and finite state
machines will be published in June 2001
issue of ACM�s SIGPLan magazine.
Chris Jakeman�s article on Forth in the
UK was published in the December issue
of SIGPLan, pages 19-21 of Vol.35
No.12

NEW OWNERSHIP

MegaWolf Inc.
http://www.megawolf.com has bought
the MacForth products from Forth Inc..
MegaWolf produces hardware and
software for the Macintosh and is a long-
time user of MacForth. It plans to
continue the long history of MacForth,

Dave Abrahams
0161 477 2315

d.j.abrahams@cwcom.net

http://www.forth.org/
mailto:jdhall@mac.com
mailto:alm@amresearch.com
http://www.amresearch.com/
http://www.angelusresearch.com/
http://www.megawolf.com/

 4

starting with a free upgrade of PMF for
existing users.

For the complete press release, see:
http://www.macforth.com/pressrelease1.
html

VERSION 0.30 OF PFE

Guido Draheim has announced the
release of beta release of vesion 0.30 of
the Portable Forth Environment (pfe).
Download from:

http://pfe.sourceforge.net

GFORTH

Anton Ertl has begun work on a
peephole optimiser for GForth. As a first
step he has switched to in-line
implementations for elements like
literals and DOES> as this less compact
style is more suitable.
http://www.complang.tuwien.ac.at/anton
/home.html

App-Watch

Continuing the applications theme from the last issue, word
has come in about another 3 applications in Forth � expect
details in a future issue.

The first is a set of commercial robots used to handle
delicate electronic equipment.

The second is a British software application used by many
large corporations including Microsoft.

The third is an implementation for Windows of the Unix
�cron� tool which runs background tasks at specified times.
It is written and configured in Forth and hails from Russia.

http://www.macforth.com/pressrelease1.html
http://www.macforth.com/pressrelease1.html
http://pfe.sourceforge.net/
http://www.complang.tuwien.ac.at/anton/home.html
http://www.complang.tuwien.ac.at/anton/home.html

 5

Dave Pochin
01905 723037

davep@sunterr.demon.co.uk

Six Easy Fonts
An exercise in Win32Forth

Dave Pochin

Another useful article in Dave�s growing series on using
Win32Forth to get the better of Windows.

Fonts and Forth, Forth and Fonts - not a combination I�ve given much thought
to, let alone used. When I need fonts, I�ve got dozens to choose from in the good
old Word Processor using Windows !!! But that�s just the point. I�ve made a fuss
about using the Windows part of Win32Forth, why ignore the poor old fonts,
because, quite frankly it looks like a big job for very little return, but the
beginnings don�t seem too terrifying.

The Windows system provides for six Stock Fonts, each of which is slightly
different.

! ANSI_FIXED_FONT
�ANSI� refers to the character set, �FIXED� to the pitch between letters.
! ANSI_VAR_FONT
! DEVICE_DEFAULT_FONT
! OEM_FIXED_FONT
! SYSTEM_FIXED_FONT
! SYSTEM_FONT

Depending on your particular set up, some of these fonts may appear on the
display exactly the same, or not appear at all, so don�t blame Microsoft.

mailto:davep@sunterr.demon.co.uk

 6

These Stock Fonts are part of a large number of Stock Objects available in
Windows, and Win32Forth provides a very simple method to call them in the file
DC.f.

:M SelectStockObject: (id -- oldobj)
 GetStockObject: self SelectObject: self
;M

All that is needed is to have the identity of the required font on the stack before
calling the function, and to drop the old object identity off the stack afterwards.
Note, if you read some of the texts, you will see it is common to store this old
object identity as a variable, so you can swap back again later and the listings
are full of �new_font� and �old_font� statements, which just cause confusion at
first.

Having selected your font, then carry on printing strings as usual, in the listing
I�ve used the TextOut method, again from the file DC.f

:M TextOut: (x y addr len --)
 swap rel>abs 2swap swap hDC Call TextOut ?win-error
;M

So in the listing you will find;

OEM_FIXED_FONT SelectStockObject: dc DROP
20 30 s" OEM_FIXED_FONT AaBbCc¹º"1/41/23/4¿HhIiJjKkLl" TextOut: dc

- which are two of the prettiest lines of Forth in all of Win32Forth, short, and self
contained, no messing about reversing stack parameters to make Windows look
like Forth or vice-versa.

The size of the window in the listing is large enough to accommodate each of the
font strings. Where indicated, just replace each font title in turn.

As an example of using stock fonts in a real application, look at the two defining
words, : system-fixed-font ... ; and : small-font ... ; in the section
� Font Selection � about half way through the file Window.f

Using these Stock Fonts is almost as easy as picking them from a Menu Bar.
Talking of Menu Bars, if you select Display from the Win32Forth console bar,
you�ll find an item � List of Fonts in System .FONTS �, which will scroll through
the list of fonts available. It�s a couple of pages long !!!! Hmmm !!!

The following listing will open a similar window to the one above and display
one of the six fonts. To execute it, enter

START: FONTDEMO

 7

Listing

ANEW PROGRAM

\ Define an Object that is a super object of the Class "Window".
:OBJECT Fontdemo <SUPER WINDOW

:M ClassInit: (--) \ Things to do at window creation.
 ClassInit: SUPER \ Do anything the class needs.
 ;M

:M WindowStyle: (-- style) \ Inherit the style from the class.
 WindowStyle: SUPER
 ;M

:M WindowTitle: (-- title) \ Title for the window.
 z" Six Easy Fonts One example only"
 ;M

:M StartSize: (-- width height) \ Set width and height of window
 520 80
 ;M

:M StartPos: (-- x y) \ Set the screen origin.
 200 100
 ;M

:M Close: (--) \ Do anything the class needs.
 Close: SUPER
 ;M

:M On_Paint: (--) \ screen redraw procedure
 /*
 For the other five fonts, replace ' OEM_FIXED_FONT ' in
 both the following two lines with any of :-
 ANSI_FIXED_FONT ANSI_VAR_FONT SYSTEM_FIXED_FONT
 SYSTEM_FONT DEVICE_DEFAULT_FONT
 */
 OEM_FIXED_FONT SelectStockObject: dc drop

20 30
s" OEM_FIXED_FONT AaBbCc¹º1/41/23/4¿HhIiJjKkLl"
TextOut: dc

 ;M

;OBJECT \ Complete the definition of the new object.

 8

 0121 440 1809
jeremy.fowell@btinternet.com

F11-UK
FIG Hardware

Project

The following messages were extracted from the F11 UK mailing list.
Although the kit is complete, enhancements and improvements

continue.

From Jeremy Fowell
The incremental compile project for the F11-UK board is taking shape. It didn't
take very long to sort most of it out except that I had a little trouble with
checksums. These are now used to check that the code downloaded to the F11-
UK target board is the same as the file on the hard disk.

This is much faster than the original VERIFY. I thought you might like to see
some of the code.

The final words for the PC side are as follows.(CHECKSUM is also needed on the
HC11 side and should run unchanged).

: CHECKSUM (a # -- u)
 (Calc 16-bit checksum u for # bytes
 starting at address a)

 0 SWAP FOR SWAP COUNT ROT + NEXT NIP ;

: FILE-CHECKSUM (name -- u)
 (Calc 16-bit checksum u for contents of
 binary file whose name is stored in a
 counted string at address = name.)

 0 SWAP FILE-OPEN 0
 BEGIN (u)
 128-READ DUP (u a # #)
 WHILE
 TUCK CHECKSUM SWAP (u u1 #)
 >FIN+! + (update file pointer) (u+)
 REPEAT
 2DROP FILE-CLOSE ;

It's quite handy to be able to get the checksum for a file stored on the hard disk.
CHECKSUM shows the simplicity of the FOR ... NEXT loop. These words have now
been added to 11DOWNLOAD.4TH where you can also find the code for 128-READ
and >FIN+!.

 9

The following word is used to compare the file containing the most recently
compiled PygmyHC11 code with the previous version. The result enables us to
determine where the modified code starts, and is the basis for incremental
compiling.

: COMPARE-FILES (a1 a2 -- u1 | T)
 (Compare two files stored on disk whose
 names are held in counted strings at a1
 and a2. If the files are different return
 u1 the number of bytes from the start of
 the file to the first sector that differs.
 Return true if files are identical.

 The 2 files must be in the current DOS
 directory. Sectors refer to target FLASH
 memory, see DOWNLOAD.)

I haven't included all the code for this word as it's a bit long.
__

Sadly January came and went in the blink of an eye, even Christmas seemed a
bit short this year. The main reason being that I was unexpectedly asked to fit in
a project to design a timer to go inside the terminal box on an industrial motor.

It turned out to be a great exercise in Forth philosophy, stripping out all non-
essential parts. I used the smallest available PIC (the 8-pin 508) and got the
software down to 82 bytes of assembler. The PCB is under 45 x 45mm. The
temperature and EMC environment are bad, but since somebody else paid for all
of this I can't say much more about it (maybe a good thing).

About 1/3 of the time was spent trying to sort out the difference between reality
and the various pieces of documentation which were written by somebody on
another planet. PygmyHC11 was sorely missed.

I look forward to quieter times ahead.

Paul Aksterstam (formerly de Bak), wrote in from Sweden with the solution to a
vexing problem which was welcomed by Jeremy and Martin Bitter.

Paul Bak:
After a lot of searching the internet, I have finally come across information that
sheds light on the problem I had with uploading PygmyHC11 to the F11-UK from
DOS under Windows (either full-screen or a DOS box).

The symptoms were as follows (referring to the F11-UK User Guide, Ver 1.0):
When downloading code as per section 10, all worked successfully down to
section 10.10, then a problem occurred. I never got the messages in section

 10

10.13. Starting over, I monitored the signals from the serial port and noticed that
nothing was being transmitted from the PC serial port during the
whole procedure!

It turns out that Microsoft's virtual communication device (VCD.VXD) in Windows 98
Second Edition and Windows Millennium Edition has a bug that incorrectly initializes
the default state of the virtual COM ports used by MS-DOS virtual machines. The
Microsoft article Q252184 entitled 'MS-DOS-Based Programs Unable to Initialize COM
Ports on Computers with ACPI Support' describes the problem and provides a solution.

Exposing the bug
If you are running one of these Windows versions and want to see if your PC suffers
from this bug, do the following:

 1. Start the PC to an MS-DOS prompt (i.e. not running Windows).
Type MODE COM1:19200 (or MODE COM2:19200), and then press Enter.
If the command runs successfully do the next step.

 2. Re-start Windows. Open an MS-DOS window and again type MODE
COM1:19200 (or MODE COM2:19200), and press enter. If you receive the error
message:

 'Function not supported on this computer'

then the bug is present.

Fixing the bug
The bug can be permanently fixed by a small change in the Windows registry. Use
either the manual fix or the quick fix I supplied separately.

This fix disables the power management of the COM ports. I had no problem
communicating with the F11-UK board from a DOS window after the modification.
Even Telix for DOS (my favorite comms program) worked again!

Regards,

Paul Akterstam

Jeremy Fowell again:
This is most welcome news, and obviously involved quite a bit of work.

I have Windows 98 (edition unknown) running on my desktop PC and the Millennium
Edition on a laptop, so I will give both a try and report back.

Martin Bitter:
Thank you, Paul, this helped me a lot!

Regards,

Martin

 11

provides everything needed in a
professional-quality low-cost Forth
controller board.

Use it in industrial or hobby
projects to control a wide range of
devices using the well-known multi-
tasking Pygmy Forth.

Designed for hosting from a
DOS or Windows PC, you can test your
application as it runs on the F11-UK
board itself. The board was developed
by FIG UK members to provide an easy
way to explore the world of controlled
devices � a niche where Forth excels.

The kit includes both hardware
and software and is supported and sold
to members at a nominal profit through
a private company.

Software

PC-based PygmyHC11 Forth compiler
running under DOS produces code for
Motorola HC11 micro-controller.

Code is downloaded via standard serial
link from the PC to the FLASH memory (or
RAM) on the F11-UK single board computer
(SBC).

No dongle or programming adaptor of any
kind is required.

Forth running on the SBC is interactive
which makes debugging and testing much
easier.

Multitasking and Assembly included.

The serial link can be disconnected to
enable the SBC to function as a stand alone
unit.

All source code provided - 78 pages or so
(unlike many commercial systems).

Around 30 pages of additional
documentation is supplied including a full
glossary of the 300 or so Forth words in the
system.

Email mailing list for discussion and
limited support.

Hardware:

Processor: Motorola HC11 version E1 �
8 MHz (2 MHz E-Clock).

Memory: 32k x 8 FLASH
 32k x 8 battery backed SRAM
 512 x 8 EEPROM onboard HC11.

I/O: 20 lines plus 2 interrupts (IRQ and
XIRQ).

Analogue in: up to 8 lines using onboard
8-bit A/D.

Serial: 1) RS232, UART onboard HC11

2) Motorola SPI bus onboard
 HC11.

Expansion: Via HC11 SPI serial bus using
 2 or more of 20 available lines.

Timer system:
 Inputs: 3 x 16-bit capture channels
 Outputs: 4 x 16-bit compare channels.

PCB size: 103 x 100 mm.

Price to FIG UK members: £47.0 plus postage and packing (£2 UK, £4 overseas) plus

$25.0 (US Dollars) for registration of 80x86 Pygmy Forth with
the author Frank Sergeant.

 Delivery: ex-stock.
 More information: jeremy.fowell@btinternet.com and 0121 440 1809

F11-UK

 12

euroFORTH 2001

The 17th annual euroForth conference on the Forth programming
environment and Forth processors is being held on November 23 �

26 at Schloss Dagstuhl, near Saarbrücken, Germany.

This annual conference is held in the UK
every third year and, after the 1999 venue
in St.Petersburg, it returns again to Schloss
Dagstuhl. (See Paul Bennett�s detailed
report in issue 99). The conference
language will be English.

FIG UK member Bill Stoddart (W.J.Stoddart@tees.ac.uk) is the Program Chair
and invites papers on both academic and business topics. Dates for submissions
are listed at http://dec.bournemouth.ac.uk/forth/euro/ef01.html

Conference chair:-

Dr. Bill Stoddart
School of Computing &
Mathematics,
University of Teesside,
Middlesbrough, Cleveland.
TS1 3BA
Tel: +44 (0)1642 342 673
Fax: +44 (0)1642 230 527
W.J.Stoddart@tees.ac.uk

Program chair:-

Dr. Peter Knaggs,
Bournemouth University,
Talbot Campus, Fern Barrow,
Poole, Dorset,
UK, BH12 5BB
tel: +44 1202 595625
fax: +44 1202 595314
pknaggs@bournemouth.ac.uk

euroFORTH is the only international conference on the
programming language Forth, its underlying principles and its
innovative potential for product development.

http://www.dagstuhl.de/
http://dec.bournemouth.ac.uk/forth/euro/ef01.html
mailto:W.J.Stoddart@tees.ac.uk
mailto:pknaggs@bournemouth.ac.uk

 13

Nominations for the
FIG UK Awards - 2000

To nominate your candidate, send in a note of
who, in your opinion, most deserves an award and
why. The recipient of each award will receive a
place in the FIG UK web-site's Hall Of Fame, a
mention in Forthwrite and a year's free
membership.

The Achievement Award is given to the member
who has made the best contribution towards Forth
during 2000. The contribution may be a presented
paper, a library of code or an idea which inspires
others. Whatever form it takes, the contribution
must support the goals of FIG UK.

The Forthwrite Award is given to the member who
has made the best contribution to Forthwrite
magazine during 2000. The contribution may be
judged on quality of writing, tutorial potential,
entertainment value or other criteria which the
Forthwrite Team deem appropriate.

The awards are judged by the officers of FIG UK. All who are
members on 31st Dec. 2000 are eligible (except the judges).

Free
membership

Achievement

Forthwrite

The FIG UK Awards of 1999 were won by Jeremy Fowell
and Alan Wenham. These awards are given to encourage

effort and recognise achievement.
Please take the time to look back over the past year and

send in your personal nominations for 2000.

 14

 Fred Behringer
behringe@mathematik.tu-muenchen.de

Generating Combinations
Fred Behringer

subtitled - �Printing All Combinations of K 1's in an N-Bit Word in
High-Level Forth�.

Editor�s Comment: I don�t understand some of the mathematical
terms in the second paragraph but the bit patterns reveal what is
being done and how.
In the listing, note the way 2-NTH looks up the answer in the table, a
classic technique which is far easier in Forth than most languages.

This note was inspired by Ed Hersom's program on "Simple Permutations" as
presented by Chris Jakeman in issue 110 of Forthwrite. As with Ed's, this note is
in high-level Forth (ignoring any efficiency considerations) and it relies on
RECURSE. It deals with systematically generating all combinations of k distinct
items taken at a time from a set of n items, irrespective of permutations - to be
precise, all instances of k 1's in an n-bit binary word.

The problem arose when I tried to convert the disjunctive standard
representation of an n-variable boolean function into its multilinear arithmetic
equivalent. One field of application is Reliability Theory with its multicomponent
systems of either malfunctioning or well-working parts. Another field of
conceivable application is a multisensor robot. Imagine taking appropriate
measures to the signals coming from Ralph Hempel's Lego robots as extended to,
say, 16 homebrew sensors following Michael Gasperi's Web proposals.

Algorithm: From right to left, fill-up the n-bit "word" with the required
number, let's say k, of 1's.

Given any combination of k 1's in the word, e.g. 11000101, shift the first 1
from the left which has a leading 0, one bit to the left, here 11001001, and
restart the process with the smaller problem (the "subtree") of keeping the
"right-hand part" of the word, here1001, unchanged, i.e., take 00001001 as
an intermediate starting word, the previous "node" as the root of the subtree of
the remaining (forward) recursions, in our example.

Illustration: The following sequence of combinations of three 1's in a six-bit
word, as obtained by the program to follow, will (hopefully) illustrate the way
the algorithm works. The sequence should be read from left to right, line by line.

1 2 3 4 5 6 7 8 9 10
000111 001011 010011 100011 001101 010101 100101 011001 101001 110001
11 12 13 14 15 16 17 18 19 20
001110 010110 100110 011010 101010 110010 011100 101100 110100 111000

mailto:behringe@mathematik.tu-muenchen.de

 15

Note that "words" 2 to 4 have 011 as their fixed intermediate part and the
remaining problem is the one of finding all "combinations" of one 1 in three
bits (the leftmost three). "Words" 5 to 7 take up the recurrence (of shifting
the leftmost 1 by one bit to the left and restarting a smaller problem) at the
right-hand part (i.e. 000011) of "word" 2, retaining 000101 as the "fixed part".

Implementation: The filling-up with 1's is done by the else-part of the first
RECURSE. This is controlled by the parameter "count" which had previously been
placed on stack. The shifting to the left of the leftmost 1 led by a 0 is done by the
if-part of the first RECURSE. Backtracking in case of a 1 being shifted out of the
"word" to the left is done by the second RECURSE. Actually, this is to be
considered in the negative sense: the second RECURSE stands for resuming
recursion. For this purpose, the part of the word that remains when a 1 is shifted
out to the left, irrespective of the number of 1's stored in the parameter "count",
is saved in the variable ACCU. When backtracking, the content of ACCU is
compared with the parameter "accu" at each stage of the backtracking process.
The second RECURSE is not executed, i.e. another step of backtracking is added,
as long as the content of ACCU does not yet match the value of the parameter
"accu" at the particular stage. The overall backtracking process stops, i.e., there
will be no more restarting forward recursions, once the very first triple of
parameters (level=0 count=0 accu=0), the root of the entire tree, is met again.

Remark: Clearly, the depth of recursion will never exceed the number of bits
in the "word". The main purpose of backtracking is to get to the parameters
"level" and "count" of the intermediate stage of restart signalled by the
current content of ACCU. The human eye is capable of immediately seeing where
the leftmost 1 with a leading 0 is placed. Assuming that, by low-level bit
counting or other devices, the program could be designed to execute this task
in "one step", avoiding several steps of backtracking, there would still remain the
problem of the number of (forward) recursions becoming excessively large.
There is no such problem in the program to follow since there we have an
alternating succession of forward and backward recursions.

Time required: The number of ordered sets of k 1's in n bits is given by the
respective binomial coefficient (the product of the largest k integers smaller
than, or equal to, n, devided by the product of the first k positive integers). The
largest number of feasible bits (wordlength) in my program is 16d. So, clearly,
the largest number of combinations is reached for k = 8 while n = 16,
amounting to 12,870d. Hence, that number of combinations to be computed can
be regarded the worst case for timing considerations. On a 486/66 machine, the
worst case just mentioned needed about 1 second in case of no display, and 48
seconds when the individual combinations of 8 1's in 16 bits were displayed on
screen.

 16

Listing:

HEX
HERE
 1 , 2 , 4 , 8 , 10 , 20 , 40 , 80 ,
100 , 200 , 400 , 800 , 1000 , 2000 , 4000 , 8000 , 10000 ,

\ 10000 is provided for the case of an
\ excessive 1 in a 16 bit situation.

: 2-NTH (n -- 2^n) \ 0 <= n <= 1F
 [DUP] LITERAL \ [DUP] and DROP because of Turbo Forth's
 SWAP CELLS + @ ; DROP \ stack balance error preventing mechanism

VARIABLE #BITS \ "Wordlength"
VARIABLE #ONES \ Number of 1's to be created
VARIABLE ACCU \ Powers of 2 accumulated for backtracking

: (K-IN-N) (level count accu --)
 2 PICK #BITS @ \ lv cn ac lv (#b)
 #ONES @ - 3 PICK + \ lv cn ac lv (#b)-(#o)+cn ; any bit room
 <= IF \ left ? Otherwise go to previous stage.
 OVER #ONES @ = \ Enough 1's collected in count ?
 IF
 BASE @ OVER 2 BASE ! CR 0 \ Print next group of #ONES 1's in a 'word'
 <# #BITS @ 0 DO # LOOP \ of #BITS bits, filled-up by leading 0's.
 #> TYPE SPACE BASE ! \ Print in base two and restore base.
 3DUP 2 PICK 1- 2-NTH - \ Replace leftmost 1 by 0 , save value
 DUP ACCU ! \ (powers of 2) in the variable ACCU ,
 ROT 1+ -ROT 2 PICK 1- \ and shift said 1
 2-NTH + \ one bit to the left.
 ELSE
 3DUP ROT 1+ ROT 1+ ROT \ lv cn ac lv+1 cn+1 ac
 5 PICK 2-NTH + \ lv cn ac lv+1 cn+1 ac-new
 THEN
 RECURSE
 THEN
 3DUP + + 0<> \ Stop backtracking ?
 IF
 DUP ACCU @ = \ Continue backtracking
 IF \ if "node" value not yet reached.
 3DUP 2 PICK 1- 2-NTH - \ Resume recurrence, i.e. replace leftmost
 DUP ACCU ! \ 1 by 0, save value (powers of 2) in

\ ACCU,
 ROT 1+ -ROT 2 PICK 1- \ shift said 1
 2-NTH + \ one bit to the left,
 RECURSE \ and continue process of recurrence.
 THEN
 THEN \ Backtrack to previous stage
 2DROP DROP ; \ and drop parameters.

 17

: K-IN-N (#ones #bits --)
 DUP 1 10 BETWEEN NOT \ Error if "wordlength" out of range
 ABORT" Input error" #BITS !
 DUP 1 #BITS @ BETWEEN NOT \ Error if number of 1's out of range
 ABORT" Input error" #ONES !

0. 0 (K-IN-N) ;

Chris Jakeman

cjakeman@bigfoot.com

Did you Know?
� NEAR Space Probe

While other parts of Forthwrite bring you all the news and the latest

ideas and developments, the Did You Know? section highlights
achievements in Forth, both recent and historical (taking care always

to distinguish hearsay from attested fact).

In a recent headline-grabbing event (Feb 12th), the NEAR
space probe was diverted, after successfully completing its
mission, to land on the Eros asteroid � the first such landing
ever attempted.

All the instruments and the command and data handling
system
were programmed in Forth. This event will be covered in
detail in our next issue.

Source � John Hayes, John Hopkins University

 18

Moving On

We heard recently that Chris and Sylvia Hainsworth have decided to
emigrate to Spain. As Chris put it, �We have been out to the Costa Blanca
for our holidays for the last few years, staying with Sylvia's sister and
brother in law, and we decided that we really liked the area, the climate
and the way of life. Some of our friends moved there last year and others
are planning to go fairly soon so it seemed a good idea for us to join the
club.

For years I had assumed that Spain was all like Benidorm
around the coast and a total desert elsewhere. In fact,
the area around Javea is very pretty along the coast and

inland is all green valleys and mountains. We don't yet know exactly where
we will settle but probably a few miles inland in the Orba or Jalon valley.�

Chris and Sylvia have done a great deal for Forth in the UK over the
years and we hope to print an item about that shortly. In the meantime, we
wish them lots of happiness in the sun.

I am delighted to report that Jeremy Fowell has agreed
to take over as Chairman of FIG UK. Jeremy has been an
Ordinary Member of the Committee and has already done

much for FIG UK, principally through the Hardware Project. I am sure his
energy and enthusiasm will serve us well in the years ahead.

However we still need a new Librarian to take over from
Sylvia, who has given house room to the Library since its
inception and provided an efficient and cheerful service.

 The Library has recently been trimmed down to 5 metres of shelf
space. It is a valuable and unique resource, being the only Forth Lending
library and the largest collection of Forth material anywhere.
 If you might like to volunteer to house and run the Library, please
contact Jeremy or me as soon as possible, so that Sylvia can finish her
packing! (As Editor, I would love to start a regular series with a short piece
exploring an item from the library in most issues.)

Look forward to hearing from you,

Librarian
wanted

New
Chairman

Place in the
sun

 19

Alan J M Wenham
01932 786440

101745.3615@compuserve.com

Vierte Dimension 1/01
Alan Wenham

General

 Martin Bitter has replaced Friederich Prinz temporarily as
editor for this volume and appeals to the membership for
articles. There are four partly provocative letters with
excellent responses and seven communications concerning
Forth happenings. The FIG-UK advert for membership
appears again in this volume.

UUENCODE and UUDECODE

Wil Baden

Fritz Prinz has taken up an Internet contribution by Wil
Baden, Martin Bitter has translated it. Code is given for a
Forth implementation.

Riddle - Number Representation

Fred Behringer

behringe@mathematik.t
u-muenchen.de

Fred gives three numbers:

10001111110
10000101010
100000101000100

which appear to be binary but are in fact the same number in
different
bases. Which bases? What number?

Other Groups

Fred Behringer

behringe@mathematik.t
u-muenchen.de

Fred reviews the Dutch �Figleaf�, volume 22 and 23

Alan provides a look at the latest issue of the German FIG
magazine. To borrow a copy or to arrange for a translation of an

individual article, please call Alan.

mailto:101745.3615@compuserve.com
mailto:behringe@mathematik.tu-muenchen.de
mailto:behringe@mathematik.tu-muenchen.de
mailto:behringe@mathematik.tu-muenchen.de
mailto:behringe@mathematik.tu-muenchen.de

 20

Reports from across the Pond

Henry Vinerts (these details may well already accessible to FIG-UK members
via the Internet)

Three reports from Henry about the regular meetings of
Silicon Valley FIG. John Hall seems to have enough energy to
arouse FIG International to new life. Annual contributions,
however, are still under review, since up to now no further
volumes of Forth Dimensions have appeared. No FORML
conference is taking place this year.

Henry reports in detail on Chuck Moore's report. None of the
former Board of Directors there appeared at the SVFIG
meeting.

John Hall, acting president, says that Forth is not yet dead
but he but that he can well do without "constructive criticism"
from whatever side.

A Salutary Lesson

Joerg Staben Joerg reviews the years from 1984 up to now and considers
that Forth has not been developed in accordance with users'
wishes with the inevitable result that it is not widely utilised.

Five Year's Later - a Positive Statement

Joerg Staben This is related to the item above. Joerg reviews progress and
trends and concludes that programming is now event-
orientated and visual. He considers that programming is not
Forth any more and that nothing can be done about it.

No response from the RCX Microprocessor
Fred Behringer

behringe@mathematik.t
u-muenchen.de

Fred describes a method using Forth (he uses TurboForth)
and Assembler to generate a short .COM file and he uses this
to solve the problem of the infrared transmitter shutting
down to the stand-by mode after 5 seconds of inactivity of the
RCX brick.

Win32Forth and Graphics

Joerg Staben Joerg gives several explanations concerning Win32Forth, GDI,
OpenGL, 2D-Graphic, and 3D-Graphic.

mailto:behringe@mathematik.tu-muenchen.de
mailto:behringe@mathematik.tu-muenchen.de

 21

The Russian Method of Multiplication

Martin Bitter

Martin describes the Russian peasant method of
multiplication, known to the Western world for over one
hundred years - and known to the Egyptians since 1800 B.C.
Keep dividing the multiplier by 2 and multiplying the
multiplicand by 2 until the multiplier equals 1, and
keep track of remainders, summing the remainders up and
adding the sum to the last multiplicand obtained by the said
succession of multiplications by 2.

In Fourth Place

Martin Bitter Martin gives a very lively report on the Lego robot
competition in which his own school achieved fourth place
out of 70 competitors.

Neal Bridges is well-known for his Quartus Forth for the Palm Pilot. This
extract from comp.lang.forth shows how Forth can be used on a web-

server to synthesize a minimal web page.

Subject: Is it possible to use Forth for CGI?

GForth works fine for CGI. One example -- I'm using it at
http://www.quartus.net, on the front page, to display the date in Roman
format.

Two things were required: 'warnings off' at the start of the script, 'flush'
after text output, and of course 'bye' at the end of the script. Here's an
abbreviated example script (hello.cgi):

#! /home/user/gforth-0.4.0/gforth
warnings off

.(Content-Type: text/html) cr cr
.(<html><head><body>)
.(Hello!)
.(</body></html>)

flush
bye
--
Neal Bridges <http://www.quartus.net> Quartus Handheld Software!

http://www.quartus.net/

 22

Dutch Forth Users Group

Reading Dutch is easier than you might think. And as Forth is an
international language, reading Dutch code is easier still for a Forth

enthusiast. Are you interested? Why not subscribe to

HCC-Forth-gebruikersgroep

For only 20 guilders a year (£6.30), we will send you 5 to 6 copies
of our "fig-leaf" broadsheet 'Het Vijgeblaadje' . This includes all our

activities, progress reports on software and hardware projects and
news of our in-house products.

To join, contact our Chairman:
 Willem Ouwerkerk
 Boulevard Heuvelink 126
 6828 KW Arnhem, The Netherlands
 E-Mail: w.ouwerkerk@kader.hobby.nl

The easiest way to pay is to post a 20 Guilder note direct to Willem.

 23

 Leo Wong
hello@albany.net

Solving a Riddle

Leo Wong

The following riddle was posted by Steve Graham (js.graham@home.com)
to newsgroups discussing neural nets, APL, AWK, BASIC, Beta, COBOL,

Dylan, Forth, MUMPS and Lisp. Although not an obvious candidate for
solving riddles, Forth is flexible enough and Leo shows us how.

There are 5 houses in 5 different colors. In each house lives a person with a different
nationality. The 5 owners drink a certain type of beverage, smoke a certain brand of
cigar, and keep a certain pet. No owners have the same pet, smoke the same brand of
cigar or drink the same beverage.

The question is: "Who owns the fish?"

Hints:
1. The Brit lives in the red house.
2. The Swede keeps dogs as pets.
3. The Dane drinks tea.
4. The green house is on the left of the white house.
5. The green house's owner drinks coffee.
6. The person who smokes Pall Mall rears birds.
7. The owner of the yellow house smokes Dunhill.
8. The man living in the center house drinks milk.
9. The Norwegian lives in the first house.
10. The man who smokes Blends lives next to the one who keeps cats.
11. The man who keeps the horse lives next to the man who smokes Dunhill.
12. The owner who smokes Bluemasters drinks beer.
13. The German smokes Prince.
14. The Norwegian lives next to the blue house.
15. The man who smokes Blends has a neighbor who drinks water.

Editor: The brute force way to solve this is by visiting all the permutations, exiting as
soon as all the constraints are met and announcing the solution. Leo�s program is more
subtle, recognising that there are 24,883,200,000 (120^5) possible arrangements and
using the hints to solve the riddle, instead of just checking to see if a particular
permutation has solved the riddle. Leo�s comments are in quotes.

He first modelled the problem using 30 cards laid out in rows, one for each category.
�When a hint linked two categories (for example, "Swede" and "dog") I used scotch tape
to keep them at the right distance apart so that placing "Swede" in the nationality row
(ie. finding its position) would place "dog" in the pets row. After I had thus "modelled"
the riddle, I solved it by hand in considerably fewer than 20 minutes.�

mailto:js.graham@home.com

 24

�One of the strengths and weaknesses of Forth is that (aside from common problems
solved by standard Forth words), it doesn't come with ready-made solutions or
approaches. Having come up with a method that I liked, I had to teach it to Forth.�

Editor: This problem is suited to the Prolog language. Note that Prolog-like solvers have
been successfully implemented in Forth and, indeed, the necessary back-tracking
mechanisms can be implemented more efficiently in Forth than in a conventional
language.

With Leo�s approach, storing the data in the right way simplifies the program
dramatically.

His code repays some study, not just because he solves the problem in an interesting
way, but also because of the Forth techniques he uses including:

! building data structures at compile time,
! using character cells to store numeric data where this is more convenient.
! using macros (sparingly) to make the code more readable

�One thing I noticed as I moved the cards around was that it was no use arranging, say,
the colors if, in the row above (in this case, nationalities), each alternative did not at
least have its own place (the Dane and the Swede cannot live in the same house) -
though not necessarily its right place. This notion I incorporated in the word placed,
which tells the program to consider the next row only if the "elements" in the row
above are each in a house, correct house or not. This ensures that a key constraint is
met (only one element of each category to a house) and dispenses with much inner
looping.�

drink

nationality

color

smoke

pet

house number

Swede

dog

 25

�So my strategy (not necessarily the best possible) had three tactics:

1. Reduce the number of possibilities.
2. Apply the hints along the way rather than using them at the end to check
if the solution is correct.
3. Go to the next row only if the row above was "placed".

Tactics 2 and 3 turned out to be highly effective.�

�permute computes 120 permutations of the five houses and commas them into the
chars array called perms. Each number stand for a house.� A dump of perms shows

120 5 4 3 2 1 0 3 4 2 1 0 2 4 3 1 0 4 2 3 1 0 etc..

�board is a pad for tallying how many of a category's elements are in each house. For
placed to return true, each house should have one element, or in other words, since
there are five houses and each category has five elements, no house should have no
elements. So for a particular category, placed first clears the board by filling with 0,
then fetches the house number of each element and increments the tally for that house
number, and finally looks to see if any house has a zero tally. If it does, the elements
in that category are not satisfactory and inner loops of riddle are skipped. Note that
board is allotted 6 chars because Hint 4 requires that �white� is placed beyond �green�
which might be placed in house 4.

: n! (n -- n!) dup 2 < if drop 1 exit then dup 1- recurse * ;
0 value #items
: ,perm (--) #items 0 ?do i pick c, loop ;
: perm (<items> #items -- <items> #items)
 dup 1 = if >r ,perm r>
 else dup 0 do >r r@ 1- recurse roll r> loop then
;
: drops (n --) 0 ?do drop loop ; \ Also used by riddle

: permutations
 create (<items> #items --)
 dup n! , dup chars c, dup to #items
 perm drops
 does> (-- #items a #perms) dup @ >r
 cell+ count swap r> ;

0 1 2 3 4 5 permutations perms

: string, (a u --) dup c, 0 do
 count c, loop drop ;
: spells (a u -- a') create here >r 0 c, string, r> ;
: ,s (x1 ... xn n --) begin ?dup while dup roll , 1- repeat ;
: category (x1 x2 x3 x4 x5 --) create 5 ,s ;

perm is based on Ed
Hersom�s offering in
the Nov. 2000 issue

count is commonly used
to prepare parameters for
type. In permutations
and in string, Leo uses
it to index through a
sequence of bytes.

 26

\ colors
s" yellow" spells yellow
s" blue" spells blue
s" red" spells red
s" green" spells green
s" white" spells white category colors

spells compiles the text preceded by a character-sized cell to hold the current house
number for the element. These are compiled into a list (see A0-A4) by category.

The phrase 2 milk c! (as used later) records the statement in Hint 8.

\ nationalities
s" Brit" spells brit
s" Dane" spells dane
s" Norwegian" spells norwegian
s" German" spells german
s" Swede" spells swede category nationalities

\ drinks
s" beer" spells beer
s" milk" spells milk
s" tea" spells tea
s" coffee" spells coffee
s" water" spells water category drinks

yellow0 6

blue0 4

red0 3

green0 5

white0 5

A0 A1 A2 A3 A4

 27

\ smokes
s" Blaumeister" spells blaumeister
s" blends" spells blends
s" Dunhill" spells dunhill
s" Prince" spells prince
s" Pall Mall" spells pallmall category smokes

\ pets
s" birds" spells birds
s" cats" spells cats
s" dogs" spells dogs
s" fish" spells fish
s" horse" spells horse category pets

The following hints record fixed allocations.

2 milk c! \ hint 8
0 norwegian c! \ hint 9
norwegian c@ 1+ blue c! \ hint 14

The other hints depend on more complex relationships as follows.

: colors! (permutation -- colors)
 count red c!
 count yellow c!
 c@ dup green c! 1+ white c! \ hint 4
 colors ;

so that colors! allocates houses to red, yellow and green colours and also follows Hint
4 which links the houses that are green and white. The blue colour is not included as
this was specified by Hint 14 above.

perms{ colors! ... }perms is used below to solve the riddle and this expands to

perms 0 do dup colors! ... over + loop

colors! pulls values from the sequence of 120 x 5 values in perms and then tests each of
the 120 results with placed.

: nationalities! (permutation -- nationalities)
 count dane c! count german c! c@ swede c!
 red c@ brit c! \ hint 1
 nationalities ;

 28

: drinks! (permutation -- drinks)
 count beer c! c@ water c!
 dane c@ tea c! \ hint 3
 green c@ coffee c! \ hint 4
 drinks ;

: smokes! (permutation -- smokes)
 count blends c! c@ pallmall c!
 yellow c@ dunhill c! \ hint 7
 beer c@ blaumeister c! \ hint 12
 german c@ prince c! \ hint 13
 smokes ;

: pets! (permutation -- pets)
 count cats c! count fish c! c@ horse c!
 swede c@ dogs c! \ hint 2
 pallmall c@ birds c! \ hint 6
 pets ;

create board 6 chars allot
: c++ (a --) dup c@ 1+ swap c! ; \ Increment char at address
: scan (ca1 u1 c -- ca2 u2)
 >r
 begin dup while over c@ r@ <> while 1 /string repeat then
 r> drop ;
: cut (c ca u -- n) rot scan nip ; \ n=remaining chars including c
: placed (category -- ?)
 board 5 0 fill
 5 0 do dup @ c@ chars board + c++ cell+ loop drop
 0 board 5 cut 0= ;

: macro ("name <char> ccc<char>" --)
 \ by Wil Baden
 : char parse
 postpone sliteral
 postpone evaluate
 postpone ;
 immediate
;

Some of the hints cannot be expressed with the fixed rules or simple rules above, so these are
listed below and tested as the last step. The hints which are commented out could be tested in
the same way. This would implement the brute force method and require each permutation of
the 24,883,200,000 to be tested until the solution was found. Leo points out that a hint like
"Norwegian in the 1st house" could be used to reduce the number of permutations in a category
to fewer than 120.

?no is a convenience word to save
typing and created by macro.

macro (a word supplied by Wil
Baden) just inserts the text between
the delimiters. It�s also used later on.

 29

macro ?no " (a1 a2 --) - if false exit then"
: constraints (-- ?)
\ (1) brit c@ red c@ ?no
\ (2) swede c@ dogs c@ ?no
\ (3) dane c@ tea c@ ?no
\ (4) green c@ white c@ 1- ?no
\ (5) green c@ coffee c@ ?no
\ (6) pallmall c@ birds c@ ?no
\ (7) yellow c@ dunhill c@ ?no
\ (8) milk c@ 2 ?no
\ (9) norwegian c@ 0 ?no
 (10) blends c@ cats c@ - abs 1 ?no
 (11) horse c@ dunhill c@ - abs 1 ?no
\ (12) blaumeister c@ beer c@ ?no
\ (13) german c@ prince c@ ?no
\ (14) norwegian c@ blue c@ - abs 1 ?no
 (15) blends c@ water c@ - abs 1 ?no
 true ;

: .spell (a --) count type space ;

: .nth (n category --)
 5 0 do
 2dup @ count rot = if .spell leave else drop then cell+
 loop 2drop ;

: .solution (--)
 CR ." The " fish c@ nationalities .nth ." owns the fish." ;

macro perms{ " (-- n a a) perms 0 do dup"
macro }perms " (n a --) over + loop 2drop"
macro unloops " (n --) begin ?dup while unloop 1- repeat"

: riddle (--)
 perms{ colors! placed if
 perms{ nationalities! placed if
 perms{ drinks! placed if
 perms{ smokes! placed if
 perms{ pets! placed if
 constraints if
 .solution 10 drops 5 unloops exit
 then
 then
 }perms then
 }perms then
 }perms then
 }perms then
 }perms ;

 30

Leo also supplied some words to show the contents of the matrix of cards:

: .row (category --)
 cr
 5 0 do dup
 5 0 do dup @ count j =
 if count dup >r type 12 r> - spaces
 else drop then
 cell+ loop drop
 loop drop ;
: .matrix (--) \ For Jean Grezel
 nationalities .row
 colors .row
 drinks .row
 smokes .row
 pets .row
;

To see the solutions offered in some of the other languages, see
http://members.home.net/js.graham/einstein/

From: Lance Collins [collinsl@bigpond.net.au]

Subject: FIG in Melbourne, Australia

For the last few years Melbourne FIG has become a social club for a group
of old friends. We meet on the first Friday of each month for a couple of
hours and chat about computer and technology related topics. We have
not seriously discussed Forth in the last ten years.

We are down to about ten members but usually they all turn up. Our
meeting place is a community centre with a large meeting room but
somehow we always cram into the kitchen and have a two hour supper!!.

Four of us (including myself) still program seriously and the language we
use is Delphi.

Best wishes to FIG UK

Lance Collins

http://members.home.net/js.graham/einstein/

 31

Letters

Andrew Holt

From: Andrew Holt [andrew.holt@uk.sun.com]
Subject: Learning from Java

I have never mailed anything to Forthwrite before, so here is my first
attempt.

I have been using Forth, on & off, for about 15 years, having trod the well-worn
path of implementing my own Forth(s).

I am currently doing some Java work and am using a Forth-like language
(Fiji by Jack Woehr) as an integration & test tool. (Version 1.1 is on
http://www.softwoehr.com , version 1.2 is currently in beta and can be had by
mailing Jack.)

Using this caused me to reflect on the future of Forth, and software
evelopment in general, so here goes.

Software development is beginning to see the fulfilment of the promise that
object-oriented languages offer. More & more quality Java class libraries are
becoming available covering a huge diversity of features. For example, there
are classes for accessing IMAP mail, and complete SQL databases. (Most of
the library stuff I use comes from Sun, off the http://java.sun.com web site
but you can find others at places like http://www.gamelan.com .)

The philosophy (espoused by many luminaries in the Forth community) of making
better & better wheels is no longer viable, or worthwhile. Some time ago
someone mentioned an idea to me that he termed, in a non-pejorative way, "the
lazy programmer'.

The simple idea is that "the best line of code is the one that somebody else
writes for you". The strength of OOP is that if you find a class that provides
the functionality you require but certain methods are poorly implemented you
can 'overload' those with your own implementations. If the underlying class
changes, so lang as the interface stays the same, nothing else needs to change.

So, selecting from Java class libraries, and glueing the whole thing together
with an interactive, interpreted tool is a powerful development model. Fiji is
not perfect & does lack some useful features (exception handling, for example)

The Magazine Team are always pleased to get feedback and encouragement. Here we have news from Andrew
Holt on his use of Forth at Sun (no, not Open Firmware this time), an update from Howerd Oakford on the
protocol project he presented at euroFORTH and an idea from Graham Telfer. We also had a substantial
contribution from Ian Thain, a visitor to our web site and a professional Forth programmer.

http://www.softwoehr.com/
http://java.sun.com/
http://www.gamelan.com/

 32

Graham Telfer

but does provide a useful, platform independent framework. (Tried it on Solaris
& MacOS X Beta.

By the wayI still find it amazing that I can compile code on a Sun SPARC box
and run it on an Apple PowerPC box.

Anyway, if you have the latest run-time from the Sun web site, it should work
OK, but as my home is a Windows-free zone I can't vouch for it personally.

In conclusion it is my belief that if Forth is going to have a future outside of
the embedded world this kind of tool is it, otherwise it will become an
interesting historical curiosity.

For my own personal projects, I will probably be using Fiji. For Sun projects I
already am, currently using it as a test/integration tool. It may make into the
actual product if I can address some of its limitations (specifically exception
handling).

I have a feeling that I may stir up some sort of response ;)

Regards,

Andrew

Thanks for the last Forthwrite. As usual, I enjoyed reading it. I've recently
switched over to Win32-4th from Aztec.

 I was browsing the Extreme Programming Wiki Wiki Wiki Web FAQ
(http://c2.com/cgi/wiki?WikiWikiWebFaq) and thought the idea of an editable
page was really good. Letting people contribute and edit material using a Wiki
might be a way to rapidly build up excellent reference and tutorial material.
Backed up by the magazine on-line, FIG UK could play a leading role.

Maybe some of the developers of Forth would place copies of their
manuals and guides on the Wiki. Then people could offer examples of usage or
expand the information directly.

I'm sure many other ideas will come to mind. Keep up the good work

Yours,

Graham

http://c2.com/cgi/wiki?WikiWikiWebFaq

 33

Ian Thain

From: Ian H Thain [ian@thain.com]
Subject: Re: Going Forth

Many thanks for your informative reply to my note to Peter Knaggs. I have
taken some time to browse around the FIG UK site, which is well laid-out and
very presentable, and you are all to be congratulated. At last there's a UK
Forth site to which one can point people without feeling faintly embarrassed,
and for this relief, much thanks! :)

It's good to see that there are indeed still one or two Forth projects running,
but even the most dedicated FIGger (?) would be hard put to claim that Forth
has ever been anything more than a minority and peripheral language, and this
grieves me more than somewhat. In short, if Forth is ever to take its rightful
place as a mainstream programming language (which I am sure we all feel it has
every right to do), then it needs a real, professional, marketing job done on it,
which will require time, commitment, and - not least - money.

Now, I should say that we probably have as good an opportunity in front of us
now as we have ever had. The big telcos have paid about ten times what they
should have done for their 3G phone licences, and to the best of my knowledge
(which is admittedly partial) there is a painfully obvious dearth of 3G
applications around to provide a means of getting their money back, let alone of
making a profit. The City investors are throwing decidedly old-fashioned looks
towards the likes of Valance and Bonfield, and there is the sound of quite a
large flock of telecom chickens coming home to roost.

Forth's portability, minimalist architecture, and speedy development
environment make it an absolute peach for all those sweating telco bosses - if
only they'd ever heard of us! If we, as a Forth community, pulled out the stops
and got ourselves organised, I have little doubt that we could produce those
vital apps faster and better than anybody else around, and for the first time
ever, perhaps put Forth on the map. (And put a shilling or two in our pockets as
well).

But problem No.1 is that we are simply not that well organised.

The biggest issue facing commerical Forth today is the job market - bringing
together clients and Forth programmers. However impressive the demo on the
exhibition stand may be, the problem I keep getting thrown at me - and for
which I really have no adequate answer - is, "So where are all the Forth
programmers?"

No technical director or IT manager can be blamed for rejecting Forth in
favour of C, C++, or VB, because he knows perfectly well that C programmers
are two a penny, and Forth programmers are about as common as hens' teeth.
If he needs a C programmer to maintain his code, he needs only to put an ad in
the paper and he'll have the CVs of a dozen well qualified applicants in his email
the next day. I cannot remember ever seeing a job ad for a Forth programmer.
I have recently scanned several computer staff agencies both here and in the
USA, using Forth as the search keyword, and not a single Forth job did I find
anywhere. This is not the sign of a thriving language.

 34

Howerd Oakford

From: Howerd Oakford [spred@freenetname.co.uk]
Subject: Re: euroFORTH 2000

Work is hectic at the moment. The company are trying to finish their latest
phone by the end of March. This is excellent experience for me, and is being
put to good use in my PPP program - I can now open a PPP connection with any
Web or WAP site that I have come across (providing I have the relevant
passwords). I have UDP output completed, and some rudimentary UDP input
(i.e. not fragments), and this and TCP are getting closer...

Perhaps in a few more weeks, I can publish PPP.com on my web site, and you can
have a link to the real thing...

Regards,

Howerd

[FIG UK holds a register of members available for projects and positions
and forwards details of opportunities to these members - Ed.]

After all the arguments in favour of Forth, the real reason I always come back
to it is that I enjoy it; programming in Forth has, quite simply, been so much
fun. If I had to face a programming future without Forth, I'd probably be
tempted to give up computers now and grow spuds for a living.

Best regards,

Ian

 35

Forthwrite Index

Jack Brien maintains a set of 3 indexes to Forthwrite on the FIG UK web site updating them
with each issue. These indexes are sorted by date, by author and by subject going back to
1990. The subject index is repeated in the magazine annually, with the new entries
highlighted.

Back issues of Forthwrite may be borrowed from the Library without charge, so this is a
good way to catch up on topics of special interest. If you spot a topic that has not been
adequately covered, how about writing an article yourself?

Forthwrite Subject Index 1990-2000

Subject Author Date Title

algorithms Hersom, Ed 92-10 Advanced course
algorithms Charlton, Gordon 93-04 Backwards (psychic programming)
algorithms Hersom, Ed 93-04 Trees & splines
algorithms Hill, Will 93-06 Solving with Newton-Raphson
algorithms Payne, John 93-12 Approximate pattern matching
algorithms Bennett, Paul 94-06 Fuzz, fibs and forms
algorithms Pochin, David 94-10 First attempts at Fuzzy Logic
algorithms Bennett, Paul 95-06 Fractionally angular
algorithms Charlton, Gordon 95-06 Easter Sunday
algorithms Ramsay, Chris 99-08 Forth and Genetic Programming
applications Green, Roedy 90-08 Abundance (database)
applications Brien, Jack 91-02 Typing tutor (code)
applications Kendall, Les 91-02 Terminal emulator for PC (code)
applications Smith, Graham 91-02 Logic gates
applications Grey, Nigel 91-06 Big Blue on the move IBM CAD (review)
applications Franin, Julio 92-08 Torsion measurement system
applications Stephens, Chris 93-08 Seven thousand networked micros
applications Anderson, Joe 98-07 Forth In Space
applications Trueblood, Mike 99-11 Radio Clock
applications Bennett, Paul 00-08 Logging on - statistically speaking
applications Paysan, Bernd 00-08 A Web-Server in Forth
applications Kendall, Les 01-01 XML and Forth
applications Matthews, John 01-01 Forth as Preferred Development Environment
applications Wong, Leo 01-04 Solving a Riddle
arithmetic Jakeman, Chris 90-12 A high-level /MOD (code)
arithmetic Preston, Philip 91-02 Multi-cell arithmetic (code)
arithmetic Filbey, Gil 91-04 Tutorial

 36

arithmetic Haley, Andrew 91-04 Function approx. by Chebyshev series
arithmetic Filbey, Gil 91-12 Mixed point arithmetic (tutorial)
arithmetic Payne, John 91-12 Fixed point arithmetic (word set)
arithmetic Filbey, Gil 92-02 Mixed point arithmetic (tutorial)
arithmetic Filbey, Gil 92-04 Mixed point arithmetic (tutorial)
arithmetic Brown, Jack 92-10 Floored v symmetric division (tutorial)
arithmetic Filbey, Gil 93-02 Floating point
arithmetic Filbey, Gil 95-02 Cube roots
arithmetic Bennett, Paul 97-02 From the 'Net - Square Roots (code)
arithmetic Hersom, Ed 98-07 Quad (Fixed-Point) Arithmetic
arithmetic Behringer, Fred 00-04 32-bit GCD without Division
arithmetic Pochin, Dave 00-06 Floating Decimal Fudge
arrays Jakeman, Chris 90-08 Arrays and records (code)
arrays Brien, Jack 92-02 Ways with arrays (code)
assembly Tanner, P. 96-05 Linking machine code modules with Forth
block tools Filbey, Gil 91-02 Bits and loading blocks (tutorial)
block tools Hainsworth, Chris 91-02 Editing blocks (tutorial)
block tools Charlton, Gordon 94-04 One-screen library load (code)
bons mots Bezemer, Hans 97-08 Th
bons mots Eckert, Brad 97-08 On Off On? Off?
bons mots Luke, Gary 97-08 Tally
bons mots Hersom, Ed 97-11 NVars [H] [D]
bons mots Payne, John 97-11 3rd Swap@ Sgn #>ASCII
bons mots Wenham, Alan 97-11 Z
bons mots Elvey, Dwight 98-01 Setting bits with MASK
bons mots Wenham, Alan 98-01 Printing binary with .SB U1B. U2B.
bons mots Hoyt, Ben 98-03 PLACE is to COUNT as ! is to @
bons mots van Norman, Rick 98-03 MANY for debugging
bons mots Wong, Leo 98-05 Laying down values with COURSE
concurrency Charlton, Gordon 91-10 Co-routine monitors (code)
concurrency Charlton, Gordon 94-04 One-screen concurrent Forth (code)
control flow Charlton, Gordon 90-04 Universal delimiter (code)
control flow Brien, Jack 91-02 Extended ANS structures (F83 code)
control flow Bennett, Paul 91-04 High level FOR..NEXT (code)
control flow Carpenter, R.H.S. 92-12 Flow-charting method
control flow Preston, Philip 93-06 Shortcuts and drop-outs
control flow Brien, Jack 94-06 Extending ANSI control structures
control flow Brien, Jack 95-06 Portable control structures
control flow Charlton, Gordon 95-06 Trouble with DO
control flow Jakeman, Chris 96-05 If and begin - ANS style
database Filbey, Gil 91-08 FIG UK database (tutorial)
database Filbey, Gil 91-08 FIG UK database (tutorial)
design Payne, John 90-12 Simpler Forth (comment)
design Brien, Jack 91-10 Return stack ENTER ISNOW and aliasing

 37

design Thomas, Reuben 92-06 Forth lifestyle
design Hersom, Ed 92-10 NVARS
design Charlton, Gordon 93-04 Upside down
design Smart, Mike 93-10 Computer Shopper Programmer's Challenge
design Matthews, John 94-02 On his September lecture
design Bennett, Paul 94-08 Taking exception ...
design Hersom, Ed 94-08 Simple user interface
design Flynn, Chris 94-10 Numerical input
design Allwright, R.E. 95-06 Pagination
design Jakeman, Chris 95-06 From the 'net
design Telfer, Graham 96-05 The specification method hunt
design Brien, Jack 99-01 Working with Wordlists
design Brien, Jack 99-06 Handling Literals
design Telfer, Graham 99-06 Skeletons - Designing a Recursive Application
dynamic data Charlton, Gordon 90-04 Dynamic words (code)
dynamic data Charlton, Gordon 94-06 Work, rest and play
editing tools Jakeman, Chris 90-02 Search and replace 1/2 (code)
editing tools Jakeman, Chris 90-04 Search and replace 2/2 (code)
editing tools Lake, Mike 91-02 Full screen editor in one screen (code)
editing tools Brien, Jack 95-06 Full screen editor
editorial Hainsworth, Chris 91-04 Forthtalk and EuroFORML report
editorial Jakeman, Chris 92-08 Soapbox - "Do it yourself"
editorial Payne, John 92-12 Fat, thin or inflatable?
editorial Wilson, R.J. 93-06 Seeing trees in the wood
editorial Rush, Peter 95-02 Honeywell Forth Bulletin Board
editorial Jakeman, Chris 96-05 From the 'net - perceptions
editorial Hersom, Ed 96-07 Why Forth?
editorial Jakeman, Chris 96-11 Sell-by-date
editorial Jakeman, Chris 97-02 FIG UK joins the World Wide Web
editorial Jakeman, Chris 97-02 Welcome Disk
editorial Brien, Jack 97-08 FIG UK Web Site
encryption Greenwood, Mike 98-03 File Encryption
exceptions Charlton, Gordon 91-04 CATCH and THROW (code)
exceptions Jakeman, Chris 93-10 Portable CATCH and QUIT (code)
exceptions Jakeman, Chris 93-10 Using CATCH and QUIT (code)
FANSI project Bennett, Paul 90-06 Time for a new FIG Forth (comment)
FANSI project Charlton, Gordon 90-10 High-level /MOD using recursion (code)
FANSI project Charlton, Gordon 90-10 High-level multiply (code)
FANSI project Flynn, Chris 90-10 Discussion on REQUIRES
FANSI project Hainsworth, Chris 90-10 FANSI that (proposal)
FANSI project Bennett, Paul 90-12 FANSI environs (proposal)
FANSI project Flynn, Chris 90-12 Response to design proposals (comment)
FANSI project Payne, John 90-12 Response to design proposals (comment)
FANSI project Charlton, Gordon 91-06 FANSI definitions (code)

 38

FANSI project Charlton, Gordon 91-08 FANSI bloomers (code)
FANSI project Payne, John 91-08 Notes on FANSI (code)
FANSI project Bennett, Paul 91-10 Report on FANSI
FANSI project Charlton, Gordon 91-12 FANSI vocabularies (proposal)
FANSI project Brien, Jack 92-02 FANSI (comment)
FANSI project Payne, John 92-02 FANSI (comment)
FANSI project Preston, Philip 92-02 FANSI (comment)
FANSI project Payne, John 92-12 FANSI QUIT
file tools Brien, Jack 91-02 Loading dependant source (code)
file tools Jakeman, Chris 93-02 File access, part 1 (code)
file tools Jakeman, Chris 93-04 File access, part 2 (code)
file tools Jakeman, Chris 93-06 File access, part 3 (code)
file tools Jakeman, Chris 93-08 File access, part 4 (code)
file tools Brien, Jack 95-10 Hierarchical screen filing
file tools Wong, Leo 98-10 ANS File Words for Pygmy Forth
file tools Behringer, Fred 99-01 ANS File Words for Turbo Forth - 1
fractions Charlton, Gordon 90-02 Vulgar words (code)
fractions Wilson, R.J. 90-04 Rational numbers (code)
fractions Wilson, R.J. 90-06 Transcendental rationale (code)
fractions Charlton, Gordon 90-10 Rational approximation (comment)
futures Jakeman, Chris 94-08 Telescript (comment)
futures Jakeman, Chris 94-10 Some future directions (editorial)
futures Jakeman, Chris 96-11 Forth and Java (comp.lang.forth)
futures Pelc, Stephen 99-11 FIG UK - The Next 20 Years
graphics Filbey, Gil 90-04 Plotting spirals (tutorial)
graphics Charlton, Gordon 92-06 Turtle graphics
graphics Payne, John 92-08 Flood fill
graphics Charlton, Gordon 93-08 Drawing a line
graphics Charlton, Gordon 93-10 Not drawing a line
graphics Payne, John 93-10 How Bresenham's line drawing alg. works
graphics Pochin, Dave 99-08 Figuring it out with Win32Forth
graphics Pochin, Dave 00-01 "See Win32Forth scroll the Window"
graphics Pochin, Dave 00-11 "BLT is not a Sandwich"
graphics Pochin, Dave 01-04 Six Easy Fonts
hardware Koopman, Philip 90-10 RTX 4000 (publicity)
hardware Fowell, Jeremy 92-08 P20 chip, part 1/2
hardware Fowell, Jeremy 92-10 P20 chip, part 2/2
hardware Bennett, Paul 96-07 Chuck's chips
hardware Fowell, Jeremy 99-01 FIG UK Hardware Project
hardware Fowell, Jeremy 99-04 FIG UK Hardware Project - Progress
hardware Heuvel, Leendert 99-04 The 'Egel Coursebook
hardware Fowell, Jeremy 99-08 FIG UK Hardware Project - Progress
hardware Fowell, Jeremy 99-11 FIG UK Hardware Project - Progress
hardware Fowell, Jeremy 00-01 F11-UK Hardware Project - Progress

 39

hardware Fowell, Jeremy 00-04 F11-UK Hardware Project - Progress
hardware Fowell, Jeremy 00-08 F11-UK Hardware Project - Launch
hardware Jakeman, Chris 01-01 F11-UK Hardware Project - Progress
history Rather, Elizabeth 95-04 The evolution of Forth
history Rather, Elizabeth 95-12 The Forth approach to operating systems
history Hainsworth, Chris 99-01 Forthwrite Issue No. 1 revisited
history Powell, Bill 99-01 The Birth of FIG UK
history Behringer, Fred 99-11 Swap Dragon
history Brien, Jack 99-11 FIG UK - The Last 20 Years
history Jakeman, Chris 00-01 Did you Know? - EasyWriter
history Jakeman, Chris 00-04 From the 'Net, Forth for Novell
history Crook, Neal 00-06 The Canon Cat
history Jakeman, Chris 00-06 Did you Know? - Forth OS
history Jakeman, Chris 00-08 Computer Conservation
history Jakeman, Chris 00-08 Did you Know? - Forth v C
history Jakeman, Chris 00-11 Did you Know? - Open Firmware
humour Payne, John 90-12 A program that works the French way
humour Smith, Graham 95-06 Book titles
humour Jakeman, Chris 96-05 From the 'net - a drinking song
humour Allwright, Ray 98-05 A Story of Cowboys
interfacing Robinson, Dave 91-08 Mouse handling (F83 code)
interfacing Bennett, Paul 98-05 Reading the World - 1
interfacing Bennett, Paul 98-07 Reading the World - 2
interfacing Bennett, Paul 98-10 Writing the World - 1
interfacing Bennett, Paul 99-01 Writing the World - 2
internals Hainsworth, Chris 90-02 Kiss and run (exploring F-PC)
internals Charlton, Gordon 91-02 A replacement for DO .. LOOP (code)
internals Flynn, Chris 91-06 Forth engine on 68000
internals Bennett, Paul 92-10 Top-down development of a Forth system
internals Bennett, Paul 93-04 QUIT, the story continues...
internals Preston, Philip 93-12 RatForth - ANS on F83
internals Preston, Philip 94-02 Ratforth revised etc.
internals Preston, Philip 94-06 Redefining colon
internals Preston, Philip 94-10 Simulating EVALUATE
internals Preston, Philip 95-10 Variables, values & locals
internals Wenham, Alan 95-12 Meandering Forth
internals Brien, Jack 97-08 Building a new inner interpreter
internals Allwright, Ray 98-03 From the 'Net - Minimal word sets
internals Allwright, Ray 99-04 From the 'Net - Turnkey Apps and Docs
internals Tasgal, John 00-04 An Introduction to Machine Forth
interpreting Jakeman, Chris 95-10 From the 'net - text interpreter
interpreting Brien, Jack 96-11 Implementing an outer interpreter
interview Moore, Charles 99-06 1xForth
library Hainsworth, Sylvia 91-04 FIG UK library bulletin

 40

library Jakeman, Chris 96-11 Library assets
library Hainsworth, Sylvia 98-05 Purchases and current publications
MCFAs Brien, Jack 90-08 Comment
objects Jakeman, Chris 94-12 Objects and so forth
objects Jakeman, Chris 98-11 OOF - A Minimal Approach
objects Prinz, Friederich 99-01 Counting Fruits the Classic Way
performance Jakeman, Chris 98-01 From the 'Net - Speed Demons
permutations Charlton, Gordon 90-02 Permutations, a new algorithm (code)
permutations Hersom, Ed 91-10 Permutations (code)
permutations Hersom, Ed 92-04 Permutations/combinations

permutations Baden, Wil 00-11
Permutation by Transposition Sequence
ACM 115A

permutations Jakeman, Chris 00-11 Simple Forth Permutations
permutations Behringer, Fred 01-04 Generating Combinations
presentation Brien, Jack 90-02 Locals and more (discussion)
presentation Matthews, Keith 90-12 Stack diagrams (explored)
presentation Brien, Jack 91-02 GIST for indexing source (code)
presentation Bennett, Paul 91-06 Manual documentation (code)
presentation Charlton, Gordon 93-12 StackFlow
presentation Brien, Jack 94-10 Readable Forth
presentation Tanner, P.H. 94-12 Post indentation
presentation Charlton, Gordon 97-02 From the 'Net - StackFlow
probability Filbey, Gil 90-12 Probability of common birthdays
probability Filbey, Gil 90-12 Random thoughts on probability
probability Payne, John 90-12 Probability of common birthdays
publications Haley, Andrew 91-12 FORML 87, 88 & 89 (review)
puzzles Hainsworth, Chris 90-06 Forth brain teasers
puzzles Charlton, Gordon 90-12 Name that word
puzzles Charlton, Gordon 91-02 Puzzle answers (code)
puzzles Filbey, Gil 92-10 Tethered goat puzzle, part 1/2
puzzles Filbey, Gil 92-10 Tethered goat puzzle, part 2/2
random nos. Filbey, Gil 93-06 Visualising random numbers on Apple II
random nos. Jakeman, Chris 93-06 Random numbers
random nos. Filbey, Gil 93-08 Testing for randomness
random nos. Payne, John 93-08 More on random numbers
review Charlton, Gordon 94-10 Riding the wild 'net
review Charlton, Gordon 95-02 Report from EuroForth '94
review Bennett, Paul 97-11 EuroForth '97 Conference
review Wenham, Alan 98-01 Vierte Dimension
review Fowell, Jeremy 98-05 Forth Programmers' Handbook
review Jakeman, Chris 98-05 Genetix - The Inside Story
review Payne, John 98-07 FORML Proceedings 94 & 95
review Flynn, Chris 98-10 A Hard Day Garbage Collecting
review Jakeman, Chris 98-10 jeForth

 41

review Bennett, Paul 98-11 euroForth '98 Conference
review Wenham, Alan 99-01 Vierte Dimension
review Anderson, Joe 99-06 Forth for Virtual Reality
review Wenham, Alan 99-11 Vierte Dimension
review Jakeman, Chris 00-01 FIG UK 20th Anniversary Reunion
review Wenham, Alan 00-01 Vierte Dimension 4/99

review
de Ceballos,
Federico 00-04 21st FORML Conference

review Wenham, Alan 00-04 Vierte Dimension 1/00
review Wenham, Alan 00-06 Vierte Dimension 2/00
review Jakeman, Chris 00-08 euroForth '989 Conference
review Jakeman, Chris 00-11 Forth in the UK
review Wenham, Alan 00-11 Vierte Dimension 3/00
review Ives, Robert 01-01 "Forth Application Techniques"
review Oakford, Howerd 01-01 euroFORTH 2000 Conference report
review Wenham, Alan 01-01 Vierte Dimension 4/00
roots Wilson, R.J. 90-08 Root of rational numbers (code)
roots Charlton, Gordon 90-10 Square root (code)
roots Trapp, John 91-02 Square-roots for double/floating point
roots Brien, Jack 97-11 From the Net - More on square roots
roots Behringer, Fred 98-03 Square roots once more
roots Behringer, Fred 98-05 Cubic roots without division
roots Jakeman, Chris 00-04 Cube Roots Again
roots Jakeman, Chris 00-04 From the 'Net - Cube Roots
roots Jakeman, Chris 00-06 From the 'Net, Cube Roots
searching Charlton, Gordon 90-12 A faster string search (code)
searching Charlton, Gordon 91-10 A binary search (code)
searching Hersom, Ed 91-12 Recursive BINSEARCH (code)
searching Charlton, Gordon 93-02 Shift-AND string search (code)
searching Charlton, Gordon 94-02 Best string search (code)
searching Jakeman, Chris 95-06 Linear search
sets Charlton, Gordon 90-06 Set manipulation (code)
sorting Charlton, Gordon 90-08 Radix, an extravagant sort (code)
sorting Charlton, Gordon 90-10 Sorting strings with qsort (code)
sorting Charlton, Gordon 91-10 Heapsort (code)
stacks Preston, Philip 92-12 Stocking fillers - stacks & write-only
stacks Charlton, Gordon 94-04 Stacrobaticus exotica
stacks Filbey, Gil 94-08 Stacks (tutorial)
stacks Jakeman, Chris 95-08 Stack manipulation
stacks Joseph, Neville 95-10 Stack manipulation
stacks Barr, Stan 95-12 A third stack
stacks Hersom, Ed 97-11 Multi-precision Stack Operators
standards Jakeman, Chris 91-06 Portable code (code)
state machines Charlton, Gordon 90-10 Variables for state machines (code)

 42

state machines Dunbar, Graeme 98-07 Finite State Machines 1/3
state machines Dunbar, Graeme 98-10 Finite State Machines 2/3
state machines Dunbar, Graeme 99-08 Finite State Machines 3a
strings Leibniz, David 91-02 String stack routine (code)
strings MacLean, Ruaridh 91-02 High level DIGIT (tutorial)
strings Charlton, Gordon 91-04 A string pattern matcher (code)
strings Payne, John 92-04 Text processing
strings Preston, Philip 92-10 TACK and BLOCKL
strings Charlton, Gordon 93-04 ANSI and portability - STRLIT (code)
strings Brien, Jack 93-06 Comment on Blockl & Tack
strings Charlton, Gordon 93-06 Similarity
strings Jakeman, Chris 95-12 From the 'net - please
strings Brien, Jack 96-07 String handling
strings Jakeman, Chris 97-02 Pattern matching - 1/3 (tutorial)
strings Jakeman, Chris 97-08 Pattern matching - 2/3 (FoSM with Forth)
strings Jakeman, Chris 97-11 Pattern matching 3/3 (Rex)
strings Borrell, Richard 98-03 Deferred Language Translation
strings Oakford, Howerd 98-11 Multiple Language Programs Made Easy
structures Brien, Jack 98-01 Building Forth Structures
systems Green, Roedy 90-08 BBL Forth (review)
systems Bennett, Paul 92-02 Pygmy Forth (review)
systems Tanner, Philip 92-04 As in a glass darkly
systems Hersom, Ed 93-02 Pocket Forth (review)
systems Tanner, P.H. 93-06 URForth (review)
systems Payne, John 95-02 A 32-bit Forth for Windows (review)
systems Stephens, Chris? 95-02 Forth for the Transputer (review)
systems Behringer, Fred 97-08 Forth for the Transputer
systems Worthington, Thom. 98-01 Aztec - A Forth For Windows '95
systems Besemer, Hans 98-05 4th - The Alternative Compiler
systems Jakeman, Chris 99-01 Web Forth Project
systems Lancaster, Garry 99-04 Forth for the Z88
systems Jakeman, Chris 99-06 Web Forth Project
systems Ouwerkerk, Willem 99-08 ByteForth for MCS51 cpu's
systems Tasgal, John 00-06 An Introduction to Color Forth
systems Tasgal, John 00-06 The BMP Example
tools Jakeman, Chris 90-06 Patch programming aid (code)
tools Jakeman, Chris 90-10 Run-time operators (code)
tools Preston, Philip 91-12 ALIAS ALIAS ALIAS (F83 code)
tools Jakeman, Chris 92-12 Also and -Also (code)
tools Charlton, Gordon 93-04 Wrong way round!
tools Bennett, Paul 93-06 +MOD! (LOG?) and commenting words
tools Brien, Jack 93-10 Utilities for F83 on Amstrad PCW
tools Jakeman, Chris 93-12 Shell (code)
tools Bennett, Paul 94-02 Spooling and browsing

 43

tools Jakeman, Chris 94-02 .Call and Assert (code)
tools Jakeman, Chris 94-04 Check (code)
tools Flynn, Chris 94-06 Conditional compilation
tools Preston, Philip 94-08 More fun with EVALUATE
tools Charlton, Gordon 94-12 16-bit cyclic redundancy checksums
tools Franin, Julio 95-02 MC51 Forth debugging
tools Smith, Graham 95-06 MARK
tools Jakeman, Chris 95-08 Limit variables (code)
tools Abrahams, David 95-10 General purpose utilities for F-PC
tools Stott, Barrie 97-02 Stack checking (code)
tools Jakeman, Chris 99-06 From the 'Net - Iterative Interpretation
tutorial Charlton, Gordon 92-04 Two geese and a car
tutorial Brown, Jack 92-06 An indefinite loop example
tutorial Filbey, Gil 92-12 Escape codes and printing
tutorial Filbey, Gil 93-02 A conjuring trick
tutorial Hainsworth, Chris 93-02 Shallow end
tutorial Filbey, Gil 93-04 Some old words revisited
tutorial Filbey, Gil 93-10 Floating point
tutorial Charlton, Gordon 93-12 Create .. does> ..
tutorial Filbey, Gil 93-12 Postfix
tutorial Filbey, Gil 94-02 Editorial & Tu
tutorial Filbey, Gil 94-12 Floating point
tutorial Filbey, Gil 95-08 Immediacy
tutorial Filbey, Gil 95-10 Editorial
tutorial Telfer, Graham 98-07 Wondrous Numbers
tutorial Jakeman, Chris 98-11 jeForth Project
tutorial Pochin, Dave 99-01 Forth for the New Year
tutorial Pochin, Dave 99-01 Guide to Getting Started
tutorial Pochin, Dave 99-04 Getting Stuck Into Win32Forth
tutorial Jakeman, Chris 99-11 Clock Challenge
tutorial Jakeman, Chris 00-01 Clock Challenge - 2nd instalment

tutorial Brien, Jack 00-04
All you need to know about STATE,
IMMEDIATE and POSTPONE

vectoring Charlton, Gordon 90-10 Resolving forward references (code)
vectoring Jakeman, Chris 91-02 Deferred words (code)
vectoring Preston, Philip 91-04 Forgettable vectors and smart compiling
vectoring Bennett, Paul 92-10 Vectoring with DOER and MAKE
vectoring Allwright, Ray 97-11 From the Net - Defer and Is

 44

Chairman Jeremy Fowell, 11 Hitches Lane, EDGEBASTON B15 2LS
 0121 440 1809 jeremy.fowell@btinternet.com
Secretary Doug Neale, 58 Woodland Way, MORDEN SM4 4DS

 020 8542 2747 dneale@w58wmorden.demon.co.uk
Editor Chris Jakeman, 50 Grimshaw Road, PETERBOROUGH PE1 4ET

 01733 753489 cjakeman@bigfoot.com
Treasurer Neville Joseph, Marlowe House, Hale Road, WENDOVER HP22 6NE

 01296 62 3167 naj@najoseph.demon.co.uk
Webmaster Jenny Brien, Windy Hill, Drumkeen, BALLINAMALLARD,
 Co. Fermanagh BT94 2HJ

 02866 388 253 jennybrien@bmallard.swinternet.co.uk
Librarian Sylvia Hainsworth, Microplex Ltd., 5a Riverfield Road, STAINES

 01784 457565 sylvia.hainsworth@dial.pipex.com

Membership enquiries, renewals and changes of address to Doug.
Technical enquiries and anything for publication to Chris.
Borrowing requests for books, magazines and proceedings to Sylvia.

 For indexes to Forthwrite, the FIG UK Library and
 much more, see http://forth.org.uk

 Payment entitles you to 6 issues of Forthwrite
 magazine and our membership services for that

 period (about a year). Fees are:

National and international £12
International served by airmail £22
Corporate £36 (3 copies of each issue)

 Your membership number appears on your envelope
 label. Please quote it in correspondence to us. Look

out for the message "SUBS NOW DUE" on your sixth and last issue and please
complete the renewal form enclosed.
Overseas members can opt to pay the higher price for airmail delivery.

 Copyright of each individual article rests with its author.
 Publication implies permission for FIG UK to reproduce

the material in a variety of forms and media including through the Internet.

FIG UK Web Site

FIG UK Membership

Forthwrite Deliveries

Copyright

FIG UK Committee

http://forth.org.uk/

 45

FIG UK Services to Members

Magazine

Library

Web Site

IRC

Members

Beyond the
UK

Forthwrite is our regular magazine, which has been in publication
for over 100 issues. Most of the contributions come from our
own members and Chris Jakeman, the Editor, is always ready to
assist new authors wishing to share their experiences of the
Forth world.

Our library provides a service unmatched by any other FIG
chapter. Not only are all the major books available, but also
conference proceedings, back-issues of Forthwrite and also of
the magazine of International FIG, Forth Dimensions. The price of
a loan is simply the cost of postage out and back.

Jenny Brien maintains our web site at http://forth.org.uk. She
publishes details of FIG UK projects, a regularly-updated Forth
News report, indexes to the Forthwrite magazine and the library
as well as specialist contributions such as �Build Your Own
Forth� and links to other sites. Don�t forget to check out the �FIG
UK Hall of Fame�.

Software for accessing Internet Relay Chat is free and easy to
use. FIG UK members (and a few others too) get together on the
#FIG UK channel every month. Check Forthwrite for details.

The members are our greatest asset. If you have a problem,
don�t struggle in silence - someone will always be able to help.
Do consider joining one of our joint projects. Undertaken by
informal groups of members, these are very successful and an
excellent way to gain both experience and good friends.

FIG UK has links with International FIG, the German Forth-
Gesellschaft and the Dutch Forth Users Group. Some of our
members have multiple memberships and we report progress
and special events. FIG UK has attracted a core of overseas
members; please ask if you want an accelerated postal delivery
for your Forthwrite.

	Forth News
	Six Easy Fonts
	An exercise in Win32Forth
	F11-UK
	FIG Hardware Project
	euroFORTH 2001
	Nominations for the
	FIG UK Awards - 2000
	Generating Combinations
	Did you Know?
	– NEAR Space Probe
	Source – John Hayes, John Hopkins University �Moving On
	Vierte Dimension 1/01
	Solving a Riddle
	Letters
	Forthwrite Index

