

 ISSN 0265-5195

news events people reviews projects programming

September

FIGUK magazine:

Did you Know? - smart cards
Vierte Dimension 2/01

Treating Data as Source
4-bit Forth

A Call to Assembly 1/3
Win32Forth Fonts

“Quikwriter” Project Launch

2001
Issue 113

Treating Data as Source

euroFORTH 2001 ………….…... 13

FIG UK – AGM ………………….. 14

Forth News ………………..……. 2

Did you Know? - smart cards .. 29

Vierte Dimension 2/01 ………... 24

Treating Data as Source ……... 6

4-bit Forth ………………..…...… 10

A Call to Assembly 1/3 .……..… 16

Win32Forth Fonts ……………... 30

“Quikwriter” Project Launch … 27

reviews

programming

events

2001
Issue 113

September

news

projects

 1

Editorial
In this issue, Dave Pochin returns again with
more on Windows and Jenny Brien gives us
advance access to her euroFORTH paper.

Welcome to Julian Noble who begins a 3-part article on the use
of assembly in Forth.. We also hear that Joe Anderson’s report
on the remarkable NEAR space probe is being translated for
reprinting in the German Vierte Dimension.

There’s 4 pages of news and also items on smart cards and 4-bit
Forth from the newsgroup.

Look out for a project based on the “Quikwriter” proposal from
the last issue.

It’s time for the AGM again – your ideas and comments are, as
always, very valuable. Why not deliver them in person?

Welcome to new members Glyn James from Kettering and
Roland May from Sylmar in California.

Have you noticed the web-site’s new look? It uses “css” which
makes it much easier to maintain.

PS. Don’t forget the monthly IRC session. Our next one is
Saturday 6th Oct on IRCNet channel #FIGUK from 9:00pm.

Until next time, keep on Forthing,

 2

Forth News

Application News

Primetime Emmy Engineering
Awards for technical achievement
included Clairmont Camera of
North Hollywood for a series of
specialized lenses.

The company makes lenses that
impart special effects.

For example, the company's
Squishy Lens, developed by
technician Michael Keesling, is
made of a silicon gel and can
smear an image.

The Squishy Lens has been used
in Species II, What Women Want,

Three
Kings, as
well as Star
Trek - The
Next
Generation,
The X Men

and a handful of commercials.

Mike Keesling writes, "The
Squishy Lens was my second big
FORTH project using MNI's
products. It used a 68HC11, 3
7056 motor drive boards, and an
A/D converter board.

The prototype took 6 months to
design, including the optical and
mechanical design. The software
took me about 4 weeks, but 2 of

that was tuning up the homing
routines and PID coefficients. The
code used about 4K of ROM, no
floating-point math and less than
32 bytes of RAM.

FIG UK member, Howerd
Oakford, has made PPP.com
available on-line, free for non-
comercial use, at
http://www.inventio.co.uk.

PPP.com is the latest version of a
generic communications protocol
debug package supplied by
Inventio Software Ltd. It is a
DOS-based PC program to
analyse, display and create PPP
and Internet protocols.

Elizabeth Rather reports NASA's
Goddard Space Flight Center is
currently using Forth not only on
the RTX2010 but also the
UT69R000, another RAD-hard
space-rated processor for which
Forth Inc. developed a version of
its SwiftX cross-compiler.

Stephen Pelc of MPE Ltd.
discussed the use of Forth in
advanced mobile phones and
wrote “We did a <games> engine

 3

for a mobile phone manufacturer
and reduced the size of the games
on it by an order of magnitude.”

Resources
Glen Paling writes, "Andrey
Cherezov at his team at
www.delosoft.com has ANS Forth
compilers for all Win32 devices
including Windows CE. They've
devised the compilers so that
they're source code compatible on
all Win32 devices."

Neal Bridges suggests members
check out Kris Johnson's Wiki

http://sleepless-night.com/cgi-
bin/twiki/view/Main. It's most
heavily used by Quartus Forth
developers at present, but there's a
section for general Forth material.

Anton Ertl summarised the several
places where Forth extensions
have been documented.

http://dec.bournemouth.ac.uk/forth/an
s/extentions/index.html (note
spelling of “extensions”) collects
suggestions for the next revision
of ANS Forth in 2004.

There is also
http://www.albany.net/~hello/comus.ht
m, which tries to collect common
usage.

And of course there is Anton’s
own list of proposals at

http://www.complang.tuwien.ac.at/fort
h/ansforth/proposals.html

In answer to a recent newsgroup
enquiry, Hans Bezemer directs the
newcomer to

http://forthprimer.siteaddr.com for a
85 page tutorial to the ANS Forth
standard.

People
There's an active discussion topic
right now about Charles Moore at
http://www.slashdot.org which begins
"Chuck Moore is, among other
things, a chip designer. His latest
design, the 25x, is based on a 5x5
array of X18 microprocessor
cores, and could provide 60,000
MIPS with a production cost of
about one dollar. And Moore has
the chops to back that up: he's
been designing tiny, efficient
processors for many years."

322 queries and comments had
been listed by 28th August and
Charles Moore will answer his
selection shortly.

Krishna Myneni has published the
following example of using Forth
for teaching or learning quantum
mechanics:

ftp://ftp.ccreweb.org/software/kforth/ex
amples/qm4.4th

Apart from providing the
numerical computations that
illustrate various concepts in
quantum mechanics, the use of
Forth in this instance seems to me
to be a neat example of creating a
pseudo-language that is natural

 4

and well-suited to a specific
application.

Public Forth Systems
FIG UK member, Gary Lancaster,
has published a new v3.0 of
CamelForth for the Z88 at
http://www.z88forever.org.uk/
camelforth/rom-camel.html

This is a fully ANS-compliant
extension of Z80 CamelForth by
Bradford J. Rodriguez, with a
multitude of extensions for the
Z88, an unusual pocket computer.

The new version includes multi-
programming support (with simple
demo) - a first for the Z88 - and a
6-8 improvement in interpreting
source from files.

Tom Zimmer has modified
Win32Forth following a
suggestion from Richard Adams,
with code provided by Bernd
Paysan, to allow filenames in
Win32Forth to contain spaces.

Jih-tung Pai has published a new
version of ppForth, a Forth for
the Palm Pilot, at

http://206.171.116.227/forth/index.ht
ml

including view words to look up
source and the ability to produce
standalone applications with
resources.

Brad Eckert reports that a
new demonstration system
for Tiny Open Firmware
is available at

http://www.tinyboot.com/eval31.html

Self-installing peripherals really
need to be seen in action to be
appreciated. The demonstration
consists of an 8031 board and one
or more 20x4 LCD modules. The
CPU monitors the serial expansion
bus to allow hot plugging. Add or
remove a module, and the system
reboots and reconfigures itself in a
couple of seconds.

Chuck Moore's ColorForth is
now publicly available and has
generated much interest. In
addition to his personal site,
reported in the July issue, he is
now providing a new site,
http://www.colorforth.com, dedicated
to ColorForth. (See also the
section People below.)

Terry Loveall has assembled a
web page for resources on Chuck
Moore's ColorForth

http://www.users.qwest.net/~loveall/c4
index.htm

providing a single starting point
for all ColorForth sources,
binaries, updates and applications.

Jeff Fox has provided a mailing
list for ColorForth at

http://www.ultratechnology.com/chips.
htm#maillists

 5

John Sadler announces that Ficl
release 3.00 is now available for
download at

http://sourceforge.net/project/showfile
s.php?group_id=24441

Release 3.00 changes the
programming interface to permit
multiple Ficl systems to coexist in
a single address space. Thanks to
Orjan Gustaffson for contributing
these mods.

There are also bug fixes for 64-bit
compatibility (thanks to DCS
(again) and the FreeBSD mob),
and fixes for various bugs in the
debugger, parse-steps, and OO
support. The linux makefile and
the tar.gz package has been tested
on the sourceforge compile farm,
so it should be trouble free.

Marcel Hendrix, author of the
high-performance iForth, has
made the manual and the glossary
available on-line at:

http://www.iae.nl/

users/mhx/i4thmanual.pdf

http://www.iae.nl/

users/mhx/i4thhelp.htm

Comments (by e-mail) would be
appreciated.

Commercial Forth
Systems

Triangle Digital Systems have now
approved the IBM Microdrive for
use with their TDS2020F +
TDS2020CM2 Data Logger
Modules. Its one gigabyte
capacity is the largest available on
the market in the Compact Flash
format.

Stephen Pelc reports that VFX
Forth for Linux is under
development and will be available
soon.

MPE's VFX Forth for Windows
build 3.40.0685 is available for
download, as reported in our July
issue. A summary of the
optimisation results was posted by
Stephen Pelc:

Primitives using no extensions, test time
(ms) including overhead for VFX3.4, iForth
and SF2.0
 1.Eratosthenes sieve
 2.Fibonacci recursion
 3.Hoare's quick sort
 4.Generate random numbers
 5.LZ77 Comp.
 6.Dhrystone

Total time in msecs:
 1,893 for MPE ProForth VFX 3.40.0686
 5,445 for iForth by M. Hendrix, v1.12.1121
16,103 for SwiftForth 2.00.3

 6

Jenny Brien
02866 388 253

jennybrien@bmallard.swinternet.co.uk

Treating Data as Source
Jennifer Brien

Forth has a number of useful facilities for manipulating the interpretation
of source text. Unfortunately, they are not always so accessible or

useful in the 'interpretation' of other text data. This is the first half of a
paper submitted to euroFORTH 2001 proposing a variation of ANS

Forth that addresses the problem, and also shows a work-around that
is illustrated with a simple and extensible XML parser.

What the Standard Forth Interpreter provides
All Standard1 parsing words use the current input stream. That portion of the
input stream currently in memory (the input buffer) is returned by SOURCE, and
>IN provides an index to the current position in this buffer, which is updated by
the parsing words. In theory, the system can be ignorant as to how the input buffer
was filled: REFILL will fill it from the current input stream, if there is one. Input
can be re-read by saving and restoring >IN, or by using SAVE-INPUT ...
RESTORE-INPUT if more than the contents of one input buffer is involved.

Sadly, when analysing a data stream all this abstraction is not available and
we have to write its equivalent from scratch, which is very frustrating when the
Standard words would provide what we need if we were working with the input
stream.

The input buffer (depending on its type) is EVALUATEd, LOADed or
INCLUDEd, and that’s all you can do with it. It has to contain valid Forth source.
What we need is a way to use an input buffer with any function, not just the
Standard’s text interpreter.

Treating any string like the Input Buffer
Many Forths already supply SOURCE! to set the position and length of the input
buffer. It’s simplest and most versatile use is to 'unparse' any parsing word,
allowing it to operate on any string:

: EXECUTE-WITH \ ca u xt -- ; execute parsing word with ca u as its input
 >IN @ >R SOURCE 2>R >R SOURCE!
 R> EXECUTE
 2R> SOURCE! R> >IN ! ;

1 The current standard for Forth is ANS Forth (1994) and also adopted by ISO.

 7

Example:

: $CREATE \ ca u -- ; create a header using ca u as the name
 ['] CREATE execute-with ;

It's a matter of choice whether you regard this as passing a string to a function or a
function to a string!

This will work so long as we are sure the original input buffer has not been
over-written. As Michael Gassenenko has pointed out,2 the problem is not with
implementing the word itself, but with what happens if SAVE-INPUT or REFILL is
attempted before the original input buffer is restored. Gassenenko suggests that
implementors should see the input buffer and the refill buffer as separate entities.
All input is taken from the input buffer returned by SOURCE. REFILL should not
depend on the current value of SOURCE, but only on SOURCE-ID. It should refill a
system-supplied refill buffer, and set that to be the SOURCE. Changing the input
buffer with SOURCE! would then cause interpretation to return to the next line of
the original stream when REFILL is called. It follows, then, that changing
SOURCE-ID without changing SOURCE would cause interpretation to pass to the
next line of the new stream when REFILL is called. (Jenny goes beyond Michael
Gassenenko’s proposal with this exposition and by showing that SOURCE-ID!
should also be added to the standard - Ed)

A word-set for manipulating the input stream
 Given assurance of that behaviour, it is possible to specify a complete
portable input-manipulating word-set with the provision of just 2 words:

 : SOURCE! \ ca u -- ; Set input source spec. Set >IN to zero
 : SOURCE-ID! \ source-id -- ; Set source-id

Nesting and un-nesting sources can then be done in the same style as
SAVE-INPUT and RESTORE-INPUT:

 : SAVE-SOURCE \ -- xn ..x1 n ;
 SAVE-INPUT >R SOURCE SOURCE-ID R> 3 + ;

 : RESTORE-SOURCE \ xn..x1 n -- ;
 >R SOURCE-ID! SOURCE! >R 3 - RESTORE-INPUT THROW ;

The same definition can get input from any REFILLable source (stackem and
unstackem move counted sets of parameters to and from an extra stack).

 : INCLUDE-WITH \ i*x source-id xt – j*x ;
 save-source stackem
 >R source-id!

2http://forth.sourceforge.net/word/source-store/index.html

 8

 REFILL BEGIN R@ EXECUTE WHILE REFILL 0= UNTIL THEN
 R> DROP
 unstackem restore-source ;

By Gassenenko’s rule, the first REFILL sets SOURCE to the address and count of
the input buffer identified by SOURCE-ID. Because INCLUDE-WITH does not open
or close files, it will start at wherever the current FILE-POSITION happens to be
(i.e. with a newly-opened file, it will start with the first line). The function passed
to INCLUDE-WITH deals with one line of input per call - though it can deal with
more by calling REFILL itself - and exits with a flag to say if it requires any more
input.

0 SWAP INCLUDE-WITH will provide such a function with input from the terminal
input device.

Treating the Input Buffer like any string
The input buffer is, after all, just another area in memory. Any string-scanning
definitions can work with it, so long as we have a pair of words which convert a
>IN index into a caddr u pair and vice versa:

 \ get the as-yet-unparsed portion of the input buffer
 : PARSE-AREA@ \ -- ca u ;
 SOURCE >IN @ /STRING ;

 \ set the portion of the input buffer still to be parsed
 : PARSE-AREA! \ ca u -- ; must start within the input buffer!
 DROP SOURCE DROP – 1 CHARS / >IN ! ;

This eliminates the awkward difference between parsing source with PARSE and
WORD, and parsing strings with other pattern-matching words, when you are left
with the caddr u of a still-unparsed string. Use COMPARE, SEARCH, etc. to write
general pattern-matching words with the stack diagram:

 PatternMatch \ ca u -- ca1 u1 ca2 u2 ;

where ca1 u1 = string-remaining and ca2 u2 = string-matched and use
them in the form:

 PARSE-AREA@ PatternMatch /dosomething/ PARSE-AREA!

Where SOURCE! is available it could of course be used instead of PARSE-AREA!
which is in fact just another way of manipulating >IN. It can only modify the size
of the parse area by changing its start point, but that is all that is required in this
situation (and all that can be achieved within the Standard).

 : STRING/ \ ca1 u1 u -- ca2 u2
 SWAP – TUCK – SWAP ;

 9

This is the reverse of /STRING and a useful way to end a PatternMatch word,
getting the string-remaining from the string-matched and the length of the original
string,

Data as Source in Standard ANS Forth
The effect of INCLUDE-WITH can be simulated within Standard Forth by simply
INCLUDEing a data file. So long as we know what the first word the interpreter
encounters will be, we can arrange for it to read and process the rest of the file. A
good example of this technique is the method3 used by Bernd Paysan to add 'active
HTML content':

 : $>
 BEGIN
 SOURCE >IN @ /STRING
 S" <$" SEARCH 0= WHILE
 TYPE CR
 REFILL 0= UNTIL
 EXIT
 THEN
 NIP SOURCE >IN @ /STRING ROT - DUP 2 + >IN +! TYPE ;

 : <HTML> $> ;

The Forth code was embedded in a web page between the tags “<$ “ and “$> “.
The page itself began with <HTML>. When the Forth interpreter executes <HTML>, it
calls $> to search the input line by line for “<$ ”, printing the lines as it goes. It
then resumes interpreting from after the “<$ ” onwards. When the interpreter
reaches the ending tag $>, it executes it and repeats the search.

The concluding part of this article appears in the next issue of Forthwrite and uses
the JenX parser from the previous issue to illustrate this technique.

Jenny Brien has been experimenting with Forth as a hobby since 1986, contributing
frequently to Forthwrite, and is only now taking a HNC in Computing. She is also an artist
and local historian, and is currently researching the water-mills of Fermangh, of which
there were once more than a hundred.

3 See Forthwrite issue 108, August 2000

 10

From the ‘Net –
4-bit Forth
Tom Zimmer

Tom Zimmer posted this item about 4-bit Forth applications on the
comp.lang.forth newsgroup after someone described Forth as

“requiring a minimum of 16 bits”. The very first microprocessor was a 4-
bit device – the Intel 4004.

“I have told this story before, but what the hay, one more time;

I was hired at Samsung about 10 years ago, to revamp a micro-controller
development system for their line of Super8-based 8-bit processors, and for
their line of 4-bit processors (yes, 4-bit) called the 56000. I worked with Jerry
Boutel, Robert Smith and others to create a development system that ran on F-PC,
and used the customized versions of the TCOM compiler. The target and
development system for the Super8 processor was a pretty normal call-threaded
implementation, with optimizers that produced code which could be debugged
remotely at the source level and was eventually burned into onboard MASK ROM.
These applications were limited to 256 bytes of RAM, all that was available on the
Super8.

The really interesting target though
was the 56000 4-bit processor, which
had versions with up to, I think, 32k of
ROM, and 256 nibbles4 of onboard
RAM. Fortunately, this processor had a
couple of interesting features. First it
had multiple address spaces, one for
RAM, one for ROM and several for I/O,
so short addressing could be used for
all access to RAM, and I/O. Another
interesting feature, was the ability to
assign byte tokens to subroutines. The
TCOM compiler for the 56000 would
automatically assign about 16 of the
available 48 tokens to predefined Forth
primitives, and left the remaining 32
tokens for assignment to user Forth
functions.

4 A “nibble” is 4 bits of data or half a byte. I would love to know who thought of that one –
Ed.

“4-bit processors are still viable and
available from at least a dozen major
suppliers. There will always be high
volume products (at least 1 million
pieces) that need to do some limited
processing at very low cost (under $1).
Examples are microwave ovens,
bathroom scales and telephones.

We get spoiled with our sub-GHz
computers, but the real world doesn't
need that kind of processing power for a
lot of things. The biggest problem with
4-bit processor is that they tend to be a
bear to program. Forth made it more
than bearable, it made it fun.”

Tom Zimmer 4-Sep-2001

 11

The result was that you could generate some truly small programs on the
56000. We added nibble memory operations like N@, and some byte operations
like B@. Developing an application truly had the flavor of Forth, even though you
were obviously developing for a very specific target processor. The
implementation was essentially Forth 83, though portability doesn't really come
into play in this environment. If I sound excited, after all these years, I confess I
am. It was one of the most interesting development projects I have ever worked
on.

Of course Samsung thought everyone would want to program these processors in
assembly language, so Robert Smith wrote PASM, a Programmable ASseMbler,
which could easily be tailored to any of the processors Samsung built. We did, I
believe, have several people that developed their applications in Forth. By the
way, the cost of these processors was under a US dollar.

Just my ramblings,

Tom Zimmer”

In a recent poll at www.embedded.com received 1346 responses and listed
programming languages for embedded work as:

his shows that Forth continues to hold its position as a tool
for embedded work whose worth is recognised and valued by
a minority. (Although you do have to wonder where the
assembly-language programmers are. Perhaps they’re hidden
in the Other category.)

C 68%
C++ 17%
Java 5%
Forth 3%
Other 3%
Ada 2%

 12

provides everything needed in a
professional-quality low-cost Forth
controller board.

Use it in industrial or hobby
projects to control a wide range of
devices using the well-known multi-
tasking Pygmy Forth.

Designed for hosting from a Windows
or DOS PC, you can test your
application as it runs on the F11-UK
board itself. The board was developed
by FIG UK members to provide an easy
way to explore the world of controlled
devices – a niche where Forth excels.

The kit includes both hardware and
software and is supported and sold to
members at a nominal profit through a
private company.

Software

PC-based PygmyHC11 Forth compiler
running under DOS produces code for
Motorola HC11 micro-controller.

Code is downloaded via standard serial
link from the PC to the FLASH memory (or
RAM) on the F11-UK single board computer
(SBC).

No dongle or programming adaptor of any
kind is required.

Forth running on the SBC is interactive
which makes debugging and testing much
easier.

Multitasking and Assembly included.

The serial link can be disconnected to
enable the SBC to function as a stand-alone
unit.

All source code provided - 78 pages
or so (unlike many commercial
systems).

Around 30 pages of additional
documentation is supplied including a
full glossary of the 300 or so Forth
words in the system.

Email mailing list for discussion and
limited support.

Hardware:

Processor:
 Motorola HC11 version E1 - 8 MHz (2
 MHz E-Clock).
Memory:
 32k x 8 FLASH
 32k x 8 battery backed SRAM
 512 x 8 EEPROM onboard HC11.
I/O:
 20 lines plus 2 interrupts (IRQ & XIRQ).
Analogue in:
 up to 8 lines using onboard 8-bit A/D.
Serial:
 1. RS232, UART onboard HC11

 2. Motorola SPI bus onboard HC11.
Expansion:
 Via HC11 SPI serial bus using
 2 or more of 20 available lines.
Timer system:
 Inputs: 3 x 16-bit capture channels
 Outputs: 4 x 16-bit compare channels.
PCB size: 103 x 100 mm.

Price to FIG UK members: £47.0 plus postage and packing (£2 UK, £4 overseas) plus $25.0

(US Dollars) for registration of 80x86 Pygmy Forth with the
author Frank Sergeant.

 Delivery: ex-stock.
 More information: jeremy.fowell@btinternet.com and 0121 440 1809

F11-UK

 13

euroFORTH 2001

The 17th annual euroFORTH conference on the Forth programming
environment and Forth processors is being held on November 23 – 26

at Schloss Dagstuhl, near Saarbrücken, Germany.

This annual conference is held in the UK
every third year and, after the 1999 venue
in St.Petersburg, it returns again to Schloss
Dagstuhl. (See Paul Bennett’s detailed
report in issue 99). The conference
language will be English.

For conference details, see http://dec.bournemouth.ac.uk/forth/euro/ef01.html. FIG
UK member Bill Stoddart is the Program Chair and invites papers (both academic
and business) by 26th August, please, to the Proceedings Editor Peter Knaggs
(pknaggs@bournemouth.ac.uk). Topics of especial interest include:

§ Forth applications and language extensions.

§ Open protocols and standards, including TCP/IP, HTTP, XML etc.

§ Virtual machine application and design.

§ Stack-based architectures.

§ System configuration and Open Boot.

§ Other topics likely to be of interest to the extensible language
community.

Attendance with a single room in the castle for 2 nights and full board costs €350
(£220)5. Discounts are available for students sharing rooms.

Bill tells me that prices have been kept to a minimum to encourage the widest possible
attendance. Let’s take advantage of that – Ed.

Charles Moore is the Guest of Honour, so this is a
rare chance to meet the inventor of Forth on this side
of the Atlantic.

 14

FIG UK – AGM

The Annual General Meeting will be held on Saturday 20th
October at Doug Neale’s home, 58 Woodland Way, Morden from
2:00pm.
 All members are cordially invited to do attend. If you
cannot come, but wish to comment on the way FIG UK is going or
the direction you would like it to take, write or e-mail Jeremy or
myself before the meeting.
 Anyone who lives in the London area can get to Doug’s
house easily by Underground as he is just ten minutes walk from
the southern terminus of the Northern Line. You can get
directions from www.multimap.com for his postcode SM4 4DS
or just phone him on 020 8542 2747.

Some of the topics likely to be discussed are:

§ Joint projects such as Keyboard Project
§ Ideas for the Web Site
§ Finances – see annual accounts on next page
§ EuroFORTH 2001
§ Promoting Forth and FIG in the UK

 15

Forth Interest Group UK: Revenue Account for year ending 31 March 2001

Income and Expenditure

Y/E 31/3/00 Y/E 31/3/01

790 Subscriptions 1,293
3 Interest (net of tax) 8

 793 1,301
 Printing Forthwrite 593
 Postage 215
 Other Printing 26
 Sundry Expenses 50

 845 884

 -52 Net surplus for the year 417

Balance Sheet as at 31 March 2001

Y/E 31/3/00 Y/E 31/3/01
 579 Accumulated Fund b/f 527
 -52 Surplus for the Year 417

 527 944

Represented by:
 1,221 Cash at Bank 1,580

654 Unexpired Subscriptions 586
40 Sundry Creditors 50

 694 636

 527 Net assets 944

The accounts were prepared by our Treasurer – thanks, Neville.

 16

Julian Noble
jvn@virginia.edu

A Call to Assembly 1/3
Julian Noble

Institute of Nuclear and Particle Physics
University of Virginia

Charlottesville, VA 22901

This is the first part of a paper originally prepared for the sadly defunct
Forth Dimensions magazine.

Introduction
Forth programmers tend to take for granted the assembler that accompanies most
Forths6. We often eschew assembly language definitions because they are not
portable, especially since, in the era of ANS Forth, portability represents an
important goal of programming. We therefore resort to the assembler only when
running time is of the essence, or when we must access the underlying
system at its most basic level---direct control of ports, drives and displays.

However, one of the things members of the Forth community do (besides
program in Forth) is attempt to educate their peers who still muddle about with
languages of lesser quality. It has for some time seemed to me that in our
proselytizing we were missing a good bet, by extolling first the high level
features of Forth---its extensibility, abstractive power, simplicity, elegance, etc.
etc.. I think it may be better to introduce Forth to the suspicious outsider by way of
the Forth assembler.

To make clear why I have taken this position, let me recapitulate what
assemblers are and why they exist. In their essence computer programs consist of
sequences of numbers, generally in base 2 (binary) or 16 (hexadecimal) format.
Since human brains never evolved to use numbers in any base, the manmachine
interface suffered from impedance mismatch in the era when digital computers
were programmed directly with plug boards or switches. Programming in this
fashion, still common in my youth, was arduous and prone to error.

Fortunately today's computers rely on specialized conversion programs
called assemblers to translate humanreadable representations of the instructions
in text form (“assembler mnemonics”) to their numeric equivalents. Good
assemblers recognize macro instructions and operations (“pseudoops”) that
perform such useful chores as referring to variables, constants, or frequently used
sequences of instructions by name rather than by address7.

Even with such tools, however, writing a lengthy program entirely in
assembler is not a task to be undertaken lightly. Machine language programs are

6 That is, all commercial Forths and many public domain ones.
7 Such assembler directives as macros and pseudoops are not actual machine
instructions, of course.

 17

hard to get right, hard to understand, and hard to maintain or port to another
machine. High level languages were invented to provide a better humancomputer
interface, providing standardized data structures and operations that encompass
most of the user's needs, and translating these to machine language in a
standardized fashion. Modern
optimizing compilers can generate machine code that executes no worse than 2×
slower than the best handcoded efforts of wizard hackers. Such facts of life have
led to declarations that machine language programming is obsolete8.

What happens when we encounter problems with no reasonable solution
in high level code? Memory limitations, a desperate need for speed, or an
operation trivial at the level of machine registers, but timeconsuming and
circuitous in a high level language (e.g., bit reversal in Fast Fourier Transform,
or interfacing through ports) lead us - however reluctantly - to exercise our
constitutional9 right to assemble.

“our constitutional right to assemble”
Most modern programming languages permit linking with assembly

language procedures that have been assembled separately (that is, outside the
compilation process), thereby combining the ease of high level programming with
the advantages of assembler. The value of this hybrid approach lies in
the fact that most programs spend most of their time executing relatively few
instructions. Factoring such bottlenecks into separate subroutines, then
handcoding them, can garner large increases in performance. The usual
procedure is:

1. program, test and debug everything in high level code;
2. using a profiler or algorithmic analysis, determine which portions can be

rewritten profitably in machine language;
3. finally, endure the tedium attendant on assembling, linking and testing the

handcoded parts.

In many cases, however, Step 3 is so arduous as to discourage even minimal use of
assembly language, except out of desperation.

What we really need is a way to test assembly language subroutines in
isolation, i.e. to assemble and run them as separate programs. By eliminating the
need to compile an “exercise” program, assemble the subroutine and link the two
into an executable, we can telescope the compile – test - debug cycle
into a single stage. Once we are satisfied with our machine code subroutines they
can be (re)assembled and linked to the (compiled) main program once or twice at
most.

8 See, e.g., M. Abrash, The Zen of Code Optimization (The Coriolis Group, Inc.,
Scottsdale, AZ, 1994) for an eloquent defense of assembly language vs. high level
language.
9 A right enshrined in the US constitution, a privilege not shared in the UK.

 18

Forth offers a shortcut that makes assembly language programming as
simple as high-level programming. Although Forth is my first choice for the kind of
programming I do (numeric and symbolic), not everyone likes it. Moreover,
constraints imposed by management often preclude using Forth in commercial
applications. However, for assembling and testing isolated machine code
fragments - in fact for rapid prototyping of any sort - Forth is without peer and is
worth considering for that purpose, even if the final result must be expressed in C
or C++.
 Assemblers, cross assemblers and decompilers in Forth are so terse that
most programmers used to other languages find it hard to believe they are what
they claim to be. In a commercial Forth I use regularly, the traditional (postfix)
Forth assembler source code resides in a file about 14 Kbytes long, and adds
about 6 Kbytes of compiled code to the system; a more elaborate assembler (for a
public-domain Forth) that allows prefix style comprises 31Kbytes of source and
compiles to about 8 Kbytes; the source file of a generic Forth crossassembler for
Motorola 680x0 CPUs is about 16 Kb; and the assembler for Intel 80486 and
Pentium CPU's that comes with a Windowsbased Forth is still a relative
lightweight at 85 Kb of source. For comparison, the binary of an ancient 16bit
assembler, MASM.EXE® (v. 2.0), is about 74 Kb long.

The Forth assembler is written in Forth, hence it operates the same way as
any other set of Forth words. The words for compiling a new definition from
assembler mnemonics, analogous to : and ;, are CODE and ENDCODE. Rather
than threading together the addresses of predefined words from the dictionary,
the assembler mnemonics actually assemble a new machine code fragment
containing the opcodes of the target CPU. To show how this works, I shall
illustrate with popular public-domain Forths, FPC, and its lineal descendent
Win32Forth, both the brainchildren of Tom Zimmer, that are readily available
from the Web site http://www.taygeta.com.

“Forth offers a short-cut”

To a writer, the advantage of public-domain Forths is that they provide
access to the machine code of the most primitive kernel words. These serve as
convenient examples of the assembler's operation and show how to program
simple operations in Intel 80x86 assembler.

This note provides three examples of the development process: STIB10, a
routine that bitreverses numbers, eg. for use with the fast Fourier transform
(FFT); UCASE, a routine to convert all lowercase letters in an ASCII string to
upper case, leaving digits and punctuation alone, and a program for computing
spherical Bessel functions (a numbercrunching application) in which the key
subroutine is coded in assembler for maximum speed. In what follows we assume

10 That is, BITS spelled backwards. Forth names often seem odd to programmers used to
the baroque compound names of C functions. Forth's conventions aim toward self-
documenting code, with telegraphic word names that express their functionality without
lengthy marginal notes. BIT_REV would also work, and may perhaps be less cryptic.

 19

the reader is familiar with the assembly language mnemonics of the Intel 80x86
series of CPUs. Occasionally their operation will be amplified in detail;
however the reader is advised to consult a standard assembly language
programming manual.

Bitreversal
The bitreversal routine STIB may be written in high level Forth as

: STIB (k n --- n') \ reverse order of bits
 0 SWAP (--- k 0 n) \ initialize n' to 0 giving (-- log2[N] n' n)
 ROT 0 DO \ loop k times
 DUP 1 AND \ pick out 1's bit of n
 ROT 2* + \ leftshift n' 1 place, add 1's bit
 SWAP 2/ \ rightshift n 1 place
 LOOP DROP \ end loop, discard n
;

How does this work? The subroutine expects an integer n on the stack, in the
range

0 < n < 2k = N
where N is the order of the FFT (power of 2). The loop must be executed k = log
2 (N) times, so the loop limits are 0 and k. For simplicity, k is placed on the stack
above n, rather than fetched from a variable. To see how the routine performs bit
reversal, visualize the (input) integer n in binary notation: a string of 1's and 0's in
a field k bits wide. For example, if the order N of the FFT is 16
then the field is k=4 bits wide; the number 7, e.g. is represented as

 n = 7d = 0111b

and its bitreversed form is

n’ = 1110b =14d

We start with n = 0 (all bits are 0); we then shift n' one position to the left, adding
to it the rightmost bit of n. Then we shift n one position to the right (with its
former rightmost bit dropping into oblivion), and repeat until done. We simulate
the shift operations using integer divideby2 (2/) for the rightshift, and
multiplyby2 (2*) for the leftshift. We keep n and n' on the data stack
(equivalent to temporary local variables that are reclaimed when the subroutine
returns control to the main program).

Testing immediately, as is our wont
in Forth,

 4 7 STIB . 14 ok
14 7 STIB . 7 ok

A machine code version that carries out
the operations entirely within the CPU's

 20

registers will execute much faster than the highlevel code [7]. The logical
rightshift (SHR) and rotateleftthroughcarry (RCL) instructions are key to an
exceedingly simple subroutine. Their behaviors are illustrated here.

Different Forths will require minor differences in how we proceed. Several
commercial Forths cache the top of the data stack in the register BX, thereby
eliminating some pushes and pops. The public-domain FPC, on the other hand,
leaves BX free. Since we are illustrating with FPC, our first job will be to obtain
the argument n; we therefore POP it from the stack to BX:

POP BX

Next let us assign the (unused) DX register to the bitreversed answer; we initialize
DX to 0 quickly using bitwise exclusiveor11

XOR DX, DX

Now we shift BX one place to the right using SHR; the rightmost bit, as the Figure
suggests, moves from the register to the Carry Flag. Then we RCL the DX register
one place to the left; the bit formerly in the Carry Flag becomes the rightmost bit
of DX. The leftmost bit (if any) of DX ends up in the CF. But that does not matter,
because it will be replaced by the rightmost bit of BX when the sequence is
repeated. So the machinelanguage program (with comments) looks like

 \ initialization steps
POP BX \ obtain n
XOR DX, DX \ n' = 0
 \ repeat following instructions k times
SHR BX, 1 \ logical right shift 1 place
RCL DX, 1 \ rotate left through carry 1 place

All that is required now is to arrange to repeat the twoinstruction sequence the
requisite number of times. For simplicity let us do this using the most elementary
looping instruction, LOOP. We must place the number of times the loop is to be
executed in the register CX then, at the end of the loop, issue the LOOP instruction
which will decrement CX by 1 and loop back to the starting point (which we must
label somehow - we will return to this point and describe how it is done), as long
as CX is nonzero. That is, it will loop the number of times specified by the integer
in CX.

To assemble this subroutine using an assembler like MASM® or TASM®,
we would prepare a text file of the form

POP BX ; get n

11 The instruction MOV DX, # 0 would also work, but requires 1 byte more storage.

 21

POP CX ; get # of iterations
XOR DX, DX ; set n' = 0
HERE: ; beginning of loop
SHR BX, 1 ; send 0'th bit of n to CF
 ; and shift right 1 place
RCL DX, 1 ; shift n' left and
 ; move CF into 0'th bit of n'
LOOP HERE ; CX=CX1, loop if CX 0.
PUSH DX ; leave result on stack

(however, as we shall see below, there will need to be some necessary boiler
plate lines that conform to the particular assembler's conventions, as well as
respecting the calling conventions of the high-level language we are going to use
the subroutine with).

To test the assembly language program with FPC's intrinsic assembler, we
modify it slightly (to conform to the latter's notational conventions), obtaining

CODE STIB \ reverse bitorder
POP BX \ get n
POP CX \ get # of iterations
XOR DX, DX \ set n' = 0
HERE \ beginning of loop
SHR BX, # 1 \ send 0'th bit of n to CF
 \ and shift right 1 place
RCL DX, # 1 \ shift n' left and
 \ move CF into 0'th bit of n'
LOOP \ CX=CX1, loop if CX 0.
PUSH DX \ leave result on stack
NEXT ENDCODE \ terminate definition

An assembler written in Forth is simple because the mnemonics are actually
IMMEDIATE words that execute during assembly, placing the appropriate operation
codes in the parameter field of the word being defined. In the FPC assembler the
LOOP mnemonics (LOOP, LOOPZ, LOOPNZ, etc.) expect a number on the stack---
which is actually the address they loop back to (or not, depending whether an
appropriate condition is satisfied). This can be supplied by an explicit label or, as
in the above example, we may simply say HERE, which places on the stack the
address of the next piece of code to be assembled; this is the very point we want to
loop back to, hence LOOP enters the Intel opcode for LOOP, together with that
address.

We now enter the subroutine from the keyboard and test the result.

CODE STIB ok
POP BX ok
POB CX POB <WHAT?

Oops! A typo, do it again. Just in case, FORGET from STIB on:

 22

FORGET STIB ok
CODE STIB ok
POP BX ok
POP CX ok
XOR DX, DX ok
HERE ok
SHR BX, # 1 ok
RCL DX, # 1 ok
LOOP ok
PUSH DX ok
NEXT ok
ENDCODE ok

This all looks like it entered correctly---at least the assembler did not burp. The
proof of the pudding, however, is in the eating:

4 7 STIB . 14 ok
4 14 STIB . 7 ok

Eureka! No warts this time.

If an assembly language version of STIB were needed for linking with a BASIC or
C program, some minor modifications would be necessary:

§ the comments would have to be preceded with a semicolon ; rather than

Forth's traditional backslash \
§ the word HERE must be converted to a looplabel
§ a standard header must be added, and the definition termination also changes.

The final result, suitable for a typical stand-alone assembler, is:

Code segment word public 'CODE' ; define the code segment, assume cs:
Code public STIB ; allow any routine to call it
 STIB proc near ; reverse bitorder
 POP BX ; get n
 POP CX ; get # of iterations
 XOR DX, DX ; zero n'
HERE: ; label beginning of loop
 SHR BX, 1 ; 0'th bit CF, shift right
 RCL DX, 1 ; n': shift left, CF 0'th bit
 LOOP HERE ; CX=CX1, loop if CX 0.
 PUSH DX ; leave result on stack
 RET ; return from function call
 STIB endp ; terminate definition
Code ends
end

 23

Dr. Noble is Professor of Physics at the University of Virginia.
Of special interest to UK members with long memories will be his design for an add-on
AMD 9511 32-bit FP math co-processor board for the Jupiter Ace back in 1983. The
commissioning company and Jupiter Cantabs both folded about the same time. The
whole thing, from design to delivery, only took 3 weeks.

 24

Alan J M Wenham
01932 786440

101745.3615@compuserve.com

Vierte Dimension 2/01
Alan Wenham

General

 Advertisements for both FIG UK and the Dutch Forth group
appear in this issue.

Two letters appear from Ulrich Paul, the first of which
discusses whether or not Forth is broadly usable (making
comparisons with C, availability of standard libraries, strengths
and weaknesses). This is all valuable controversial material.
The second concerns his word REORDER which he built ten
years ago and which has found no popularity. This seeks to be
a general word which replaces the various stack manipulation
words SWAP, DUP, OVER, etc. with one word REORDER which
knows what to do by analysis of the stack comment eg. (aabc
-- abc). Relevant URLs for this are
http://www.paul.de/downloadables/index.htm and
http://www.paul.de

Obituary for Claude Elwood Shannon

Fred Behringer

behringe@mathematik.tu-

muenchen.de

Fred reviews some of the work of this great mathematician,
father of switching algebra, reliability theory, and information
theory.

A simple PostScript printer driver for bigForth

Bernd Beuster

bernd.beuster@epost.de

In bigForth large parts of the operating system are written in
block format. Under Linux, printing of block data is difficult.
PostScript data are easier to manipulate and Bernd offers a
Forth program for conversion.

Alan provides a look at the latest issue of the German FIG
magazine. To borrow a copy or to arrange for a translation of an

individual article, please call Alan.

 25

Forth program for conversion.

Calculation with guaranteed accuracy

Christoph Poeppe

This originally appeared in September 2000 in the German
version of Scientific American.

All combinations of k 1's in an n-bit word in high level Forth
tion " is the scalar product. 1000 pairs of floating point
numbers are Fred Behringer respectively multiplied with one
another and the total added up; it is then easy to cancel out
and come to a total error. An extended intermediate register,
which finishes the task in fixed point arithmetic, is the answer.
The author discusses the vector arithmetic co-processor
XPA3233.

All combinations of k 1's in an n-bit word in high level Forth

Fred Behringer This has already appeared in an English version in Forthwrite
111.

All's well that ends well!

Rainer Saric

Rainer.Saric@t-online.de

The author describes a control program for a process robot in
the chemical industry. The robot supplier required too high a
fee for development of the software and the author was able
to prepare a good functional program with the aid of Forth in a
short time and for much less money. His work was not
rewarded by payment but the robot manufacturer took him
into their employment.

Java Beans

Joerg Staben The author reports on code recycling. Recycling not by
detailed examination and changes in the original text, but
visually with the mouse and drag-and-drop through the picking
out of standard separately bundled components.

 26

Reviews

Fred Behringer

behringe@mathematik.t

u-muenchen.de

Fred summarises the content of Forthwrite 110 and FigLeaf 24.

Content addressable memory and Forth

Ulrich Paul

upaul@paul.de

CAM, consequently associative storage, is only about three times
as expensive as usual SRAMs and therefore affordable. One
specifies some contents and obtains the addresses wherein the
contents reside. How can one apply this in Forth? The author
presents a PostScreen language (analogous to PostScript) and
makes clear that CAMS, in conjunction with Forth can be well
implemented.

From the big Teich

Henry Vinerts

translated by Thomas

Beierlein

Henry reports on the January meeting of Silicon Valley FIG US.
FIG US is not quite dead.

(ANS-Forth) Source code or (Java) component. What now?

Joerg Staben Investment: Data expenditure, presentation of final data,
calculation of expenditure period. Should one very quickly create
a small program (in Forth) to do this or should one use a search
engine on the Internet to find already completed components?
Through ANS-Forth standardisation and with Win32Forth there is
no longer a problem. However, with Java beans it may be even
easier than with any Forth.

Karatsuba - Pt 1

Martin Bitter

martin.bitter@forth-ev.de

To multiply two double-length numbers together one usually
needs four multiplications. Each double-length number is made
up of two components and each one must be multiplied by each
component of the other number. Of course there will also be a
couple of additions. If one introduces specific redundancies and
combines specific additive constituents, one arrives, by use of the
Karatsuba algorithm, at three multiplications. Of course the
number of additions is greater. For very large numbers the
advantage is notable. Martin explains the relationship and sets out
a Forth program.

 27

Meta riddle. Playing around with the notion of "All"

Fred Behringer Can this riddle be solved? An answer is expected for VD 4/2001.

“Quikwriter” Project Launch

The July issue of Forthwrite published messages on a requirement for one-
handed text input from people with little finger mobility and some ideas
which look promising.

Jenny Brien reports that the need is still great and the task is more than
one person can manage.

I am pleased to announce that Jeremy Fowell will be trying to turn this
into a collaborative project between FIG UK members, involving design,
software, hardware and testing.

Jeremy’s first step is to divide the project into manageable tasks and we
will use the mailing list that Graeme Dunbar organised for F11-UK to
discuss the issues and keep things moving forward. The project may
involve the F11-UK control board, so Jeremy will be contacting members
that have bought these kits to seek their support. There will certainly be
tasks too for members without kits, so bear in mind that this is a deserving
cause and please volunteer your services to Jeremy (contact details at
back).

 28

Dutch Forth Users Group

Reading Dutch is easier than you might think. And as Forth is an
international language, reading Dutch code is easier still for a Forth

enthusiast. Are you interested? Why not subscribe to

HCC-Forth-gebruikersgroep

For only 20 guilders a year (£6.30), we will send you 5 to 6 copies
of our "fig-leaf" broadsheet 'Het Vijgeblaadje' . This includes all our

activities, progress reports on software and hardware projects and
news of our in-house products.

To join, contact our Chairman:
 Willem Ouwerkerk
 Boulevard Heuvelink 126
 6828 KW Arnhem, The Netherlands
 E-Mail: w.ouwerkerk@kader.hobby.nl

The easiest way to pay is to post a 20 Guilder note direct to Willem.

 29

Chris Jakeman

cjakeman@bigfoot.com

Did you Know?
– smart cards

While other parts of Forthwrite bring you all the news and the latest ideas and
developments, the Did You Know? section highlights achievements in Forth,

both recent and historical (taking care always to distinguish hearsay from
attested fact).

A subset of embedded systems that Forth Inc. has tried very hard
(unfortunately without significant success) to penetrate is
programming smart cards. This is an extremely difficult and arcane
art, but one in which unit cost and power consumption are extremely
critical.

Consider program size: the cost of enlarging program memory
in a card is ~$2/card (depending on a lot of factors). This means the
cost of your cards is going from maybe $5 ea to $7 ea, or a 40%
increase. Cards are typically issued in quantity, say, 30 million. This
should get your attention!

Keycorp, an Australia-based but global company, used Forth
to program its cards for a number of years. They gave it up a couple
of years ago because the negative press about Forth turned off
customers. We are currently working with a group at Atmel on a
similar card system.

But over the same period Sun has spent ~$20M promoting
Javacard, which is wildly unsuitable (requires cards costing up to
~$30 ea.) but is catching on because of the investment in promotion,
Sun's generally strong reputation in the financial community, and
Java's general popularity. Mere technical
superiority has trouble competing with this!

Source – Elizabeth Rather, Forth Inc

 30

Dave Pochin
01905 723037

davep@sunterr.demon.co.uk

Win32Forth Fonts
Dave Pochin

Dave Pochin continues his series on mastering Windows from Win32Forth.
April’s issue looked at 6 stock fonts whereas this issue considers adjustments

for any font.

There’s a change! A direct title. For me this is heavy stuff, the result of many bad Forth
days, visits to the library and a fair measure of sheer stupidity.

To work!

“A font object is created like this; Font MyFont
You then can change its parameters; TRUE Italic: MyFont
Then you can create the font for use; Create: MyFont

Once the font has been created, it must be selected into a DC (Device Context) before
any characters can be displayed in the font. You can examine the demo program
WINBROWS.F for an example of how to create a font.”

This is a quote from one of two entries in the Win32For.prv file dated Aug 23rd 1996, so

the file WINBROWS.F is an essential
reference, as is the list of fonts
available from the
Display/.fonts menu item in
the console window and the file
FONTS.F. The listing given below
is just an abstraction of the
relevant parts of WINBROWS.F and
all is fairly straightforward.

So what is the problem ?
Regrettably “the devil is in the
detail”; there are many unfamiliar
terms to master and thirteen
parameter settings to consider.

Changing the parameters by trial
and error just doesn’t work - well
not often. There are some rules

and guidelines to follow. I don’t claim to have found them all or to fully understand
those that I have found, but the following notes may save you a bit of time.

Whatever you do, if Windows doesn’t like your font, it will substitute what is considered
to be a good match.

To re-create these samples, load the code and enter DEMO

 31

In the .fonts list of Win32Forth, the column headings

ht wide esc ... Cp q fp
relate directly to the items

lfHeight lfWidth lfEscapement ... lfClipPrecision lfQuality
lfPitchAndFamily
in the record LOGFONT in file FONTS.F.

Height, Width.
lfHeight, lfWidth - Raster fonts are only scalable by multiple integers, the height up to
8x and the width up to 5x, according to the text books. But MS Sans Serif will scale by
20x, go on try it!
Raster fonts will not scale down.
True Type fonts will scale continuously.

Escapement (esc) (0 - 3600)
lfEscapement specifies the angle in tenths of a degree between the horizontal and the
baseline of the printing, as in the last line of the figure.

Orientation (ornt) (0 - 3600)
lfOrientation specifies the angle in tenths of a degree each character is rotated about
the line of printing, so you can invert characters by setting lfOrientation to 1800; at
least you could if it worked ! The texts say that this parameter is ignored by TrueType
fonts, but I haven’t had any success with the Non-TrueType fonts either. I suspect that
there is a flag that needs setting buried too deep down in Windows for me to reach.
However in the file DC.F which has charge of all the printing routines, there is a font
created with the orientation set to 900.

Weight (wt) (0 - 1000)
lfWeight is used to give printing effects like bold. Windows uses many pre-defined
identifiers with strange names, most are easy to guess and you can often use them instead
of the numerical values. E.g. FW_BOLD is 700 and FW_NORMAL is 400.

Italic, Underline and StrikeOut (I U S) (True/False)
lfItalic, lfUnderline and lfStrikeOut , apart from their normal uses, provide
suitable parameters to start experimenting.

Character Set (set)
lfCharSet - The only values used in .fonts are 0 (ANSI_CHARSET), 2 (
SYMBOL_CHARSET) and 255 (OEM_CHARSET). It’s easy to forget to specify ‘2’ when you
want a novelty font like Symbol or CommonBullets.

OutPrecision (p) (0 - 7)

 32

lfPrecision is used to vary the way Windows matches your font specification to those
available.

ClipPrecision (cp)
lfClipPrecision determines how a character is shown when it is partially outside the
area available.

Quality (q) (0 - 2)
lfQuality - All the fonts listed in .fonts have this value set to 1 (DRAFT_QUALITY).
Try 0 (DEFAULT_QUALITY) or 2 (PROOF_QUALITY).

PitchAndFamily (fp)
lfPitchAndFamily is a combined parameter. A look at the listing shows that it is in
hexadecimal. The low four bits set the Pitch and the upper four set the font Family. For
both the Pitch and the family use either the hex values or the Windows identifiers.
The Pitch part is easy, use either 0x00 (DEFAULT_PITCH), or 0x01 (FIXED_PITCH) or
0x02 (VARIABLE_PITCH), and if using a TrueType font remember to add ‘0x04 or’ as in
the listings.

The Family part really needs referral to a textbook. Basically the characteristics of
each family depend on the design of the font. In the various listings you will find most of
the Windows identifiers, such as :-
0x00 FF_DONT_CARE, 0x10 FF_ROMAN, 0x20 FF_SWISS, 0x30 FF_MODERN, 0x40
FF_SCRIPT and 0x50 FF_DECORATIVE.

Getting the PitchAndFamily wrong is a very good way of allowing Windows to use
its best match powers. Even trying to ‘OR’ all the combinations together doesn’t always
work either. You can always check your results by looking at the required font in another
application, such as a word processor or by using the Character Map in the System Tools
file.

And finally, do delete all your created fonts in either WM_OnDone or WM_Close, see
listings.

\ FigFonts.F Listing for 'Win32Forth Fonts'.

\ Refer to files DC.f, Fonts.f, WinBrowse.f and Win32For.Prv
\ Examples of Fonts

anew program

\ Define an Object that is a child object of the Class "Window".
:OBJECT Fontdemo <SUPER WINDOW

ButtonControl Button_1 \ Declare a button

Font aFont \ Create a object of the class font

 33

Font bFont \ and another

:M SetScreenFont: (a1 n1 --)
 s" Impact" SetFaceName: aFont
 s" CommonBullets" SetFaceName: bFont
 ;M

:M SetMyFont: (font-handle --)
 SelectObject: dc drop
 ;M

:M ClassInit: (--) \ Things to do at the start of window creation.
 ClassInit: SUPER \ Do anything the class needs.
 \ set the default font type for printing
 SetScreenFont: self
 24 Height: aFont
 true Underline: aFont
 VARIABLE_PITCH 0x04 or FF_SWISS or
 PitchAndFamily: aFont

 2 CharSet: bfont
 30 Height: bFont
 14 Width: bFont
 FW_NORMAL Weight: bFont
 VARIABLE_PITCH 0x04 or FF_MODERN or FF_DECORATIVE or
 PitchAndFamily: bFont
 ;M

:M ExWindowStyle: (-- style)
 ExWindowStyle: SUPER
 ;M

:M WindowStyle: (-- style) \ Inherit the style from the class.
 WindowStyle: SUPER \ See Window.f
 ;M

:M WindowTitle: (-- title) \ Title for the window.
 \ Example of Forth word z"
 z" Non Stock Fonts "
 ;M

:M StartSize: (-- width height) \ Set width and height of window
 660 180 \ See Window.f
 ;M

:M StartPos: (-- x y) \ Set the screen origin.
 80 100 \ See Window.f

 34

 ;M

:M Close: (--) \ Do anything the class needs.
 Delete: aFont \ Delete the fonts no longer needed
 Delete: bFont
 Close: SUPER
 ;M

:M On_Init: (--) \ Add a button. See Controls.f
 IDOK SetID: Button_1
 self Start: Button_1
 480 140 70 25 Move: Button_1
 s" CLOSE" SetText: Button_1
 GetStyle: Button_1
 BS_DEFPUSHBUTTON OR
 SetStyle: Button_1
 Create: aFont
 Create: bFont
 ;M

:M On_Paint: (--) \ screen redraw procedure

 \ Output the first text string.
 \ Example of the Forth word s" and see the method TextOut: in dc.f
 \ Note TextOut: requires the length of the string.

 Handle: aFont SetMyFont: self
 20 30 s" aFont AaBbCcDdEeFfGgHhIiJjKkLl" TextOut: dc

 Handle: bFont SetMyFont: self
 20 80 s" bFont AaBbCcDdEeFfGgHhIiJjKkLl" TextOut: dc
 ;M

:M WM_COMMAND (hwnd msg wparam lparam -- res)
 over LOWORD \ fetch the identity of the Ok button which is in wParam
 case \ case .. of .. endof .. endcase is a Forth defined
 \ switch construction
 IDOK of \ IDOK is the identity of Button_1
 Close: self
 endof
 endcase
 0 ;M

;OBJECT \ Complete the definition of the new object.

: DEMO (--)
 Start: Fontdemo ;

Dave provides downloadable version of this and all his Forthwrite articles at
http://www.sunterr.demon.co.uk/

 35

Chairman Jeremy Fowell, 11 Hitches Lane, EDGEBASTON B15 2LS

 0121 440 1809 jeremy.fowell@btinternet.com

Secretary Doug Neale, 58 Woodland Way, MORDEN SM4 4DS

 020 8542 2747 dneale@w58wmorden.demon.co.uk

Editor Chris Jakeman, 50 Grimshaw Road, PETERBOROUGH PE1 4ET

 01733 753489 cjakeman@bigfoot.com

Treasurer Neville Joseph, Marlowe House, Hale Road, WENDOVER HP22 6NE

 01296 62 3167 naj@najoseph.demon.co.uk

Webmaster Jenny Brien, Windy Hill, Drumkeen, BALLINAMALLARD,

 Co. Fermanagh BT94 2HJ

 02866 388 253 jennybrien@bmallard.swinternet.co.uk

Librarian Graeme Dunbar Electrical Engineering, The Robert Gordon University,

 Schoolhill, ABERDEEN AB10 1FR

 01651 882207 g.r.a.dunbar@rgu.ac.uk

Membership enquiries, renewals and changes of address to Doug.
Technical enquiries and anything for publication to Chris.
Borrowing requests for books, magazines and proceedings to Graeme.

 For indexes to Forthwrite, the FIG UK Library and
 much more, see http://www.fig-uk.org

 Payment entitles you to 6 issues of Forthwrite
 magazine and our membership services for that

 period (about a year). Fees are:

National and international £12
International served by airmail £22
Corporate £36 (3 copies of each issue)

 Your membership number appears on your envelope
 label. Please quote it in correspondence to us. Look out

for the message "SUBS NOW DUE" on your sixth and last issue and please complete
the renewal form enclosed.
Overseas members can opt to pay the higher price for airmail delivery.

 Copyright of each individual article rests with its
 author. Publication implies permission for FIG UK to

reproduce the material in a variety of forms and media including through the Internet.

FIG UK Web Site

FIG UK Membership

Forthwrite Deliveries

Copyright

 36

FIG UK Services to Members

Magazine

Library

Web Site

IRC

Members

Beyond the
UK

Forthwrite is our regular magazine, which has been in
publication for over 100 issues. Most of the contributions
come from our own members and Chris Jakeman, the Editor,
is always ready to assist new authors wishing to share their
experiences of the Forth world.

Our library provides a service unmatched by any other FIG
chapter. Not only are all the major books available, but also
conference proceedings, back-issues of Forthwrite and also of
the magazine of International FIG, Forth Dimensions. The price
of a loan is simply the cost of postage out and back.

Jenny Brien maintains our web site at http://www.fig-uk.org. She
publishes details of FIG UK projects, a regularly-updated Forth
News report, indexes to the Forthwrite magazine and the library
as well as specialist contributions such as “Build Your Own
Forth” and links to other sites. Don’t forget to check out the
“FIG UK Hall of Fame”.

Software for accessing Internet Relay Chat is free and easy to
use. FIG UK members (and a few others too) get together on
the #FIG UK channel every month. Check Forthwrite for details.

The members are our greatest asset. If you have a problem,
don’t struggle in silence - someone will always be able to help.
Do consider joining one of our joint projects. Undertaken by
informal groups of members, these are very successful and an
excellent way to gain both experience and good friends.

FIG UK has links with International FIG, the German Forth-
Gesellschaft and the Dutch Forth Users Group. Some of our
members have multiple memberships and we report progress
and special events. FIG UK has attracted a core of overseas
members; please ask if you want an accelerated postal delivery
for your Forthwrite.

