

 ISSN 0265-5195

news events people reviews projects programming

November
2001

Issue 114

FIGUK magazine:

From the ‘Net
An Interview with Tom Zimmer

A Call to Assembly
Charles Moore Interview on Slashdot

Vierte Dimension 3/01
Did You Know? – Large Forth Projects

Tiny Open Firmware

Deutsche Forth-Gesellschaft

Would you like to brush up on your German and at the same
time get first-hand information about the activities of fellow
Forth-ers in Germany?

Become a member of the German Forth Society for 80 DM
(£28) per year (32 DM (£11) for students and retirees). Read
about programs, projects, vendors and our annual conventions in
the quarterly issues of Vierte Dimension.

For more information, please contact the German Forth Society at the e-mail address
SECRETARY@ADMIN.FORTH-EV.DE

or visit http://www.forth-ev.de/
or write to
 Forth-Gesellschaft e.V.
 Postfach 161204
 18025 Rostock
 Germany
Tel.: 0381-4007872

euroFORTH 2001 …………..…..... 21
AGM Report………………………... 22

Forth News ………………..………. 2
Did you Know?
– Large Forth Projects ………….. 34

Tiny Open Firmware.….……….… 5

From the ‘Net ……………………... 11
Vierte Dimension 3/01 …………... 31

An Interview with Tom Zimmer .. 12
Charles Moore interview on Slashdot

 … 30
Letters ……………………………… 35

A Call to Assembly 2/3 ………….. 23

news

reviews

programming

people

events

November
2001

Issue 114

 1

Editorial
Feedback is always welcome and our
contributors are especially keen to get some
response to their efforts, so recent
comments on “NEAR Spacecraft”, “A Call to

Assembly” and “Arithmetized Logic” recently were well received.

I’m pleased to report that this issue includes three more
contributions from non-members – these items widen our
horizons and help FIG UK contribute to the wider community of
Forth users. However the pages of Forthwrite remain open to all
and we are especially keen to encourage new members to
venture into print.

Although Forthwrite is the most tangible service from FIG UK, it
is only one of several:
- IRC takes place every month (the only regular Forth chat

session anywhere) with a healthy mix of members, non-
members, UK and overseas.

- Our web site is the primary route to FIG UK membership and
Jenny reports about 1,000 visitors a month.

Welcome to new member John Phythian from Kettering and
welcome back to old member John Olwoch.

PS. Don’t forget the monthly IRC session. Our next one is
Saturday 1st December on the server “IRCNet”, channel
#FIGUK from 9:00pm.

Until next time, keep on Forthing,

 2

Forth News

People

Charles Moore Interview
The “Slashdot Interview” announced in the
previous Forth News has taken place; see
the report by George Morrison elsewhere
in this issue.

Commerical Systems

Benchmark Corrections
In the previous issue, we exchanged the
results for iForth and SwiftForth. The
correct version is given below.

MPE's VFX Forth for Windows build
3.40.0685 is available for download. A
summary of the optimisation results was
posted by Stephen Pelc.

Primitives using no extensions, test time
(ms) including overhead for VFX3.4,
iForth and SF2.0

 1.Eratosthenes sieve
 2.Fibonacci recursion
 3.Hoare's quick sort
 4.Generate random numbers
 5.LZ77 Comp.
 6.Dhrystone

Total time in msecs:
 1,893 for MPE ProForth VFX 3.40.0686
 5,445 for iForth by M. Hendrix, v1.12.1121
16,103 for SwiftForth 2.00.3

Tiny Open Firmware
Brad Eckert, author of the free Tiny Open
Firmware is offering more demonstration
hardware for Tiny Open Firmware (see the
article in this issue). Tokenized boot code
on expansion modules runs on both 8051
and 68331 platforms. At startup, the
board (whichever processor it's based on)
evaluates tokenized driver code resident in
a serial EEPROM in each

module. Tokenized code gets translated to
native machine code and linked into the
application at startup. More info at:

http://www.tinyboot.com/eval31.html

Non-commercial
Systems

Forth now available for .NET
The Forth language is now available for the
.NET platform. Valer Bocan (currently
completing a PhD at Timisoara, Romania)
has released his Delta Forth compiler at

http://www.dataman.ro/dforth

Delta Forth .NET requires Microsoft's
.NET framework to be installed and
generates .NET executables.

FICL Upgrade
FICL release 3.01 is now available for
download at

http://sourceforge.net/project/

 3

showfiles.php?group_id=24441

This release includes contributions and bug
fixes. Thanks to Larry Hastings for the
optional FILE wordset. Larry also did the
very nasty task of moving all of those static
pointers into FICL_SYSTEM so that you
can create and destroy FICL_SYSTEMs
in any order. Ye Xiaofeng contributed a
SWIG adaptation for FICL - this
generates your wrapper code for you
automatically, saving your wrists. Thanks
also to David McNab and Leonid Rosin
for bug fixes.

FIJI

FIJI, the ForthIsh Java Interpreter, is now
a SourceForge project. The current
release is 1.2 Beta. See
http://fiji.sourceforge.net

kForth
A new release of kForth (Rls. 9-26-2001)
has been announced by Krishna Myneni
for Linux and Win32. It is available at

http://ccreweb.org/software/kforth/kforth.html

PetForth
This is a new system based on eForth and
close to ANS developed by Petrus
Prawirodidjojo. See
http://www.geocities.com/petrusp_id/petforth.zi
p

Forth Resources

Forth Books For Courses
"Forth Programmer's Handbook" and
"Forth Applications Techniques" are
available from Forth Inc.
(http://www.forth.com). McMaster
University, Ontario, have bought 67
copies, presumably to support a new
course.

Improved FTRAN
Julian Noble has posted an improved
version of FRAN on his computational
methods page at

http://www.phys.virginia.edu/classes/551.jvn.fall
01/

under "Forth system and example
programs".

You can now evaluate an expression
interactively as in:

 fvariable x fvariable y ok
 3e0 x f! 4e0 y f! ok
 f$" x*(x^2+y^2)" f. 75.0000 ok

Also included is a limited ability to handle
complex variables. The code conforms to
ANS Forth and has been tested on
Win32Forth v4.2.

Russian FIG
Michael L. Gassanenko reports that a
"translate" button has been added to the
RuFIG site at

http://www.forth.org.ru

This allows you to view the site in English,
French or German translation. The quality

 4

of translation has “improved from syntactic
ramblings to lexical misuse”.

Forth Primer
Julian Noble has converted his on-line
primer, “A Beginner's Guide to Forth”, to
HTML format. It now has a hyper-linked
table of contents and links to manoeuvre
around internally.

It now includes a section on actually
writing a program, from start to finish (as
opposed to defining words that perform
simple tasks).

Win32Forth Fan Club
John Peters has launched an on-line fan
club for Win32Forth at

http://go.to/win32forth/

In addition, John is organising a
collaborative project to continue
development of Win32Forth, WinView
and tools based on it. John can be reached
at japeters@pacbell.net

FIG UK mailing list
The FIG UK mailing list dedicated to users
of the F11-UK processor kit has moved.
Previously hosted at Robert Gordon
University, Graeme Dunbar has now
moved this to the group FIG-Forth-UK
hosted at http://groups.yahoo.com.

FIG UK is grateful to the university and
Graeme Dunbar for providing and
maintaining this service since its inception.

 5

Brad Eckert
brad@tinyboot.com

Tiny Open Firmware
- Extensibility for Small Embedded Systems Brad

Eckert

Most of us have heard of Open Firmware – see November 2000 issue
– which provides a “plug and play” facility for all Apple, Sun and Power
PC computers. Brad Eckert has developed “Tiny Open Firmware” to

provide similar facilities for small embedded systems.

Introduction
Today’s microprocessor-based electronic and electromechanical equipment can
often be designed to accommodate add-on accessories. Add-on hardware must
either live with the design constraints of the original firmware or provide a means
of upgrading firmware in the field. Ideally, the add-on hardware should be able to
patch the application at run-time so as to take advantage of the new hardware.

A common way to patch code at run-time is to
put hooks (function pointers in C) at strategic points in
the application. These hooks point to function pointers
in RAM, which can be patched. For example, you might
decide that putch may change, so you define a default
ROM version DefPutch and then declare

void (*putch)(byte) = DefPutch;
To define a patch, you can compile a new version of
putch for an absolute location in memory. To patch
the ROM code, you'd load the patch code into the RAM
location you compiled for and then change the function
pointer for putch to point to the new code.

This method can be used with assembly too. Either way, there are serious
drawbacks:

§ The patch code is native code, and on many platforms, absolute code. This

greatly complicates the use of multiple add-ons. Plus, you have to freeze the
ROM if the add-on code is to re-use sections of ROM code.

§ You need to provide enough hooks to address every anticipated need.

Invariably, a need comes up that you didn't think of, so the add-on code has to
replicate a big chunk of the application in order to work. This bloated code
eats up system resources that may already be scarce.

§ Changing the hardware design or moving to a new processor will break

existing add-on code. Accessories in the field that can't practically be updated
will rendered obsolete.

See www.tinyboot.com

for Firmware Studio, a

public-domain

development environment

based on Tiny Open

Firmware and commercial

evaluation boards for

68331 and 8031

microcontrollers.

 6

Besides flexibility in the interface between add-on code and application, you also
need a way to handle run-time variations and provide extensibility. If you want to
enable the end user to write add-on code, you can't just give them your source
code and tell them to buy a compiler. An interpreter such as Lua, TCL or Java
could provide a virtual machine to isolate add-on code from the implementation
details of your application. But interpreters are slow and usually bulky and don't
really address the interface issue. Better to compile add-on code at start-up.

One solution is to implement a computer language (preferably not a new
one) in a way that solves these problems. A late-binding mechanism that renders
all subroutines patchable at run-time would solve part of the extensibility
problem. Any subroutine could be patched with a relatively small amount of
machine code. And, although a token interpreter offers some extensibility, real
extensibility requires removing the wall between application and add-on code.

Forth to the Rescue
Much flexibility can be attained if add-on code is compiled at boot-time. The
compiler needs quickly to translate source code in the add-on module to machine
code at start-up. It also needs to be able to execute commands that bind the new
firmware features into the application. The combination of run-time compilation
and immediate execution renders the application extensible.

installation instructions reduce to
“plug it in”

Extensibility is a key feature of the Forth programming language. Forth is an
industry-proven computer language originally developed for real-time control.
Forth is used by the IEEE1275 "Open Firmware" standard to boot up millions of
Sparc and PowerPC workstations. On a workstation motherboard, Open Firmware
probes the busses for add-on cards and loads driver code from a ROM resident on
the card. The driver code is in tokenized form, meaning that Forth keywords are
represented by numbers instead of ASCII strings. The most often used Forth
keywords are represented by one-byte tokens, leading to very compact code.
Semantically, it's still processor-independent Forth source code.

A dialect of Forth called Tiny Open Firmware (TOF) implements the
features of IEEE1275 useful to small embedded systems. TOF uses subroutine/
native-threading in which Forth keywords (tokens) are converted to subroutine
calls or in-line machine code. TOF adds an extra level of indirection to each
subroutine call in the form of a RAM-based jump table. Instead of calling a
subroutine directly, compiled code calls into an array of jump instructions. For
each subroutine call the extra overhead is one jump instruction. On some
processors there is a pipeline stall penalty, but it's still an efficient way to achieve
late binding.

The RAM-based jump table, called the Binding Table, is initialized from
ROM at start-up. You can think of a TOF-based system as an object with hundreds
or thousands of late-bound methods. You can patch any ROM-based subroutine
by putting new code in RAM and changing the appropriate binding table entry to
jump to it. All code that uses it will be redirected to the new version. Besides

 7

giving the application fine-grained patchability, the binding table also provides
rapid compilation.

Implementing TOF
A freeware Windows program called Firmware Studio implements TOF for several
processors. It's available at http://www.tinyboot.com . Full source is included.

TOF uses two compilation modes: static and dynamic. Both compile CALL
instructions. In static mode, the destination is the address of the word. This is
typical of subroutine-threaded Forths. In dynamic mode, the destination is
computed from the word's execution token (xt) so as to compile calls into the
binding table. Most words are compiled in dynamic mode.

Tokenized Code
Firmware Studio uses an ordinary Forth interpreter to compile Forth code onto
the host PC and to compile machine code onto the target processor. It also has a
specialized interpreter called a tokenizer. Instead of compiling machine code, this
converts Forth keywords into tokens for the target processor. The resulting
tokenized code is semantically equivalent to its textual Forth source, but is
stripped of comments and stored in a compact form.

source … stored in a compact form
The tokenizer is the part of TOF that runs on the host PC. The host knows

the token assignments of Forth keywords and can compile tokenized code.
Tokenized code may be used as boot code for add-on hardware.

When the user interacts with the target hardware, tokenized code is sent to
the target over a communication link for immediate evaluation. Typically, console
input is tokenized and sent to a free part of RAM in the target. Then a program
resident in the target evaluates the tokenized code. Tokenized code may also be
stored in the program ROM to archive temporary features so as to pack more
features into a space-limited application.
The Tokenizer is very similar to a typical Forth interpreter and the diagrams below
show these side-by-side for comparison. Token values between 0x20 and 0xFF are
encoded using one byte, others are encoded using two bytes. Two-byte values
concatenate the lower five bits of the first byte with all of the second byte for a
possible range of 0x0000 to 0x1FFF.

Host words are parts of the tokenizer resident in a special wordlist. They're
mostly defining words. The tokenizer has a state flag, which defining words use to
keep semantic consistency with the original Forth source.

When a ROM image is built, token numbers are assigned to word names.
These token assignments can be saved to a file. A token file is really an interface
specification that connects add-on code to ROM routines. This file can be used
instead of the original source code to set up token assignments. It can be given
away without revealing proprietary source code, enabling third parties to write
add-on code.

 8

Tokenized code serves as input for the evaluator. This is TOF's version of the
classical Forth interpreter. Instead of feeding it textual source, you feed it
tokenized source. This source can come from a host PC, non-volatile memory in
add-on peripherals, program ROM, or any other data source available at run-time.

The Evaluator
The evaluator is a Forth program resident on the target hardware. It

converts tokenized Forth source to machine code. The evaluator is like a
traditional Forth interpreter except that it computes the location of Forth words
instead of traversing a header list looking for them.

The evaluator uses the token value as an index into the binding table. This
index is used as the call destination for compiled words. Every word is preceded
by a header byte containing an immediate flag. To get this flag, the index is used
to extract the address of the code from its binding table entry and the byte
immediately before the code is fetched.

Yes

FForth Interpreter

Yes

Yes

No

No No

No

No

Get next input word

Search dictionary

Immediate
?

Compiling
?

Compile

 call or

in-line

Execute

word

Compile
code

for a
literal

Put
number

on stack

Start

Error

Word
found?

Yes

Is word a
number?

Yes

Compiling
?

 Yes

No

Compile

token

Encode

the number

Compile
token

for a literal

TTOF Tokenizer

Yes

No

No

Get next input word

Search dictionary

Start

Error

Word
found?

Yes

Is word a
number?

Execute

word

Host
word?

 9

Numbers are represented by an
immediate word like (LIT8) followed by
one or more data bytes. (LIT8) and similar
words fetch data from the input stream and
sign or zero extend it if necessary.

The evaluator fetches bytes
sequentially from the input stream until the
END token is executed. END causes evaluation
to end.
Here is a simple tokenized Forth word.
Words associated with the tokens E2, F0 and
F2 are immediate words.

E1 02 06 : STARS
4B 0
F0 DO
02 05 STAR
F2 LOOP
E2 ;

Token values between 0x1000 and

0x1FFF are regarded as relative tokens. The
evaluator subtracts 0x1000 and adds the
highest unused token value of the last
evaluation session. This has the effect of
mapping the relative tokens of each add-on
peripheral onto a different set of unused
absolute token values.

 Consider the case where your application's ROM has xt values up to
0x480, peripheral A has xt values ranging from 0x1000 to 0x1021, and peripheral
B has xt values ranging from 0x1000 to 0x1014. Peripheral A's words will be
mapped to the xt values 0x481..0x4A2 and peripheral B's words will be mapped
to 0x4A3..0x4B7.

 Putting it all together
Tiny Open Firmware removes the wall between application and add-on

code. Add-on boot firmware is free to invade the application and do anything it
wants, to any hardware or code that it wants. You control the add-on code, so you
know your guests are reasonably well behaved. The software equivalent of a
bouncer can keep out unknown code.

A typical system has some kind of expansion bus. At start-up, TOF probes
each module on the bus looking for boot code. If it finds it, the evaluator verifies
its boilerplate and checksum and then evaluates the boot code. TOF continues
probing the bus until all boot code has been evaluated.

Add-on modules usually aren't just generic hardware. They are designed to
supplement the application. As such, their boot firmware patches part of the
application to make use of the new hardware. A typical boot program defines

No

Yes

Yes

Token Evaluator

Yes

No

No

Get next token

Look up header

Immediate
?

Execute

word

Compile call
or in-line

code

Start

Done

Still
evaluating

?

Compiling
?

 10

driver code and an application extension for the new hardware, initializes it, and
links the code into the application.

The evaluator can handle boot code from multiple modules, each device
containing tokenized source that's compiled to native machine code at startup.
Installation instructions for the end user reduce to “Plug it in”.
For debugging, the tokenizer and evaluator together act as a normal Forth
interpreter. Keyboard input is tokenized by the host PC, sent to the target and
evaluated. The resulting output is read and displayed by the host PC. Since most
Forth code is inherently reentrant, the debugger has its own execution thread that
lets the application run while debugging is underway. TOF supports live
debugging with which you can probe and patch a live, running system.

Summary
Tiny Open Firmware brings self-installing plug-and-play hardware to small

embedded systems. A TOF implementation is small, typically under 32K for
68K/Coldfire and 20K for 8051 processors. Its efficient late-binding mechanism
renders all ROM-based routines patchable and enables rapid compilation of
processor-independent add-on code. Run-time compilation of add-on code
simplifies applications whose configurations will change as customers modify their
systems.

Brad Eckert holds a degree in Physics and is currently a Hardware/Firmware Engineer. He’s
been designing and programming embedded systems for about 15 years.

 11

From the ‘Net

“I Hate Forth”
Did any of you see this deliberately provocative article at
http://www.embedded.com by Jack Ganssle (July 31st)?

Fortunately his musings attracted some informed responses and the web site
published 14, almost all positive about Forth, from:

Tamara Cravit, Taylored Software
Ed Beroset, ABB Automation
Wil Blake, Embedded & Mobile Systems Inc.
Graham Smith, Programmer and FIG UK member
Steven R. Commer, Debitek
Elizabeth D. Rather, FORTH, Inc.
Michael Losh, American Systems Technology, Inc.
David Graham, Graham Automation, Inc.
Bob Applegate, Ulticom, Inc.
Don Warbritton, Ametek/Dixson
Dennis R. Miller, Philips Semiconductors
Tom Mazowiesky, Global Payment Technologies, Inc.
Troy Flowers, Iconn Wireless
Robert (Bob) E. Cronan, RiverDelta Network

“If you give someone a length of rope and they hang themselves with it, you
can hardly blame the rope. If someone's Forth code is unreadable, ineloquent
or unstructured, the fault is theirs--not Forth's.

I've been programming in Forth for 17 years. For embedded systems
applications, you just can't beat it.”

Steven R. Commer. Senior Systems Analyst, Debitek

 12

An Interview with Tom Zimmer
- Forth System Developer

Jim Lawless

Copyright 2000

If you've ever used a Forth compiler, chances are you've heard the

name Tom Zimmer. Tom's been a staple in the Forth community for a
couple of decades. Tom developed a number of Forth systems for
popular 8-bit microcomputers that dominated the home-computer
market in the 80's. Tom is the creator of the freeware Win32Forth

system.

What's your educational
background?
I received no formal programming
training. I graduated from high
school in 1968, long ago and far
away. I was interested in electronics
at the time, and I had a friend Dick
Cappels who bought me the
components for a computer, and told
me to go down to Wiley Elmar in
Sunnyvale CA. and pick up my new
computer.

The CPU was an RCA CDP-
1802, a static processor. It was
something of an oddity at the time,
most processors were dynamic, and
wouldn't run below about 500 kHz.
The 1802, being static, would run all
the way down to 0 Hz. I had wired
the 1802 with 1k of static memory
into a simple computer, and
programmed it in machine language.
It had three clock rates, single step,
10 Hz, and about 500 kHz.

My first exposure to
computers. After high school, I
worked for Pacific Telephone as a
COEM (central office equipment
man). That was in the days when job
names could specify a gender.

After a stint in the military, as

a communications controller, my
same friend hired me as an electronic
tech for a small company that built
the first video disk recorders. They
were nothing like you might imagine
today, being much larger, with many
custom mechanical parts.

The video recorders contained
a micro controller, that was
programmed in Forth by Mike
O'Malley at Berkeley. He did this
work on a consulting basis. He would
bring us an EPROM, we would plug it
in, and it would work. We were
always amazed when his code
worked, because he didn't have any
hardware to develop the code on; he
claimed to have some sort of
simulator that he used for testing.

Later Dick had me design a
hardware controller for a video disk
recorder that was not processor-
based, because Mike charged us
around one or two dollars a byte for
code, and we thought that was
expensive. So I designed the
controller. My first big hardware
design project.

I didn't have any formal
hardware education either, unless
you count a course in electronics in

 13

high school. Anyway, the controller
worked, and was even shipped in a
product, but it wasn't nearly as
trouble-free as Mike's Forth-coded
controller version, so we abandoned
the idea of using hardware alone to
control the recorder.

Anyway my life in electronics
and computers was sealed at that
point, and I have never looked back.

How did you first encounter
Forth?
I already mentioned my first Forth
exposure, but the first time I tried to
use it was later when I worked for
Calma. They built CAD workstations,
and I was hired to work in the
hardware diagnostics area. I obtained
a barely readable photocopy listing
of Forth for the 8080 processor. I
typed it into an Intel MDS (Micro
controller Development System),
assembled it, and got it to run.

I had no idea what Forth was
supposed to be, but I had heard that
it was good for interactive debugging,
and I was interested. It had within it
the concept of virtual memory, but
that was far beyond me at that point,
so I just stubbed that all out.

At this time, in the later
1970's, I hadn't even heard of the
Forth Interest Group (FIG), so I had
no contact with that group, or
anyone else in the Forth community.
I was just exploring this interesting
concept of an interactive computer
language.

Toward the end of my time at
Calma, I got a FIG listing of Forth for
the VAX, and got that to run. We
used Forth to write hardware
diagnostics. VAX Forth was quite a
challenge, because I could assemble
it, but I couldn't (or didn't know how
to) link it into VMS, the VAX
operating system, so I had to dig into

some of the system files, to extract
system call locations so I could
interface with VMS.

According to what I've seen on
comp.lang.forth, you had
developed (or co-developed) Forth
software for a variety of micro-
computers in the 80's. What
events led to your involvement in
the development of these
products?
I was certainly excited about Forth
after my experience at Calma. I
bought a Ohio Scientific computer,
which was 6502-based. I took the
8085 Forth I had evolved at Calma
and hand-translated it to the 6502
assembly language, so I could run
Forth on my Ohio Scientific. I was
very young at the time, and I don't
know why my wife even put up with
all the time I spent in my work room,
but I was so excited about Forth and
computers, she just couldn't squash
me, I guess.

Around 1979, I heard about
FIG, and Robert Reiling passed along
a FIG listing for the 6502. It looked
interesting and seemed to be
accepted by more people than my
own Forth was ever likely to be, so
Bob and I worked to get it working
on the Ohio Scientific. I think Bob
typed it in, then turned me loose to
get it running on the hardware.

So, I transitioned from my
own Forth to FIG-Forth around 1979
and moved forward. As various
manufacturers were releasing
personal computers in those days, I
would buy one, and dig into it and
develop a Forth for it. It was a way to
have fun, and to make a little money
at the same time.

The next personal computer
Forth I worked on was VIC Forth, for
the Commodore Vic-20. I can't

 14

remember which was next, 64Forth
for the Commodore 64, or Color
Forth for the Radio Shack Color
Computer. Vic-Forth was an 8k
cartridge, Color Forth was a 12k
cartridge and 64Forth was a 16k
cartridge. Each successive system had
more capability.

Why did you implement each as a
cartridge?
These computers didn't have disk
drives, so the only real alternative
was cassette. I had to use cassette to
do the development, but I was
interested in creating a Forth that
would be easy to learn and use, so
didn't want the user to have to deal
with cassette, except for data storage.
Later, in 64Forth, there were also
concerns about security, because
there were vendors selling cartridge
rippers. 64Forth included copy
protection that precluded running it
out of RAM. It had to reside in ROM,
or it would overwrite itself. Cruel,
but that was in the days before I
switched to making only public
domain systems.

Color Forth was a 6809
processor, and was based on a Forth
from the only copyrighted FIG listing.
It came from a vendor in Southern
california, but I can't remember his
name. Anyway, I made a contract
with him, to split royalties on Color
Forth, and it was released. 64Forth
was actually the most profitable, it
was distributed by HES (Human
Engineered Software) in Burlingame
Ca. I personally made about $25,000
in royalties from 64Forth, before
HES collapsed financially, still owing
me almost $9,000 in back royalties. I
didn't really care, I was very pleased
that 64Forth had sold so well. I
believe that they had a lot of
inventory that was passed around for

several years after that to various
Forth vendors, 'til there wasn't any
more interest.

Each of these products had a
fairly reasonable manual that I wrote
and HES spent a significant amount
of money on the packaging for
64Forth and VicForth, so they were
very attractive. I'm sure that
contributed significantly to their
popularity.

How did you go about publicizing
and marketing each Forth
product? Did you have contacts in
the industry at this time?
I didn't have any contacts, but in
those days, there was much less
software available, so I would just
contact a software publisher, and ask
them if they wanted to distribute my
software with their line. There was a
huge hunger for software.

Human Engineered Software
(HES) was a real developer, they
actually invested money into
packaging and advertising. They also
had contact with cartridge producers
that could do "Chip On Board", which
eliminated the need for ROM
packaging, keeping the production
cost low. They produced a very nice
package that was used for both
VicForth and 64Forth. I am sure that
the package alone was responsible
for some of the sales.

Had you mastered the assembly
languages for the variety of
microprocessors at the time? (
6502, 6809, etc.)
Assembly language is assembly
language is assembly language. If you
have seen one, you have seen them
all, with the possible exception of the
1802, which was very different from
all the others. I learned assembly

 15

language as I went along. Just buy
another book, and translate its
instructions mentally to the ones I
already knew.

Later at Maxtor, I was
employed as a diagnostics
programmer for testing their disk
drives. We used 8086s there; we
started with Laxen and Perry Forth
and developed Forths for running
diagnostics on the high-capacity disk
drives that Maxtor produced. Forth-
based software was used in a custom
networked environment, to burn-in
disk drives for 48 hours, and print
burn-in results. I worked there for
about three years, and developed
several public-domain Forths, with
names like zforth, tforth, hforth, HF,
ZF, and F-PC.

Have you written commercial
systems other than Forth
compilers?
Good question. For a while there it
seemed that all I was good at was
making Forth systems rather than
writing applications. I guess, to me,
Forth was an application. Over the
years, I have worked on several
applications, but they always seem to
be based on having to write a Forth
system first. I know that many people
disagree with this philosophy, but at
the time, I felt I needed to have
control of the development system.

Now that Visual C++ is so
prevalent, we can trust Microsoft to
provide the development system (I'm
kidding).

That's an interesting statement,
though. Do you think that the
younger programmers are missing
something in their education by
not being exposed to Forth?

Absolutely. Most people who are not
very familiar with Forth think it is just
a forgotten language of the past. The
same thing could be said about our
heritage, no matter which country we
were born in.

History is important for
several reasons, not the least of
which is what it teaches us about how
to deal with the future. Forth's most
important feature has little to do with
the fact that it is a stack language; it
has instead to do with the way it
interacts as a whole with the user.

Forth’s extensibility, structure,
modularity and very simple syntax
are key attributes that give the
programmer freedom to structure
solutions for problems in ways that
programmers of other languages
cannot understand or attempt.

Having access to the full
source for your development system
gives you the freedom to enhance, or
correct problems that the vendor
didn't consider. Freedom is very
important to me, as it should be to
everyone, you just have to
remember, that along with freedom,
comes responsibility.

Forth gives you the freedom,
and the power to mould solutions
that match the problem. It also gives
you the power to shoot yourself in
the foot, or in some other even more
sensitive area, so if you can't handle
the freedom and the power, then you
had better stay away from Forth.

Do you presently develop
software for a living? If so, what
kind of software?
Yes, I work at ThermoQuest, as a
programmer. I was hired by Andrew
McKewan to assist in porting a very
large DOS-based Forth application
into the Windows NT environment.
We looked at, and even bought the

 16

only commercial Forth for Windows
NT available at the time.

Unfortunately it wasn't very
mature at the time, and we did not
have access to the kernel source
code, so when we ran into bugs and
philosophy differences, Andrew
implemented his own 32-bit Forth
kernel one weekend. We got it
running using the commercial
vendors assembler, which we had a
license to use, but we never used any
of their source code. I am sure we are
guilty of using several of their ideas
though.

Anyway, Andrew brought the
Forth kernel into work and turned it
over to me for “expansion”. The
kernel started in the public domain,
and I never took it out of the public
domain during development. I was
always careful to separate the code
that was proprietary to my employer
from the public domain general-
purpose Forth system code.

An example of this is that,
since Win32Forth was a 32-bit Forth
system, we were faced with the
question of whether to convert all the
application source from 16-bit to 32-
bit. Since the application was several
megabytes, and we wanted it to be
reliable, we chose to leave it as 16-bit
and to write a 16-bit to 32-bit
translation layer between the Forth
and the application. This kept the
problems we had to face down to
compatibility issues and allowed easy
porting.

We also added a Windows
GUI to the application to make it
acceptable to the Windows market.
The port was completed from start to

actual product release in about 9
months, with an average of four
programmers working during that
time. Still a large task, but the
application proved to be very
reliable in the field.

One interesting note, is that
the translation layer had within it a
lot of debugging code to do range
checking on memory operations.
When we shipped the product, we
left the debugging code active,
because we weren't confident enough
that we had gotten out all the bugs.
Then a year later, when we release

the next version of the application,
we removed the range-checking and
suddenly the application was
amazingly faster, and still as reliable,
since we had worked out most of the
problems during that year. So
marketing used “much faster” as a
new feature.

Andrew McKewan, Robert
Smith and I were the primary
contributors, followed by Y.T. Lin,
and Andy Corsack. Later I talked Jim
Schneider into writing a full 486
assembler, which he donated,
completing the system. Andrew
added object-oriented programming
fairly early, modelled on the MOPS
OOP Forth system for the Macintosh.
OOP was very valuable in handling
the complexity of the Windows API.

Over the years several people
have donated bug reports, fixes and
enhancements to Win32Forth. It was
even sold to a commercial vendor for
a year, but it proved to complex for
their purposes.

Today I program mostly in
Visual C++. Originally I hated C but,

“amazingly faster, and still as
reliable”

 17

after five years, it is bearable. When
programming in C, I miss the power
of Forth to create compile-time
solutions for difficult problems.
I think I may be burned out for Forth
system development, but who knows
what the future will bring? If another
interesting computer and OS come
along, perhaps I will jump ship and
dive into another Forth system
development project.

What about BeOS? I saw a post
recently in comp.lang.forth asking
about Forth systems for BeOS.
I am a Macintosh advocate, and I was
interested in BeOS when it was going
to run on the Mac, but now that
won't happen, so I really haven't
looked at it much lately.

Have you ever entertained the
idea of making a Forth compiler
for a console gaming system?
No, but I might be interested in
writing a Forth for a PDA-style
device, though there are already
Forths for the Palm. I think that
market is just starting, and more
interesting devices will come along.
Perhaps then.

Have you thought about actually
selling Win32Forth?
I have thought of it, but my
experience has been that it is very
hard to make money selling
development systems. Win32Forth is
public domain, so others can benefit
from it, but also so that I can benefit
from other peoples’ contributions. I
prefer public domain over GPL
because it places less restrictions on
use. True, anyone can take
Win32Forth and turn it into a
commercial system or write a
commercial program without giving

me or the other contributors credit,
but I am also free to use contributors
code in commercial applications I
write, so while I always try to give
credit where credit is due, being able
to solve applications problems is
what drives me, not receiving credit
for some segment of code I wrote
several years ago.

Interestingly Win32Forth was
purchased a couple of years ago by a
commercial vendor for a token fee.
They were to document it and
release it as a commercial product.
Problem was, Win32Forth is so big,
that it didn't really fit within their
philosophy of development tools, so
it languished and was ultimately
returned to me.

How many copies had been sold
of each of your commercial
compilers?
I don't have good access to that
information, but my recollection is
that about 10,000 copies of 64Forth
were produced and I got royalties on
about 7000 of those before HES
went out of business. There were
probably 3,000 or 4,000 copies of
VicForth sold, and much smaller
numbers of ColorForth and OSI
Forth.

What prompted you do develop a
DOS Forth with an IDE resembling
other compilers of the time rather
than a traditional Forth IDE?
I am guessing you are talking about
TCOM here, since that is the only
Forth system I wrote that has a real
IDE. TCOM was developed to make
writing an application for DOS easier.
One of the problems with all my
Forth systems was their size. They
were always big and fat, with lots of

 18

tools and libraries of utilities. All that
stuff results in large executables.

TCOM was designed from the
start to include only the parts of the
language that were needed to
support the application being built.
The result was very small
executables.

Of course you still want to
debug your programs, so I needed a
debugger. Since TCOM produced
.COM executables that didn't contain
any debugging information, and I
didn't want to burden the target
application with any overhead, I
chose to produce additional data files
that could tell the debugger where
the various source lines connected to
the target application. This allowed
me to create standard assembly style
listing files from TCOM executable
and to debug them symbolically. It
worked very well.

TCOM eventually included a
bunch of target processors, including
at least; 8086, 8096, 8080, 68hc11,
6805 and the Samsung Super8,
56000, and 57000 processors. It
included a bunch of examples
applications for the 8086 target,
more than 70 I think. I even wrote a
simple basic compiler for the 8086
target of TCOM. TCOM included all
the source for all of the compiler, the
examples, the debugger and all the
listing generators for each target.
TCOM was built on F-PC.

Did you attend industry trade
shows in the 80's?
Oh, yes. But only the Forth related
ones. There was a lot of activity in
Forth in the 80's. There were several
hardware vendors, and a bunch of
software vendors. Things are a little
quieter now, but I think Forth has just

moved underground. It won't ever be
a general replacement for Visual C,
but it still has wonderful applicability
in limited resource environments.

As we see faster and faster
computers, approaching gigabytes of
RAM and terabytes of hard disk
storage, we might think that limited
resource environments will pass
away, but in the consumer product
area, and pretty much any high
volume product area, Forth is a
viable alternative. It provides rapid
development and debugging, at low
cost.

I think it will always be the
secret weapon of the small developer
breaking into the market of the large
developer with hundreds of
programmers.

How does Forth fit into your
future?
Well, I describe myself as a C
programmer, who is really a Forth
programmer. C has provided
employment, and Forth provides
tools for hardware and software
debugging.

When I work with other C
programmers on large projects, I
always build in a Forth interpreter
into the application, for debugging
purposes. The hardware guys love it,
because it gives them so much power
to figure out what is going on with
the hardware. For software
debugging, it is great because it gives
you an interactive method of figuring
out how to talk to the hardware
before going off and writing a driver
in C.

I think most C programmers
look at Forth, and don't really
understand why they should be

interested in it, and they never
bother to spend the time to find out.

I think of Forth like a fine set
of hand tools. Microsoft on the other

 19

hand, provides the ultimate power
tool, Visual C++ with MFC. It's the
computer-controlled mill, that you
need three PhDs to operate. Then
you can get your job done really fast,
but you hate doing it, because the
tool is such a monster, and so
unforgiving of mistakes.

MFC provides wonderful
information hiding, to solve common
problems, but unfortunately you
have to know a lot about the
information that is being hidden, or it
won't work properly in many
situations. It is like a house built on
sand, rather than a house built on
rock.

Forth on the other hand, is
more like the foundation of rock that
you can build your house on. It is

simple to understand, and
completely bug-free. Of course
Win32Forth has fallen into the
Microsoft trap. In attempting to deal
with all the complexity of Windows,
it adds huge complexity to what
could otherwise be a relatively
simple Forth system. The whole OOP
thing was added just to help deal
with the complexity and it does help,
but at a price. Sometimes I think the
price of increased complexity is just
too high.

Well, I guess I better get off
my soap box, and get back to
programming in Visual C++, MFC
and my latest project in Java, a whole
new adventure.

Les Kendall writes:
Recently we did a mod to our system and I asked a 66-year old
semi-retired electronic engineer to write a full PC keyboard
controller using Forth on a TDS board, controlling all the comms
and handshake by bit-bashing. With no previous knowledge of
Forth whatsoever, he completed the task in 2 weeks. He then
described Forth as an 'interesting' language. He had done C and
assembler but I thought it was pretty good to do the job alone -
shows that Forth can be easy to learn even from a book.

This interview was taken, by permission, from Jim Lawless’ web site at
http://www.radiks.net/jimbo

 20

provides everything needed in a
professional-quality low-cost Forth
controller board.

Use it in industrial or hobby
projects to control a wide range of
devices using the well-known multi-
tasking Pygmy Forth.

Designed for hosting from a Windows
or DOS PC, you can test your
application as it runs on the F11-UK
board itself. The board was developed
by FIG UK members to provide an easy
way to explore the world of controlled
devices – a niche where Forth excels.

The kit includes both hardware and
software and is supported and sold to
members at a nominal profit through a
private company.

Software

PC-based PygmyHC11 Forth compiler
running under DOS produces code for
Motorola HC11 micro-controller.

Code is downloaded via standard serial
link from the PC to the FLASH memory (or
RAM) on the F11-UK single board computer
(SBC).

No dongle or programming adaptor of any
kind is required.

Forth running on the SBC is interactive
which makes debugging and testing much
easier.

Multitasking and Assembly included.

The serial link can be disconnected to
enable the SBC to function as a stand-alone
unit.

All source code provided - 78 pages
or so (unlike many commercial
systems).

Around 30 pages of additional
documentation is supplied including a
full glossary of the 300 or so Forth
words in the system.

Email mailing list for discussion and
limited support.

Hardware:

Processor:
 Motorola HC11 version E1 - 8 MHz (2
 MHz E-Clock).
Memory:
 32k x 8 FLASH
 32k x 8 battery backed SRAM
 512 x 8 EEPROM onboard HC11.
I/O:
 20 lines plus 2 interrupts (IRQ & XIRQ).
Analogue in:
 up to 8 lines using onboard 8-bit A/D.
Serial:
 1. RS232, UART onboard HC11

 2. Motorola SPI bus onboard HC11.
Expansion:
 Via HC11 SPI serial bus using
 2 or more of 20 available lines.
Timer system:
 Inputs: 3 x 16-bit capture channels
 Outputs: 4 x 16-bit compare channels.
PCB size: 103 x 100 mm.

Price to FIG UK members: £47.0 plus postage and packing (£2 UK, £4 overseas) plus $25.0

(US Dollars) for registration of 80x86 Pygmy Forth with the
author Frank Sergeant.

 Delivery: ex-stock.
 More information: jeremy.fowell@btinternet.com and 0121 440 1809

F11-UK

 21

euroFORTH 2001

The 17th annual euroFORTH conference on the Forth programming
environment and Forth processors is being held on November 23 – 26

at Schloss Dagstuhl, near Saarbrücken, Germany.

This annual conference is held in the UK
every third year and this year it returns
again to Schloss Dagstuhl. (See Paul
Bennett’s detailed report in issue 99). For
conference details, see
http://dec.bournemouth.ac.uk/forth/euro/ef01.
html.

Papers will include:

§ The C18 ColorForth Compiler
§ The 25x Emulator: for a 5x5 array of C18 processors on a 7 mm2 die
§ An HTTP Server in Forth
§ A Windows Driver Program Written in Forth
§ A Forth Programming System for a Coil Winding Machine
§ CANed Objects, a simple object message transport mechanism for

distributed transducers
§ ColorForth & the Art of the Impossible.
§ The mite Virtual Machine: Bridging the Complexity Gap
§ A Minimal Development Environment.
§ Treating Data as Source: a simple and extensible XML Parser
§ A State Machine Design of the Forth Multi-Tasker
§ An OO Package for Embedded Control
§ Joy: The Concatenative Language of Manfred von Thun.
§ Threaded Code Variations and Optimisations.
§ Top Heavy Trees: a variation of Binary Trees with faster average access

times
§ The Common Case in Forth

Charles Moore is the Guest of Honour, so this is a
rare chance to meet the inventor of Forth on this side
of the Atlantic.

 22

 Chris Jakeman
01733 352373

cjakeman@bigfoot.com

AGM Report

Doug Neale offered his hospitality once again – thanks Doug and to Mrs.
Neale too.

Changes to Committee
As reported previously in Forthwrite, Chris Hainsworth has retired as Chairman and
Jeremy Fowell has succeeded him. Sylvia Hainsworth has retired as Librarian and
Graeme Dunbar has succeeded her. The Library contains all the recent books
and conference proceedings as well as a complete set of Forthwrite and Forth
Dimensions. As books like Thinking Forth go out of print, this resource is
increasing in value to our international audience.

Review of Last Year
Our web-site has become a key resource, with over 60 pages, an estimated1 1,000
visitors a month and 600 downloads of Forthwrite magazine. Jenny has re-vamped
it again this year. We also maintain a list of web-site subscribers from all around
the world who have signed up to be notified whenever an update is made.

We have several initiatives which other FIGs have yet to imitate. Our Library is a
unique lending resource. As books like Thinking Forth go out of print, this
resource is increasing in value to our multi-national audience. IRC is going well,
with a good mix of regulars and visitors, mostly Forthers from overseas. The
experimental publication of Forthwrite on the web will continue. We will however
extend the interval between publishing each issue on paper and making it available
electronically. Forthwrite is also placed into several universities which may bring
results in the long-term.

We should try to learn from our German colleagues in Forth Gesellschaft who run a
friendly and effective annual FIG conference.

The finances, as reported in the last issue, are now in balance and look healthy.

Most importantly, membership continues to be stable with around 110 members,
many of whom are very active.

Plans for Next Year
We have a new project based on F11-UK – the Flickwriter – and we plan to do more
for new members by supplying a free FIG UK CD which will contain the latest
versions of key Forth resources.

1 Extrapolated from a small sample.

 23

AJulian Noble
jvn@virginia.edu

A Call to Assembly 2/3
Julian Noble

Institute of Nuclear and Particle Physics
University of Virginia

Charlottesville, VA 22901

This is the second part of a paper originally prepared for the sadly
defunct Forth Dimensions magazine.

Case conversion
Many languages contain a library function for converting a string to all upper case
letters or all lower-case ones, leaving digits and punctuation alone. The new Forth
ANS standard2 happens not to require such a routine, although most Forths
contain a word analogous to UCASE as part of the compiling mechanism.
The first step is to choose our approach. In Microsoft QuickBasic® (QB), a string
of N characters is stored in a contiguous sequence of N bytes of memory in the
default data segment. It is referenced by a 4byte string descriptor, with the first
two bytes containing the length as a signed 16bit integer, and the second two
bytes the offset of the beginning of the string in the data segment. That is, Quick
Basic strings can be up to 32 Kb long. Microsoft C stores strings in contiguous
segments of N+1 bytes with the N+1'st byte containing 0 (standard C string
terminator), strings being referenced by the address of their first byte.
 Forth, by contrast, usually deals in counted strings up to 255 bytes long,
whose count is contained in the first byte. These differences between languages
present a minor problem in designing subroutines that manipulate strings, since
they will not work the same in Forth as in QB or C. The easiest method is to write
the code in two pieces: a languagespecific header and a universal body.
We illustrate with headers for Forth, QuickBasic and C stringstorage conventions.

What of the body code? If we write it first in high level Forth the design
becomes clear3.

: lcase? (char -- flag) \ true if lower case
 DUP [CHAR] a < (char f1) \ true if char < “a”
 SWAP [CHAR] z > (f1 f2) \ true if char > “z”

2 A copy of the final draft of the ANS Forth Standard document, X3J14 dpANS-6 can be
downloaded in several different machine-readable formats, including F-PC hypertext,
Microsoft Word , or HTML, from the Web site http://www.taygeta.com.

3 There are many ways to define lcase? including a table look-up. This way has been
chosen to illustrate the use of assembler.

 24

 OR (not[flag]) \ combine flags
 INVERT ; \ logical not

: UCASE (beg len)
 0 DO \ work from left to right thru string
 DUP C@ (-- adr char) \ get character
 DUP lcase? (-- adr char flag)
 32 AND (-- adr char 32 if lcase | 0 else)
 \ subtract 32 from lcase letters only
 OVER C! \ replace modified character
 CHAR+ LOOP \ increment address by 1 and loop
 DROP ; \ clean up stack

That is, we step through the string a byte at a time from beginning to end, testing
whether the character is a lower case letter or other. If lower-case, change to
upper-case; otherwise do nothing. The actual switch from lower to upper-case is
accomplished by subtracting 32d from the ASCII character code
of the letter, since the upper case letters have codes 32 d smaller than their
corresponding lower case values. It is worth noting that, in the words lcase? and
UCASE , the programming style computes the result rather than deciding it. That is,
while it is not always practical to avoid decisions4, good style eschews branches
wherever possible.

The assembly language version is easy to construct. Begin with lcase? and
recode directly in assembly language :

CODE lcase? (char --- flag)
 POP BX \ char BL
 MOV AX, BX \ copy to AL
 SUB AL, # 96 \ AL = char 96
 CBW \ sign AL AH = flag1
 XCHG AX, BX \ interchange registers BH = flag1
 SUB AL, # 123 \ AL = char 123
 CBW \ sign AL AH = flag2
 OR AH, BH \ AH = flag1 or flag2
 XCHG AL, AH \ AL = ~flag
 NOT AL \ AL = flag
 CBW \ convert 8 to 16bit flag
 PUSH AX \ flag TOS
NEXT ENDCODE \ terminate definition

(Note that the phrase [CHAR] a < is not expressed directly in assembler, but
becomes [CHAR a 1-] LITERAL (ie 96) - 0> instead - Ed.)
Test it with:

CHAR A DUP . lcase? . 65 0 ok

4 J.V. Noble, Computers in Physics, Jul/Aug 1991, p. 386.

 25

CHAR a DUP . lcase? . 97 1 ok
CHAR z DUP . lcase? . 122 1 ok
CHAR & DUP . lcase? . 38 0 ok

(Note: TRUE - all bits set to 1 - is interpreted as an integer value –1 by “.” in these
Forths. ANS Forth is unique among language standards in providing portability
between the common 2'scomplement integer arithmetic and 2 alternative
schemes.)

The preceding test went well - we can test efficiently whether a character is lower
case. To proceed, we will merge lcase? and UCASE into a single routine which
will require a looping construct. The one we used in STIB will do fine, because
once again the loop will execute a predetermined number of times. Again we must
provide header code that places the count (string length, in bytes) in the CX
register, and the address of its first byte in
BX. This time, however, we identify the header code as a separate section of the
assembler subroutine, in order to be able to replace it later on with an appropriate
equivalent that respects the conventions of a language other than Forth.

In FPC the header will consist of the instructions:

POP CX \ count in CX
POP BX \ beginning of data in BX
PUSH DI \ save DI (index) register
MOV DI, BX \ start1 in DI

Upon exiting we restore DI with mov BX DI, as the last instruction preceding

NEXT ENDCODE.

For comparison, a header suitable for QuickBasic would look like5 [16]

PUSH BP ; save BP
MOV BP, SP ; use BP as a stack pointer
PUSH DI ; save DI register
MOV BX, 6 [BP] ; address of string descriptor to BX reg
 ; Note: don't need to initialize CX
MOV CX, 0 [BX] ; count in CX reg
ADD BX, 2 ; offset to string origin in BX

and the corresponding QB footer (to exit gracefully) would be

POP DI
POP BP ; restore registers

5 Note: if we were trying to generate the same function for linking to C, we would have to
take into account the 0-terminated structure of strings in C, probably using a different
looping method, since the count would not be readily available.

 26

The complete program in FPC assembler then becomes

CODE UCASE \ start header
 POP CX \ get count
 POP BX \ get origin
 PUSH DI \ save DI
 MOV DI, BX \ end header, start body
HERE: \ begin loop
 INC DI \ point to next byte
 MOV BL, 0 [DI] \ get byte
 MOV AX, # 96 \ test case
 SUB AL, BL
 CBW
 XCHG AX, BX
 SUB AL, # 123
 CBW
 AND AH, BH \ AH = FF|0
 AND AH, # 32 \ AH = 32 if lcase, 0 else
 SUB 0 [DI], AH \ convert letter in $
 LOOP HERE \ loop if CX >= 0
 \ end body, begin footer
 POP DI \ restore DI
 NEXT \ end footer
ENDCODE

The subroutine is hard to read even with indented comments (which is why we
prefer high-level language to assembler), but it consists of the same parts as the
high level definition: a SETUP section that gets the count and origin of data; a
body that LOOPs through the string; a test that determines whether a character is a
lowercase letter, and if so, modifies it to upper case; and a footer that restores
whatever registers have been saved on the stack and exits gracefully. Note we
were able to eliminate three redundant instructions:

XCHG AL, AH
CBW
PUSH AX

whose only purpose in the CODE version of lcase? was to convert an 8bit flag to
a 16 bit integer that could be left on the stack. The code for UCASE is about as
terse as such a routine can be made. Since assembler is used to provide raw speed,
it is interesting to examine timings6. Looking up the number of clock
cycles per instruction for the Intel 80286, we find:

6 Abrash, already mentioned, discusses in detail the pitfalls of assuming the instruction
timings given by Intel.

 27

CODE UCASE \ 0 (assembler directive)
POP CX \ 5
POP BX \ 5
PUSH DI \ 3
MOV DI, BX \ 2
 \ total = 15 for header
HERE: \ 0 (assembler directive)
INC DI \ 2
MOV BL, 0 [DI] \ 5
MOV AX, # 96 \ 2
SUB AL, BL \ 2
CBW \ 2
XCHG AX, BX \ 3
SUB AL, # 123 \ 3
CBW \ 2
AND AH, BH \ 2
AND AH, # 32 \ 3
SUB 0 [DI], AH \ 7
LOOP HERE \ 9
 \ total = 42 for body
POP DI \ 5
NEXT \ 5 (depends on the Forth)
 \ total = 10 for footer
ENDCODE \ 0 (assembler directive)

The instructions labeled “assembler directive” execute during compilation and
carry no runtime overhead. Since the header and footer are executed once, their
25 clock cycles are immaterial for reasonably long input strings. Converting a
lower-case to an upper-case letter evidently requires 42 clock cycles, i.e. about 1.3
µsec on a 33 MHz machine. The test loop

: TEST0 0 DO PAD COUNT UCASE LOOP ;
: TEST1 0 DO 10000 TEST0 LOOP ;

allows us to iterate enough times to get meaningful data: saying 10 TEST1 iterates
105 times. The time to convert 4,500,000 characters is 7 seconds, giving a
percharacter time of 1.6 µsec, in reasonable agreement with the estimate from
machine cycles. This is 24 times faster than the F-PC Forth version7; so
optimization is definitely worthwhile when we have many strings to convert.

For variety, here is a version that works with C-style 0terminated strings.
There are two obvious ways to approach the problem: first, modify the loop in
UCASE so it terminates when the byte fetched is 0 (not to be confused with ASCII
“0”). Alternatively, if we had a fast way to determine the string's length, we could

7 F-PC is a direct-threaded Forth. Forth systems that optimise and generate native code
are much faster (as fast as optimising C compilers), but not as fast as hand-coded
assembler.

 28

use the preceding code unmodified. Now, we know only the beginning address of
a C string, so to determine its length we must search it until we find the
terminating character, incrementing a counter as we go. In high level Forth the
subroutine is

: GET_LEN (beg --- len)
 DUP (beg beg)
 BEGIN \ start indefinite loop
 DUP C@ \ get char
 0 <> (beg adr flag)
 WHILE CHAR+ (beg adr+1)
 REPEAT (beg end+1) \ loop until character is 0
 SWAP (-- len) \ compute length
;

and is very slow. Unless there is a specific need for a function that determines the
lengths of 0terminated strings there does not seem to be any reason to factor out
this functionality, merely to reuse the code designed for counted strings. Here is a
situation where recoding UCASE from scratch is the
more efficient approach. We will call the new version UCASE.C.

Once again we begin by prototyping in highlevel Forth, then translating to
CODE. We want to hybridize GET_LEN and UCASE.C from before, i.e. replace the
definite loop with an indefinite one.

: UCASE.C (beg ---)
 BEGIN \ start indefinite loop
 DUP C@ (-- adr char)
 DUP (-- adr char flag)
 0<> WHILE \ haven't reached end
 lcase? (-- adr flag)
 32 AND (-- adr char 32 if lcase | 0 else)
 \ subtract 32 from lcase letters only
 OVER C! \ replace modified character
 CHAR+ (-- adr+1)
 REPEAT \ loop until char = 0
 DROP \ clean up stack
;

The assembler version is easily coded. The use of CBW (convert byte to word) avoids
decisions by computing a flag (in the upper half of the AX register) based on the sign
of the subtraction operation.

CODE UCASE.C
 MOV DX, DI \ save DI (in DX)
 POP DI \ DI = beg
1 $: \ label to return to
 MOV BL, 0 [DI] \ get byte
 CMP BL, # 0 \ is it 0 ?
 JZ 2 $ \ jump to end if 0
 MOV AX, # 96 \ 97d is ASCII 'a '
 SUB AL, BL \ is the byte 'a' ?

 29

 CBW \ if BL = 97 then AH = FFh, else AH = 0
 XCHG AX, BX
 SUB AL, # 123 \ is the byte 'z' ?
 CBW \ if AL 122 AH = FFh; else AH = 0
 AND AH, BH \ AH = FFh if 'a' < byte < 'z', else AH = 0
 AND AH, # 32 \ AH = 32 or 0
 SUB 0 [DI], AH \ convert byte in string
 JMP 1 $ \ loop
2 $: \ end
 MOV DI, DX \ restore DI
 NEXT
ENDCODE

Micromini assembler
Although I have discussed the use of the Forth assembler in the context of rapid
machine code development and/or as a propaganda device to interest outsiders in
Forth, of course one should not forget that it is a useful tool in the Forth programmer's
arsenal. In my own work I have not worried too much about the fact that most Forths8
tend to run somewhat slower than optimized C programs
because I know that if I really need to step on the gas by hand coding an inner loop, it
will not take much extra effort. (There was a time, not so many years ago, when I got
so carried away with that approach that I would define words in CODE at the drop of a
hat, just because it was so easy. Needless to say my work was cut out for me later on
when I had to port the programs to ANScompatible
Forths. One mustn’t lose one's head by over-CODEing.)

When memory is limited and only a few CODE words need to be defined, rather
than load the entire assembler, it pays to insert the opcodes directly into the body of
the code word. These are usually bytesized numbers in hexadecimal format, and can
be inserted with C, as in (suitable for FPC)

CODE MY@ HEX 5B C, FF C, 77 C, NEXT ENDCODE

If there are more than a few such words, but one would prefer not to load the
assembler, the following word may be of use.

\ Micromini assembler suitable for FPC
HEX
: <% BASE @ HEX \ base 16
 BEGIN BL WORD %NUMBER
 WHILE DROP C,
 REPEAT 2DROP BASE ! \ restore base
 HERE 1+ @ 3E25 <> ABORT" Missing %> !" ; IMMEDIATE
DECIMAL
\ Usage: CODE MY@ <% 5B FF 37 %> NEXT ENDCODE
\ Note: to make the above work in ANS Forth we need to define
\ %NUMBER in terms of NUMBER.
\ : %NUMBER 0.0 ROT COUNT NUMBER NIP ;

8 MPE Ltd.’s VFX Forth is a modern exception.

 30

George Morrison
gdm@gedamo.demon.co.uk

Charles Moore interview on
Slashdot

George Morrison

Slashdot9 is a technology news web-site largely concerned with computers and the
internet which is much beloved of geeks and nerds. Its popularity has given rise to
the term “The Slashdot Effect”; a web-site mentioned on Slashdot can receive so
many hits that it becomes overloaded. Occasionally readers are asked to submit
questions to an industry luminary which form the basis of an interview.

Charles Moore was recently the subject of a Slashdot interview10, the main topics
of which were his 25x processor chip and Forth. (Forthwrite reported over 300
questions and comments had been tabled – a measure of the intense interest in
what Moore is doing – Ed.) The 25x is a new design which contains 25
independent stack machines and has a claimed speed of 60,000 MIPS. CM: “At this
stage the 25x is a solution looking for a problem. It's an infinite supply of free
MIPS.” He suggested possible uses might be embedded audio/video applications
or voice/image recognition.

Chuck's enthusiasm for Forth shines through. CM: “I'm locked in the Forth
paradigm. I see it as the ideal programming language. If it had a flaw, I'd correct
it.” He was asked about the use of colorForth by colour blind people and
suggested that colours could be replaced by different fonts or sizes, and also
mentioned the possibility of spoken colorForth. He is unimpressed by other
programming languages and sees no signs of progress in their development.

The interview was quite brief, but more information about Chuck's work can be
found at Chuck's colorForth site http://www.colorforth.com and UltraTechnology
http://www.ultratechnology.com.

9 http://slashdot.org

10 http://slashdot.org/interviews/01/09/11/139249.shtml

 31

Alan J M Wenham
01932 786440

101745.3615@compuserve.com

Vierte Dimension 3/01
Alan Wenham

Vierte Dimension contains some very valuable material and several
members have suggested that a full translation of a single article would
be appreciated. We have volunteers with the skills to do this, so now we
need your nominations. Contact Alan with your choice and we will
publish a translation in the next Forthwrite - Ed

General
 The acting editor, Martin Bitter, expresses his pleasure at

receiving the Swap Dragon award and also greets three new
members. These include Chris Jakeman, to whom he extends
a specially warm welcome.

Lego robots and arithmetic logic in Forth
Fred Behringer

behringe@mathematik.tu-

muenchen.de

This article about the representation of propositional logic as
arithmetical expressions is an extended version of Fred's
presentation to the German Forth convention. It also appears
in English in the July issue of Forthwrite.

REORDER and continuation

Martin Bitter

martin.bitter@forth-ev.de

Martin has been spurred to reconsider Ulrich Paul's REORDER,
a stack manipulator. REORDER was conceived ten years ago for
F-PC and Martin has reworked it for Win32Forth. It seems to
him that REORDER is slower because of the increased number of
input values. (Naturally, since factorial(n), the number of
permutations of n, increases very quickly with increase in n).
Martin thinks that more systematic studies are needed.

Alan provides a look at the latest issue of the German FIG
magazine. To borrow a copy or to arrange for a translation of an

individual article, please call Alan.

 32

WebForth

Chris Jakeman

This is Chris Jakeman's presentation, in English, at the German
2001 Forth convention.

MINOS examples: OpenSched GUI
Bernd Paysan

bernd.paysan@gmx.de

Bernd's presentation at the 2001 Forth convention.
OpenSched is a free Linux program for project planning and
progressing. Its implementation is not particularly user-
friendly as its input is in the form of text data. Bernd describes
his GUI system MINOS, and shows that Forth can help to
provide a polished front-end for OpenSched.

Book reviews

Friederich Prinz

Friederich.Prinz@t-online.de

Friederich discusses two books, one on Windows 2000 and the
other on technology of IP-networks.

Forth opens doors
Fred Behringer

behringe@mathematik.tu-

muenchen.de

Fred's starts a new feature in Vierte Dimension presenting short
articles, with examples, which appeal to the beginner or, as
here, those who are changing to Forth. This article concerns
assembler programming in the Forth environment and is the
production of a DOS .COM file which opens or closes the
drawer of a CD-ROM drive. It is only 92 bytes long!

Calculation with guaranteed accuracy
Christopher Poeppe

This is a repeat of the article previously presented but with
correction of a number of serious mistakes.

Other journals

Fred Behringer

behringe@mathematik.t

u-muenchen.de

Fred summarises the content of Forthwrite 111 and Figleaf 25
and 26.

Riddle solution
Fred Behringer

behringe@mathematik.t

u-muenchen.de

Fred gives the solution to the riddle posed in VD1/2001. It
relates to the representation of the decimal number 1066 in
various bases. He highlights Martin Bitter in particular as
solver.

 33

solver.

Forth convention 2001 in Hamminkeln-Dingden by Wesel
Friederich Prinz, Bernd

Paysan

Two reports; a general one by Friederich and a subject-
oriented one by Bernd.

Outwitting the Lego-Transmitter --- with and without Forth

Martin Bitter and Fred

Behringer

martin.bitter@forth-ev.de

The IR transmitter, which connects the Lego robot to the PC,
disconnects automatically after 5 seconds of inactivity on the
part of the transmitter. This was found to be very inconvenient
when developing applications where a long sequence of
characters being transmitted from the robot to the PC via the
transmitter was suddenly interrupted because there was no
intermediate response from the transmitter. A simple solution
was found in which a high resistance was soldered between the
+9 volt line and an appropriate point, which allows the
voltage there to held high, thus preventing the transmission
circuit from being closed down after a certain voltage drop and
in turn preventing the robot-IR-transmitter character flow from
ever being interrupted.

From the big Teich...

Henry Vinerts

VOLVOVID@AOL.com

Henry reports on the Silicon Valley FIG Meeting of May 2001.

 34

Chris Jakeman
cjakeman@bigfoot.com

Did you Know?

– large Forth projects (1)

While other parts of Forthwrite bring you all the news and the latest ideas and
developments, the Did You Know? section highlights achievements in Forth,

both recent and historical (taking care always to distinguish hearsay from
attested fact).

Earlier this year, the comp.lang.forth newsgroup was asked how the very large Forth
installation at Riyadh Airport, Saudi Arabia, could be considered a success when it
runs on such old hardware.

“Building automation and auxiliary services by AVCO/Textron for King
Khaled International Airport (Saudi Arabia). System contains nine PDP 11/44s, 378
8086-based computers, 320 8085-based security processors, and 36,000
sensors.

Initially the project was a disaster, with over 100 programmer-years of
code and failing to meet performance standards by a factor of 10. The
AVCO/Textron group started over using Forth on all the computers, and wrote
a successful version in less than 30 programmer-years and 18 calendar months.”

“The installation was designed in the early 80's and installed in the mid-80's,
by which time much of the hardware was at least obsolescent. Now it's hopelessly
obsolete and failing. About once a year someone from the airport gets in touch with
us (always a different person/company, since contractors there rarely last more than
a year, and there's virtually no information transfer from one generation to the next).
They have been told that, since the project is written in Forth, there's no way the old
stuff can be replaced.

On the contrary, since Forth is readily available on most modern platforms, a
port would be straightforward (not a trivial project, but vastly simpler than a total
rewrite in a new language). In contrast, the original programming (which we
replaced) was done in PLM and FORTRAN. How would you port that to modern
platforms?

When the opportunity arises, we always point this out, and have regularly
offered to send someone over to make concrete recommendations and proposals
regarding upgrades. So far, no one has accepted this offer.”

Source – Elizabeth Rather, Forth Inc

 35

Letters

Federico
de Ceballos

From: federico.ceballos@unican.es
Sent: 02 November 2001

Hi Chris,

Nice to hear from you.

> Hope all is well with you and looking forward to your next Forthwrite
> article sometime. Are you doing any research at present that is
> Forth-related?

In the last months I've been doing some study and research into other
programming languages (apart from C++: Ada, Java and Oberon). I am
also involved in a course of 'Compiler Generators'. After going through
the 'well trodden path' of Aho1 et al., I am planning to give the students
some insight by the end of the course about the simplest way of getting a
compiler for a high-level language running. (I don't need to tell you which
language is this ;-) !)

Apart from this, I've taken some time off from my other obligations in
order to (finally!) finish my Ph.D. thesis, titled "A Development
Environment for High Integrity Applications". I plan to complete it by
the end of this year.

As part of the research, I have developed a simple compiler in a Forth
dialect that is used to produce four different cross-compilers for
Windows, the PSC1000, the 68HC11 and the AVR RISC processor.

As a small offspring from this work, I am presenting a paper at
EuroForth about "A Minimal Development Environment for the AVR
Processor". As you probably know, Howerd Oakford, Jenny Brien and Bill
Stoddart are also presenting papers.

The Magazine Team are always pleased to get feedback and encouragement. Here we have
news of Federico de Ceballos, who uses Forth in his academic work and updates us on his
current activities. We also have some feedback from Fred Behringer, inspired by “Call to
Assembly” in the last issue.

 36

Fred
Behringer

I'm somehow fascinated by the subject of bootstrapping, meta-
programming and cross-compilation. I'd like to prepare, some time in the
near future, an article or a series of articles about it for Forthwrite.

1Aho is a standard text on Comiler Design – Ed.

From: behringe@sunstatistik1.mathematik.tu-muenchen.de
Sent: 25 October 2001

Hi Chris,

I like Julian Noble's tutorial article in issue # 113 of Forthwrite and I like his
philosophy of exercising his "constitutional right to assemble". I too have said in
several places that I like "misusing" Forth as a quick and most flexible means of
assembling.

One observation that I should like to make goes as follows: ZF and Turbo Forth, my
own favourites, are 16-bit systems. With almost no extra effort and in almost the
same computer time (I'm referring to the Pentium processor), the bit order
reversion can be immediately done with up to 32 bits. The cpu cycles I'm referring
to are taken from the book by T.E. Podschun: Das Assembler-Buch (in German),
Addison-Wesley, 1996.

HEX

: OP: 66 C, ; \ Prefix for switching to 32-bit registers

\ Show the bottom n bits of double precision number d in reverse order
CODE DSTIB (n d --)
 OP: BX POP \ 1 cpu cycle
 OP: C1 C, CB C, 10 C, \ 1 cpu cycle 10 # EBX ROR
 CX POP \ 1 cpu cycle
 OP: DX DX XOR \ 1 cpu cycle
 HERE
 OP: BX SHR \ 1 cpu cycle
 OP: DX RCL \ 1 cpu cycle
 CX DEC \ 1 cpu cycle
 JNE \ 1 cpu cycle
 OP: C1 C, CA C, 10 C, \ 1 cpu cycle 10 # EDX ROR
 OP: DX PUSH \ 1 cpu cycle
 NEXT END-CODE \ 70 cpu cycles for a reversal of 16-bits
 \ 134 cpu cycles for a reversal of 32 bits
 \ (4*n)+6 cycles for a reversal of n bits
 \ length = 40 bytes

 37

\ The following is Julian Noble's 16-bit version (Forthwrite # 113)
\ Show the bottom n1 bits of single precision number n2 in reverse order
CODE STIB (n1 n2 --)
 BX POP \ 1 cpu cycle
 CX POP \ 1 cpu cycle
 DX DX XOR \ 1 cpu cycle
 HERE
 BX SHR \ 1 cpu cycle
 DX RCL \ 1 cpu cycle
 LOOP \ 6 cpu cycles
 DX PUSH \ 1 cpu cycle
 NEXT END-CODE \ 132 cpu cycles for a reversal of 16-bits
 \ (8*n)+4 cycles for a reversal of n bits
 \ Reversal limited to 16-bit numbers
 \ length = 25 bytes

Julian's STIB consumes almost twice as much cpu time as DSTIB, and
covers only 16-bit reversal. If memory is of minor relevance, the time
needed for DSTIB can be reduced even further (see DSTIB-2 to follow).

\ Show the bottom n bits of double precision number d in reverse order
CODE DSTIB-2 (n d --)
 OP: BX POP \ 1 cpu cycle Get d
 OP: C1 C, CB C, 10 C, \ 1 cpu cycle 10 # EBX ROR
 CX POP \ 1 cpu cycle Get n
 20 # AX MOV \ 1 cpu cycle AX = nmax
 CX AX SUB \ 1 cpu cycle AX = nmax - n
 AX DI MOV \ 1 cpu cycle Equivalent
 DI SHL \ 1 cpu cycle to AX*6
 DI AX ADD \ 1 cpu cycle but with
 AX SHL \ 1 cpu cycle less cycles.
 OP: DX DX XOR \ 1 cpu cycle DX = 0
 HERE 7 + # DI MOV \ 1 cpu cycle Add 7 bytes for MOV, ADD,
 \ and JMP.
 AX DI ADD \ 1 cpu cycle n copies of EBX SHR EDX RCL
 DI JMP \ 2 cpu cycles left to execute after
 \ jumping.
 HERE \ For XXX to operate on
 0C0 ALLOT \ 2*n cpu cycles 32 times EBX SHR EDX RCL
 OP: C1 C, CA C, 10 C, \ 1 cpu cycle 10 # EDX ROR
 OP: DX PUSH \ 1 cpu cycle
 NEXT END-CODE \ 48 cpu cycles for a reversal of 16-bits
 \ 80 cpu cycles for a reversal of 32 bits
 \ (2*n)+16 cycles for a reversal of n bits
 \ length = 245 bytes
: XXX (--)
 DUP 0C0 + SWAP
 DO 66 I C! 0D1 I 1+ C! 0EB I 2+ C! \ EBX SHR
 66 I 3 + C! 0D1 I 4 + C! 0D2 I 5 + C! \ EDX RCL
 6 +LOOP ;

XXX \ Fill DSTIB-2 with 32 copies of EBX SHR EDX
 \ RCL
FORGET XXX \ Remove auxiliary word XXX, not needed any
 \ more

 38

Many of you will be familiar with Dave Pochin’s popular web-site providing help with
Win32Forth, especially his advice on Getting Started.

Dave has now added a
section providing tips on
using Win32Forth at

http://www.sunterr.demon.co.
uk/AddValue/AddedVal_1.htm

If anyone would like to
send him anything similar,
he’ll add them (quoting the
source).

Note that it will be disastrous to choose n excessively large ! Try
DECIMAL 33 4 DSTIB-2 . However, spend a few more cpu cycles and the
security problems will have gone. There is no problem with that with
DSTIB or STIB, though one needs to reflect a moment in order to
interpret the results correctly in case of an excessive n .

It's amazing how far I can go to reach my goal although there is no 32-bit
assembler in ZF or Turbo Forth. Only imagine trying one of the number of quick
and dirty tricks I've applied above in any of the numerous "mainstream"
languages other than Forth !

Julian`s STIB needs 25 bytes. DSTIB needs 40 bytes. DSTIB-2 needs 245
bytes. This is an interesting amount of trade-off between time and memory.
However, what I am owning is no less than 768 megabyte of RAM!

What then do I care about memory - as long as my straightforward Forth system
(ZF or Turbo Forth) can manage that amount. Can it? It can – as the reader is
invited to find out for himself from my article in the 2-1998 issue of Vierte
Dimension.

 39

Chairman Jeremy Fowell, 11 Hitches Lane, EDGEBASTON B15 2LS

 0121 440 1809 jeremy.fowell@btinternet.com

Secretary Doug Neale, 58 Woodland Way, MORDEN SM4 4DS

 020 8542 2747 dneale@w58wmorden.demon.co.uk

Editor Chris Jakeman, 50 Grimshaw Road, PETERBOROUGH PE1 4ET

 01733 352373 cjakeman@bigfoot.com

Treasurer Neville Joseph, Marlowe House, Hale Road, WENDOVER HP22 6NE

 01296 62 3167 naj@najoseph.demon.co.uk

Webmaster Jenny Brien, Windy Hill, Drumkeen, BALLINAMALLARD,

 Co. Fermanagh BT94 2HJ

 02866 388 253 jennybrien@bmallard.swinternet.co.uk

Librarian Graeme Dunbar Electrical Engineering, The Robert Gordon University,

 Schoolhill, ABERDEEN AB10 1FR

 01651 882207 g.r.a.dunbar@rgu.ac.uk

Membership enquiries, renewals and changes of address to Doug.
Technical enquiries and anything for publication to Chris.
Borrowing requests for books, magazines and proceedings to Graeme.

 For indexes to Forthwrite, the FIG UK Library and
 much more, see http://www.fig-uk.org

 Payment entitles you to 6 issues of Forthwrite
 magazine and our membership services for that

 period (about a year). Fees are:

National and international £12
International served by airmail £22
Corporate £36 (3 copies of each issue)

 Your membership number appears on your envelope
 label. Please quote it in correspondence to us. Look out

for the message "SUBS NOW DUE" on your sixth and last issue and please complete
the renewal form enclosed.
Overseas members can opt to pay the higher price for airmail delivery.

 Copyright of each individual article rests with its
 author. Publication implies permission for FIG UK to

reproduce the material in a variety of forms and media including through the Internet.

FIG UK Web Site

FIG UK Membership

Forthwrite Deliveries

Copyright

 40

FIG UK Services to Members

Magazine

Library

Web Site

IRC

Members

Beyond the
UK

Forthwrite is our regular magazine, which has been in
publication for over 100 issues. Most of the contributions
come from our own members and Chris Jakeman, the Editor,
is always ready to assist new authors wishing to share their
experiences of the Forth world.

Our library provides a service unmatched by any other FIG
chapter. Not only are all the major books available, but also
conference proceedings, back-issues of Forthwrite and also of
the magazine of International FIG, Forth Dimensions. The price
of a loan is simply the cost of postage out and back.

Jenny Brien maintains our web site at http://www.fig-uk.org. She
publishes details of FIG UK projects, a regularly-updated Forth
News report, indexes to the Forthwrite magazine and the library
as well as specialist contributions such as “Build Your Own
Forth” and links to other sites. Don’t forget to check out the
“FIG UK Hall of Fame”.

Software for accessing Internet Relay Chat is free and easy to
use. FIG UK members (and a few others too) get together on
the #FIG UK channel every month. Check Forthwrite for details.

The members are our greatest asset. If you have a problem,
don’t struggle in silence - someone will always be able to help.
Do consider joining one of our joint projects. Undertaken by
informal groups of members, these are very successful and an
excellent way to gain both experience and good friends.

FIG UK has links with International FIG, the German Forth-
Gesellschaft and the Dutch Forth Users Group. Some of our
members have multiple memberships and we report progress
and special events. FIG UK has attracted a core of overseas
members; please ask if you want an accelerated postal delivery
for your Forthwrite.

