

 ISSN 0265-5195

news events people reviews projects programming

January
2002

Issue 115

FIGUK magazine:

The End of the Line
The Semantic Web

From the ‘Net - a Non-English View
A Call to Assembly 3/3

A Safer Mini-OOF
Across the Big Teich

Forthwrite Index

JenX Revisited
- A Simple XML Parser

German FIG Conference 2002.... 33

Forth News 2

The Semantic Web 8

Across the Big Teich 31

Forthwrite Index 37

The End of the Line 3

JenX Re-visited

- A Simple XML Parser 11

A Call to Assembly 3/3 19

A Safer Mini-OOF 27

From the ‘Net -

- a non-English view 6

Nominations for the

FIG UK Awards - 2001 18

Letters ... 35

news

reviews

programming

people

events

January
2002

Issue 115

 1

Editorial
As usual, this first issue of the year contains
a cumulative index to Forthwrite. You will find
12 years of contributions here but new ideas
and requests continue to arrive. Jenny’s

SERVANT concept deserves study (in JenX Revisited) and the
Letters section reveals a lack of tutorial material on lists.

At this time, we invite your nominations for the Year 2001
Awards. This is a chance to show your appreciation, so please
consider your choice with care.

We are pleased to publish our first piece from Henry Vinerts.
Henry has been reporting the activities of Silicon Valley FIG for
many years. (Last month’s meeting was attended by Chuck
Moore, Dr.Ting and Neil Bawd – familiar names to Forth users.)
We are grateful to Vierte Dimension for granting permission to
use Henry’s material.

Look out for details of the forthcoming events this year -
euroFORTH 2002 and the German FIG Conference.

PS. Don’t forget the monthly IRC session. Our next one is
Saturday 2nd February on the IRC server IRCNet, channel
#FIGUK from 9:00pm.

Until next time, keep on Forthing,

 2

Forth News

Events

euroFORTH 2002
The 2002 event has been provisionally
arranged for September in Austria at the
Vienna University of Technology.

Non-commercial
Systems

New Release for FICL
John Sadler has announced versions 3.01
and 3.02 of this much-respected system.
These provide small improvements and
bug-fixes. The Forth-Inspired Command
Language (FICL) is written in portable C
and provides a convenient interactive
command line for mainstream platforms,
including Windows, and also for specialist
platforms.

For more information, see

http://sourceforge.net/projects/ficl/

CGI Scripting
Saul Scudder has made an example of a
web-server CGI scripting program. It is
free for non-commercial use and runs
under Apache for Windows. This is an
object-oriented Forth and string variables
defined to capture the environment from
Apache.

See http://arizona.speedchoice.com
/~scudders/Zen_Soft/

Forth Resources

FIG UK Mailing List
The mailing list for the F11-UK board and
other projects has now moved to Yahoo
at:

http://groups.yahoo.com/group/fig-forth-uk/

We are grateful to Graeme Dunbar and the
School of Electronic and Electrical
Engineering, The Robert Gordon
University, Aberdeen for hosting the
mailing list there for several years.

Forth Primer
Hans Bezemer, author of the 4th compiler,
reports that the site of the Free Forth
Primer Project has changed. to:

http://www.xs4all.nl/~thebeez/ForthPrimer

It remains available from

http://forthprimer.siteaddr.com

but this includes irritating banners.

Neil Bawd’s Home Page
This site includes some valuable Forth
sources (over 30 items). Macros are used
in very powerful ways and there is also a
web-publishing system for Forth code.
Neil has now added the tools "Alphabetic
List" and "Case-insensitive Compare". See

http://home.earthlink.net/~neilbawd/

 3

01905 723037
davep@sunterr.demon.co.uk

The End of the Line

Dave Pochin

Dave has been sharing his discoveries on the use of Win32Forth to
tame the Windows monster for an amazing 3 years. In many cases, he
has produced examples which cannot be found anywhere else This is
probably the last of the series as he moves on to concentrate more on
Forth applications. Material supporting this series can be found at his

web site http://www.sunterr.demon.co.uk/

When I first downloaded Win32Forth I was overwhelmed by the complexity of some of
the example programs. Simple windows and printing seemed fairly easy, but it was
essential to extract other simple routines to get familiar with the tools available before
trying to tackle any serious project. In time I have slowly built up a series of little test
routines, some more successful than others, and some now abandoned and replaced
with simpler methods.

Most of these problems have been solved and following the larger examples is a
little easier. Of course, I am still finding many little treasures in Windows and the
command SetTextAlign is one I wish I’d found earlier.

The SetTextAlign command is usually
described in the Windows texts as SetTextAlign
(hdc, mode), where hdc is the device handle
and mode is the parameter that controls the
alignment of the text.

Following the Win32Forth practice of reversing
the Windows parameters, the listing below uses
the form mode hdc call SetTextAlign. Where
the mode may be one of TA_LEFT, TA_RIGHT or
TA_CENTER to control horizontal alignment or
one of TA_TOP, TA_BOTTOM or TA_BASELINE to
control the vertical alignment.

When the SetTextAlign command is followed by a text output method such as
TextOut: (x y addr len) from the file dc.f , the x parameter may be the
position of the start, or the end, or the centre of the string according to the
horizontal mode specified. The vertical alignment parameters work in a similar
way.

In the listing that follows, this routine appears in lines like:

 TA_LEFT GetHandle: dc Call SetTextAlign drop
 80 20 s" LEFT" TextOut: dc

 4

The default settings are TA_LEFT and TA_TOP. There are two other parameters
available TA_NOUPDATECP and TA_UPDATECP listed in the Windows texts.

The only use of SetTextAlign I have found in Win32Forth is in the basic window
class Generic-Window in the file Generic.f as part of the method
SetDlgItemAlign:

I’m sure I could go on and on and on finding many more little snippets of
Windows usage within Win32Forth, but the time has come to do some real work
and, as you see from the figure, SetTextAlign has been a great help when
labeling graphs.

Hopefully, these tales of ‘daring do’ within Win32Forth have helped other
beginners. I still find it hard work sometimes, but not quite so frightening with the
help of a good Windows API text to show the way.

:Object TextAlign <Super Window

ButtonControl Button_1 \ a button

:M WindowStyle: (-- style)
 WindowStyle: super
 ;M

:M WindowTitle: (-- title)
 z" Text Alignment"
 ;M

:M StartSize: (-- w h) \ the width and height of our window
 230 200
 ;M

:M StartPos: (-- x y) \ the screen origin of our window
 10 10
;M

:M SetLines:
 get-dc
 80 10 MoveTo: dc
 80 110 LineTo: dc
 10 140 MoveTo: dc
 210 140 LineTo: dc
 release-dc
;M

:M PrintText:

 TA_LEFT GetHandle: dc Call SetTextAlign drop
 80 20 s" LEFT" TextOut: dc

 5

 TA_CENTER GetHandle: dc Call SetTextAlign drop
 80 50 s" CENTRE" TextOut: dc

 TA_RIGHT GetHandle: dc Call SetTextAlign drop
 80 80 s" RIGHT" TextOut: dc

 TA_TOP GetHandle: dc Call SetTextAlign drop
 30 140 s" TOP" TextOut: dc

 TA_BOTTOM GetHandle: dc Call SetTextAlign drop
 70 140 s" BOTTOM" TextOut: dc

 TA_BASELINE GetHandle: dc Call SetTextAlign drop
 150 140 s" BASE" TextOut: dc

 \ Reset Default Alignment
 TA_LEFT GetHandle: dc Call SetTextAlign drop
;M

:M On_Paint:
 SetLines: self
 PrintText: self
;M

:M On_Init: (--) \ things to do at the start of window creation
 On_Init: super \ do anything superclass needs
 IDOK SetID: Button_1
 self Start: Button_1
 80 160 60 25 Move: Button_1
 s" CLOSE" SetText: Button_1
 GetStyle: Button_1
 BS_DEFPUSHBUTTON OR
 SetStyle: Button_1
;M

:M On_Done: (--) \ things to do before program termination
 On_Done: super \ then do things superclass needs
;M

:M WM_COMMAND (hwnd msg wparam lparam -- res)
 OVER LOWORD (Id)
 CASE
 IDOK OF
 Close: self
 ENDOF
 ENDCASE
 0
;M
;Object

: DEMO (--) \ start running the demo program
 Start: TextAlign ;

 6

From the ‘Net -
a non-English view

Michael Gassanenko

Have you ever thought how standard Forth words appear to people
who’s first language is not English? Some words are confusing, some

seem comic or meaningless and even offensive (see below).

Marcel Hendrix asked on comp.lang.forth from for comments on
learning Forth when “you don't naturally understand what the words
mean?” Many thanks to Michael Gassanenko for sharing his reply,

printed below.

1. You believe that ALLOT is an abbreviation of ALLOcaTe.

2. You confuse QUIT with QUERY and can pronounce neither.
(koo-oo-ye... pfui!)

3. CHAR gets pronounced as "tschar" (churr)

4. You dislike long words (SWAP is meaningless but short,
VARIABLE is meaningless and long, and could be VAR,
CONSTANT is meaningful but long, and could be CONST).

5. When HEX is read in Cyrillic, it may be considered as the
beginning of a dirty phrase (of 5 letters) meaning "no reason".
When a guy tells you that HEX at the start of his program
means "hexadecimal", you listen to him and think that a more
decent sort of man would leave more letters, and that the joke
is just silly.

Two minutes later you forget the end of the word beginning
with "hex".

6. All these "GN" (as in ALIGN) and "TIONS" (as in
DEFINITIONS) are tongue-breakers.

7. You try to invent a way to pronounce “y” differently from “i”.

8. Somebody tells you that you pronounce everything wrongly,
for example, SWAP must be pronounced as "swaep" (swep).
You do not follow

this advice because you are used to calling it "swap" (svupp).

 7

9. Each time you see a word like 'throughput' you remember that
THRU is miss-spelled. You dislike that word.

10. One day someone says that logical “f” is from English 'false',
the word means "a lie". That someone pronounces the word
very naturally. You are familiar with this word but never tried
to read its transcription in the dictionary. You do not really
believe him, that it indeed pronounces as "fols", but since then
avoid pronouncing any English words in his presence.

11. You give up trying to understand why DO and BEGIN mean
iteration.

12. you understand ALLOTTABLE as ALLOT-TABLE .

13. You know that you would not dare to include a word1 like ANS
Forth’s 6.1.0670 ***** into a programming language.

14. You cannot understand the word ENCLOSE, neither its name
nor its definition can help.

15. Sometimes the operating system switches the code page to that
of your native language. It's so stupid...

Soon you learn by heart that PYKY ([give me your/ don't
damage the] hand) stands for HERE.

16. After you learn to pronounce “th”, you meet a guy that does
not understand you, so you have to pronounce THEN as
tkhyen for him.

17. Just like anyone else in the world, you write software with no
means to recode text typed in in the wrong code page,
although this should be easy to do. Each time you step on this
rake you believe that this will never happen again, neither with
you nor with your users.

1 As an English speaker, I am so used to ABORT being used in a non-biological
sense that I use it without thinking of its other connotations. Non-English
speakers may not have this convenient amnesia. Now I won’t be able to use the
word again without thinking of the offence I might be causing !

 8

The Semantic Web
Chris Jakeman

The start of a new year is an appropriate time to look ahead and Forth

users are nothing if not pioneers, always interested in finding better
ways to do things. Although this item is not strictly about Forth at all, it

looks ahead to potential developments that might involve Forth.
Whether they do is, of course, up to Forth practioners like you and me.

The World Wide Web
In the May 2001 issue of Scientific
American magazine, Tim Berners-Lee
co-wrote an article called “The
Semantic Web” 2.

Most of the World Wide Web
carries information which is human-
readable. Programs to process the
information in web-pages currently
have limited success. For example,
although search engines are more
effective than anyone originally
expected, the collecting of
information is best described as a
“hunter-gatherer” activity.

The HTML mark-up in each
web page provides formatting
information and XML mark-up is
being used more and more to
provide structure. Unfortunately, the
XML mark-up doesn’t provide the
meaning that programs need to
process the information that can be
gathered from the Web.

2
http://www.scientificamerican.com/2001/050

1issue/0501berners-lee.html#further

For example, “<PARTNER>Mrs.
Jakeman</PARTNER>” is valid XML but
progams can process it only if we all
agree what “partner” means (co-
owner?, colleague, marital?,
unmarried?).

When he invented the Web in
1989, Berners-Lee intended it to
carry more semantics than has
become common practice.

If we could find a way for
programs to understand the content
of the material on the Internet, then
they could do a much better job for
us. For example, the task of arranging
travel to a meeting with you in

London - requires an understanding
of calendars; mine, yours and the rail
company’s too.

The leading contender for
declaring the meaning of Internet
material is the Resource Description
Framework (RDF 3), a standard for
data about data which operates by
declaring the relationships between
entities. RDF is mostly written using

3 See FAQ at http://www.w3.org/RDF/FAQ

"The Semantic Web is an extension of the current web
in which information is given well-defined meaning,

better enabling computers and people to work in
cooperation." - Tim Berners-Lee

 9

XML markup and each entity is
identified by its URI 4.

The relationships are named
and can be simple:

www.fig-uk.org/index.html has author
Chrs Jakeman

or more complex:

Chris Jakeman has relation to FIG
UK, type=Officer, value=editor

but each relationship is also given a
URI. In this way, a program can
discover a network of relationships
for any entity.

As a final step, these
relationships and inference rules
between them can be stored in a
publicy-accessible RDF Schema or
“ontology”.Berner’s Lee’s article
explains the value of an ontology
with a good example but working
systems on the Internet are still hard
to come by. RDF, however, is now
well-specified and in use.

4 URI or uniform resource identifier. The
familiar URL is just a link to a URI.

This notion of discovery is the
basis of current efforts to develop
useful software agents. In our travel
agent example, the program could
discover all the services that will get
me to London in time for that
meeting, find the most suitable one,
find out which of my credit cards is
creditworthy and then buy the ticket.

Forth and the Semantic Web
How is this related to Forth and small
systems? The very successful Open
Firmware standard helps computers
discover the abilities of peripherals
attached to them and load drivers to
work with them. In a similar vein,
Berners-Lee reports the publication
of CC/PP 5, a new standard for
interrogating devices, eg cell-phones,
to guide the adaptation of content
presented to that device.

For example, if a web-server
knows the size of the display screen,
it can modify its pages to suit. And
because CC/PP uses RDF, it is not
fixed but readily expandable to cope
with features not yet conceived.

As devices become smarter,
they will need to find each other,
discover what capabilities are
available and collaborate to work
together. RDF will be at the centre of
this work. Maybe Forth will too.

5 Composite Capability/Preference
Profiles, see
http://www.w3c.rl.ac.uk/newsletters/01mar.html

 10

provides everything needed in a
professional-quality low-cost Forth
controller board.

Use it in industrial or hobby
projects to control a wide range of
devices using the well-known multi-
tasking Pygmy Forth.

Designed for hosting from a Windows
or DOS PC, you can test your
application as it runs on the F11-UK
board itself. The board was developed
by FIG UK members to provide an easy
way to explore the world of controlled
devices – a niche where Forth excels.

The kit includes both hardware and
software and is supported and sold to
members at a nominal profit through a
private company.

Software

PC-based PygmyHC11 Forth compiler
running under DOS produces code for
Motorola HC11 micro-controller.

Code is downloaded via standard serial
link from the PC to the FLASH memory (or
RAM) on the F11-UK single board computer
(SBC).

No dongle or programming adaptor of any
kind is required.

Forth running on the SBC is interactive
which makes debugging and testing much
easier.

Multitasking and Assembly included.

The serial link can be disconnected to
enable the SBC to function as a stand-alone
unit.

All source code provided - 78 pages
or so (unlike many commercial
systems).

Around 30 pages of additional
documentation is supplied including a
full glossary of the 300 or so Forth
words in the system.

Email mailing list for discussion and
limited support.

Hardware:

Processor:
 Motorola HC11 version E1 - 8 MHz (2
 MHz E-Clock).
Memory:
 32k x 8 FLASH
 32k x 8 battery backed SRAM
 512 x 8 EEPROM onboard HC11.
I/O:
 20 lines plus 2 interrupts (IRQ & XIRQ).
Analogue in:
 up to 8 lines using onboard 8-bit A/D.
Serial:
 1. RS232, UART onboard HC11

 2. Motorola SPI bus onboard HC11.
Expansion:
 Via HC11 SPI serial bus using
 2 or more of 20 available lines.
Timer system:
 Inputs: 3 x 16-bit capture channels
 Outputs: 4 x 16-bit compare channels.
PCB size: 103 x 100 mm.

Price to FIG UK members: £47.0 plus postage and packing (£2 UK, £4 overseas) plus $25.0

(US Dollars) for registration of 80x86 Pygmy Forth with the
author Frank Sergeant.

 Delivery: ex-stock.
 More information: jeremy.fowell@btinternet.com and 0121 440 1809

F11-UK

 11

jennybrien@bmallard.swinternet.co.uk

JenX Re-visited
- A Simple XML Parser

Jenny Brien

Jenny presented a paper to the November euroFORTH entitled
“Treating Data as Source” which was previewed in the July and

September issues of Forthwrite. This article re-visits the JenX parser
from the July issue as it has been improved substantially in the paper. It

also introduces an original and novel construct, SERVANT.

XML files invariably start with “<?xml” - so that's the word that will do the actual
parsing. <?xml reads tags delimited, as in HMTL, by “<” and “>” and passes them to
a one-shot text interpreter that decides what to do with them, ignoring any that it
does not recognise6. The definition of JenX itself is therefore quite simple. (As one
XML file may refer to other XML files, JenX is defined using >R ... R> to make it
re-entrant - Ed.):

 VALUE DOTAG \ holds the execution token (xt) of the one-shot interpreter

 : JENX \ xt ++ ; parse an XML file using this interpreter
 dotag >R TO dotag INCLUDE >R TO dotag

<?XML makes use of two “stackpads” on which strings are stacked temporarily.
One, TAGNAME, is used for the tag-names which are passed to DOTAG, and the other,
SCRATCH, holds any text being processed.

The One-Shot Text Interpreter
A one-shot text interpreter takes a string and performs one action based on the
contents of that string, or a common default action if the string is not recognised. It
may take the form of a CASE statement but, where the string is a simple word, the
actions may be defined in a wordlist and a SERVANT may be used.

 : SERVANT \ wid xt ++ ; defining word for one-shot text interpreters
 CREATE , ,
 DOES> \ ca u -- ? ; do associated action
 >R 2DUP R@ CELL+ @
 SEARCH-WORDLIST IF
 NIP NIP R> DROP
 EXECUTE ELSE
 R> @ EXECUTE THEN ;

6 In HTML unknown tags are ignored whereas, in standard XML, the reverse is the case.
Ed.

 12

Since the default action (supplied by the xt) still has the string on the stack, it can
itself be a servant word, and so servants can be stacked in a hierarchy.

E.g. WORDLIST WAITER’S

 waiter’s ‘ 2DROP servant WAITER
 WORDLIST HEADWAITER’S
 headwaiter’s ‘ waiter’s servant HEADWAITER

 : CREATION \ wid -- ; CREATE a word on this wordlist
 GET-CURRENT SWAP SET-CURRENT CREATE SET-CURRENT ;

 : DEF: \ wid -- ; DEFINE a word on this wordlist
 GET-CURRENT SWAP SET-CURRENT : SET-CURRENT ;

A Servant Example – dealing with
XML entities
(In XML, five special characters known as
entities, eg. “<”, have a special meaning,
so they must be represented in some
other way. XML uses “>” to represent
“<”. Any character can also be specified
using its numerical code in decimal or
hexadecimal, so “A” can be represented
by “A” and also by “A”. JenX
includes the servant DENT (for defined
entity) to place the decoded character on
the stackpad. Ed.)

WORDLIST CONSTANT ENTITY?

: CENTITY \ c ++ ; defining
 \ word for single character entities
ENTITY? CREATION
 C, \ store the replacement
 \ character
 DOES> \ -- append to
 \ scratch stackpad
 C@ scratch c+ ;

 CHAR < CENTITY <
 CHAR > CENTITY >
 CHAR ' CENTITY &APOS
 CHAR " CENTITY "
 CHAR & CENTITY &

Words for using string stackpads

: STACKPAD \ u -- ; create a stackpad to hold up
 \ to u chars
 CREATE
 HERE CELL+ , \ pointer to top of stack
 0 , \ length of top string
 ALLOT ;

: SEMPTY \ spad -- ; empty pad completely
 DUP CELL+ DUP ROT ! 0 SWAP ! ;

: SPUSH \ ca u spad -- ; push string onto stack
 SWAP >R
 TUCK @ CELL+ R@ MOVE
 R@ CHARS CELL+ OVER +!
 R> SWAP @ ! ;

: S1 \ spad -- ca u ; top string on stack
 @ DUP @ TUCK - SWAP ;

: SDROP \ spad -- ; drop top string from stack
 DUP CELL+ OVER @ U< IF
 DUP @ @ CHARS CELL+ \ length of top
 \ string + count
 NEGATE OVER +! THEN DROP ;

: SNEW \ spad -- ; push a zero length string
 1 CELLS OVER +! 0 SWAP @ ! ;

 13

: #>C \ ca u -- c ; from Leo Wong
 \ convert from ddd or xhhh
 \ to char
 BASE @ >R
 OVER C@ DUP [CHAR] x = SWAP
 [CHAR] X = OR IF
 1 /STRING HEX ELSE DECIMAL
 THEN EVALUATE
 R> BASE ! ;

: UnknownEntity \ ca u -- ;
 \ try for digits, else append string
 OVER C@ [CHAR] # = IF
 1 /STRING #>C scratch c+ ELSE
 scratch s+ THEN ;

ENTITY? ' UnknownEntity SERVANT DENT

Further defining words can be added later to deal with string substitutions and file
inclusions. In this respect, a SERVANT can be seen as an extensible CASE
statement. (DENTS+ below locates any entities by finding “&” and “;” characters in
an XML string and uses DENT to decode them. Ed.)

 : DENTS+ \ ca u -- ; append decoded version of string to SCRATCH
 BEGIN [CHAR] & csplit
 scratch s+ \ append text before entity
 DUP WHILE
 [CHAR] ; csplit dent \ append decoded entity
 1 /STRING \ skip over “;”
 REPEAT
 2DROP ;

The word csplit used above splits a delimited string into the part before the
delimiting character and the rest:

: CSPLIT (ca u c -- ca' u1 ca u2)
\ ca u2 is string before first instance of char c in ca u

A slightly more sophisticated version would use a SERVANT that calls DENT to
deal with the Standard Entities, reserving its own wordlist for entities it defines
itself by reading the XML file’s DTD or schema.

How <?XML deals with tags
All handling of actual content is done by the xt supplied as a parameter to JenX
and stored in DoTag. <?XML just repeatedly parses to the next “<”, and places the

: S+ \ ca u spad -- ; concat with top string
 DUP @ @ >R \ save length of top string
 SWAP >R \ length of additional string
 TUCK @ R@ MOVE
 R@ CHARS OVER +!
 2R> + SWAP @ ! ;

: C+ \ char spad -- ; append to top string
 DUP @ @ >R
 TUCK @ C!
 1 CHARS OVER +!
 R> 1+ SWAP @ ! ;

Not previously published but similar to J.Brien
in Issue 89

 14

entire tag on the SCRATCH stackpad. DoTag is passed the address and count of this
string, which will be over-written by the next tag.

: TILL \ c -- flag ca u ; parse string up to char, flag false if char not found
 SOURCE NIP >IN @ - >R PARSE DUP R> = ROT ROT ;

: MACRO 7 \ Usage: macro <name> <char> <words> <char> (by Wil Baden)
 : char parse postpone sliteral
 postpone evaluate postpone immediate ;

macro NEXTLINE " WHILE REFILL 0= UNTIL EXIT THEN"

When used in conjunction with TILL, the NEXTLINE macro ensures that the
intervening code is applied to all input up to, but not including, the delimiting
character. If the character is not found before the end of the input stream, then the
remainder of the enclosing definition is not executed.

: NextTag \ -- fetch and execute next tag
 Scratch snew
 BEGIN [char] > till
 dents+ \ some tags may contain entities - fetch decoded tag to Scratch
 nextline
 Scratch spop doTag EXECUTE ;

 : <?xml (--)
 BEGIN
 BEGIN [char] < till 2DROP nextline
 NextTag
 AGAIN ;

<?XML ends when NEXTLINE fails – that is, once input from the file has been
exhausted – and returns control to JenX.

Recognising valid Tagnames
For some simple XML files, the decoded tag may always be a simple tag name (eg.
“<chapter>”) , and the function in DoTag need be nothing more than a SERVANT.
Each tag's action is described by a normal Forth word of the same name . This can
be the case even for more complex files, if the only tags you want DoTag to act
on are simple ones. In all cases, the decoded tag will be overwritten by any word
called by DoTag which itself uses the Scratch stackpad, if not by the next
execution of NextTag.

There are two other cases which you may need to deal with.

7 Wil Baden has written extensively about the convenience of using macros in Forth. See
his article in Forth Dimensions July 97 (available for loan from FIG UK Library) - Ed.

 15

Tags with attribute lists
(Eg. “<chapter language=”English”>”) In this case the tagname is invariably
followed by white space. DoTag may call WORDSPLIT to recognise it and pass it
on to a SERVANT.

 : white? (c -- ?) BL > 0= ;

 : skip-white \ ca u -- ca1 u1
 BEGIN DUP WHILE OVER C@ white? WHILE
 1 /STRING REPEAT THEN ;

 : scan-white \ ca u -- ca1 u1
 BEGIN DUP WHILE OVER C@ white? 0= WHILE
 1 /STRING REPEAT THEN ;

 : WORDSPLIT \ ca u -- ca1 u1 ca2 u2 ; remaining-string first-word
 skip-white DUP >R scan-white 2DUP >R string/ ;

XML Processing Instructions and XML Declarations
These start with “?” and “!” respectively and, depending on the application, may
need to be dealt with in a batch or individually. In this case, recognition is based
on the characters which the string in TAGNAME starts with and can be checked
using:

MACRO STARTSOF " >R OVER R> COMPARE TRUE OF "

and a CASE statement of the form:

 \ ca u from TAGNAME
 OVER
 CASE
 S" pattern1" STARTSOF 2DROP action1 ENDOF
 (etc)
 \ pass TAGNAME on to WORDSPLIT or a SERVANT
 ENDCASE

Assume for example that you want to ignore comments (which begin with “<!--”).
“<!--” does not have to be followed by a space, so defining it as a word won't
work. Instead we use:

 S" !--" startsof doComment endof

doComment must ignore everything up to “-->” The comment may span multiple
lines and may enclose tags. If it does not enclose “>” (which is the most likely
case) then TAGNAME will already contain the whole comment and we can treat it
like any other unknown tag – ignore it. So check for that first.

 : doComment \ ca u --

 16

 + 3 CHARS - S" -->" COMPARE IF EXIT THEN
 BEGIN parse-area@ S" -->" SEARCH 0= WHILE
 2DROP REFILL 0= UNTIL \ ignore lines until found or eof
 3 /STRING parse-area! ; \ parse past -->

Matching tags handle content
The actual content of XML files is invariably held between matching tag pairs of
the form <name>… </name>. These may be nested inside other tag pairs, so
the tagname is saved for matching on the TAGNAME stackpad. TAGNAME will at any
point contain, in order, the names of all active tag pairs. That allows it to be used
to establish context where tags of the same name may be used by different
parents.
 I have made the assumption that any content in an inner tag pair without a
defined handler should be treated as part of the content of the outer pair. That
follows naturally from my rule “ignore any unknown tag”. The opening tag
accumulates content unto the SCRATCH stackpad, processing at will, and executing
any tags it meets until the matching closing tag. The space used on SCRATCH is
then freed for other tag pairs. The macros TILLMATCH and GETALL encapsulate
this behaviour.

: GETNAME \ ca u -- ca' u' ; the name of the current tag
 wordsplit 2SWAP 2DROP ;

: MATCHED? \ ca u -- f ; true if current closing tag
 Getname OVER C@ [CHAR] / <> IF 2DROP FALSE EXIT THEN
 1 /STRING DROP TagName s1 COMPARE ;

: OPENTAG \ ca u -- common opening tag initialisation – save name
 GetName Tagname spush Scratch snew ;

: CLOSETAG \ ca u -- common closing cleanup – return content
 Tagname sdrop Scratch spop ;

MACRO TillMatch " opentag BEGIN BEGIN [char] < till"

MACRO GetAll " nextline parse-area@ matched? 0= WHILE
 NextTag REPEAT closetag "

: PRESERVE-SPACE \ ca u -- ca u ; of content with space preserved
 TillMatch
 dents+ \ copy decoded string to Scratch
 13 scratch c+ \ add cr
 GetAll ;

: CONTENT \ ca u -- ca u ; of content formatted in the default manner
 TillMatch
 BEGIN wordsplit dents+ \ copy decoded string word by word

 17

 BL scratch c+
 DUP 0= UNTIL
 2DROP
 GetAll ;

CONTENT will be the word most commonly called when an opening tag is
recognised. If the tag has an attribute list which affects processing, it must be
dealt with before OPENTAG is called, or else temporarily saved elsewhere.

A Very, Very Simple JenX Application - Output Text of a HTML file
This minimal application, called simply, parses an HTML file using the <?XML
parser. It recognises the section <BODY> ... </BODY> printing each line that is
parsed from this section. It ignores embedded tags but prints their contents,
converting XML entities and preserving white space.

simply does this by adding the word BODY to an HTML wordlist and when the
HTML tag <BODY> is met, it prints the content of all tags until </BODY> is met.

The only servant defined in the HTML wordlist is HTMLTYPE – which does
nothing more than tidy up the stack. Any tag attributes will therefore be ignored.

Wordlist HTML

HTML DEF: BODY
 TillMatch dents+ Scratch spop TYPE CR Getall 2DROP ;

HTML ‘ 2DROP SERVANT HTMLTYPE

: SIMPLY getname htmltype ; \ don’t bother about attributes

: <HTML> <?XML ; \ HTML files usually begin with <HTML>

‘ simply JenX filename

And that’s all! The application can be refined later by adding more HTML DEF:s to
recognise other tags.

 18

Nominations for the
FIG UK Awards - 2001

To nominate your candidate, send in a note of
who, in your opinion, most deserves an award
and why. The recipient of each award will receive
a place in the FIG UK web-site's Hall Of Fame, a
mention in Forthwrite and a year's free
membership.

The Achievement Award is given to the member
who has made the best contribution towards Forth
during 2001. The contribution may be a presented
paper, a library of code or an idea which inspires
others. Whatever form it takes, the contribution
must support the goals of FIG UK.

The Forthwrite Award is given to the member who
has made the best contribution to Forthwrite
magazine during 2001. The contribution may be
judged on quality of writing, tutorial potential,
entertainment value or other criteria which the
Forthwrite Team deem appropriate.

The awards are judged by the officers of FIG UK.
All who are members on 31st Dec. 2001 are
eligible (except the judges).

Free
membership

Achievement

Forthwrite

The FIG UK Awards of 2000 were won by Keith Matthews
and John Tasgal. These awards are given to encourage effort

and recognise achievement.
Please take the time to look back over the past year and

send in your personal nominations for 2001.

 19

Julian Noble
jvn@virginia.edu

A Call to Assembly 3/3
Julian Noble

Institute of Nuclear and Particle Physics
University of Virginia

Charlottesville, VA 22901

This is the third part of a paper originally prepared for the sadly defunct Forth
Dimensions magazine.

Spherical Bessel functions
Here is an example of a fairly complex subroutine from a numbercrunching application,
used for calculating the effect of a 3D wave at any point. It was necessary to code this
function in assembler because it was used many times.

If one only needs a single spherical Bessel function, jn(x) , it is usually best just to
compute it in terms of sin(x), cos(x) and polynomials in 1/x. However, when more than
one is needed, especially functions of high order, the most practical approach is
recursion. The obvious method of upward recursion, based on the relation

jn-1(x) = (2n+1)x-1 jn(x) - jn+1(x)
but, starting with explicit formulae for j0(x) and j1(x) , is unstable and rapidly loses
numerical precision. We therefore employ the downward recursion recommended by
Abramowitz and Stegun8, with starting values (for some large N)

jN = 1, JN+1 = 0
then apply the relation

N

 ? (2k+1)[jk(x)]2 = 1
k=0

to obtain the normalization. In Forth this might be

\ data structures
10 REAL*8 #CELLS 1ARRAY JBES{ \ holds j0j9
FVARIABLE SUM \ temps to offload from fp stack
FVARIABLE X

: SETUP (F: x --- 0 1) (--- 79)
 X DF! 79 S>F SUM DF!
 F0.0 F1.0 79 ;

8 M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (Dover Publications, Inc.,
New York, 1965) p. 452.

 20

: NORMALIZE
 SUM DF@ FSQRT 1/F
 10 0 DO FDUP JBES{ I }9 DUP DF@ F* DF!
 LOOP
 FDROP ;

: DO_X=0
 FDROP F1.0 JBES{ 0 } DF!
 10 1 DO F0.0 JBES{ I } DF! LOOP ;

: ITERATE (F: jn+1 jn --- jn jn1) (2n+1 --- 2n1)
 DUP SF FOVER F* (F: jn+1 jn jn*[2n+1])
 X DF@ F/ FROT F (F: --- jn jn1)
 FDUP F^2 (F: --- jn jn1 jn1^2)
 2 DUP (--- 2n1 2n1)
 S>F F*
 SUM DF@ F+
 SUM DF! ;

: SPHBES (F: x ---)
 FDUP F0=
 IF DO_X=0 EXIT THEN
 SETUP 11 39 DO ITERATE 1 +LOOP
 0 9 DO ITERATE
 FDUP JBES{ I } DF!
 1 +LOOP
 DROP FDROP FDROP \ clean up stacks
 NORMALIZE ;

Translating this routine to assembler will be the piéce de resistance of this article. It is
rather long, and represents the upper limit of what is reasonable to hand code as a single
subroutine, in the neverending search for speed. We shall maintain temporary values
and intermediate expressions on the intrinsic stack of the floating point coprocessor to
minimize transfers to/from the (slower) main
memory. The public domain Forth FPC does not come with 80x87 extensions to its
assembler. Therefore to assemble and test the subroutine we must choose one of the
following courses:

§ add the necessary extensions to the FPC assembler (Robert L. Smith has done this in

creating the floating point extensions ffloat.seq available on various Forth archives);
§ use the Micromini assembler described above;
§ employ a Forth with a more complete assembler, such as Tom Zimmer's Win32Forth;

9 This notation was introduced in my book Scientific Forth and has been adopted as standard for
the Forth Scientific Subroutine Library Project organized by Skip Carter.

 21

The floating point units associated with Intel microprocessors possess an intrinsic 8deep
stack10. Upon entering the subroutine, the onchip stack must be initialized to contain
nothing, which we visualize as

st(7) ...
st(6) ...
st(5) ...
st(4) ...
st(3) ...
st(2) ...
st(1) ...
st(0) ...

The first steps are initialization, following which the fpu stack will contain x, the
argument of the Bessel function(s), as well as the initial values of j n , j n+1 and
whatever else may be needed. In fact it looks like

st(7) ...
st(6) ...
st(5) ...
st(4) x
st(3) sum
st(2) 2n+1
st(1) jn+1
st(0) jn

At each subsequent iteration the stack transforms as

st(7) ...
st(7) ...
st(6) ...
st(6) ...
st(5) ...
st(5) ...
st(4) x -> st(4) x
st(3) sum st(3) sum + (2n+1)*jn*jn
st(2) 2n+1 st(2) 2n1
st(1) jn+1 st(1) jn
st(0) jn st(0) jn1

Let us begin with the initialization steps:

finit \ clear fpu stack
mov ecx, FSP [edi] \ get fstack ptr
sub ecx, # B/FLOAT \ decrement by data size

10 The stack notation (87: ---) refers to the 8deep fpu intrinsic stack (the Intel fpu began as a
separate chip with the designation 8087/80287/80387 before being combined onto the
80486 and Pentium series).

 22

js L$2 \ > error handler
fld FSIZE FSTACK [ecx] [edi] (87: x)
mov FSP [edi], ecx \ adjust fstack ptr
push ebx \ TOS > mem
push # 4F \ put 79d=4Fh on data stack
fldz \ fload 0 (87: 0 x)
fild dword 0 [esp] \ 79d st(0)
fldz \ fload 0
fld1 \ fld 1 (87: 1 0 79 0 x)
pop ebx \ ebx = 79 (87: jn jn+1 2n+1 sum x)

The initialization clears the floating-point unit (FPU) stack and moves x from the
inmemory fstack to the FPU. (This part is taken directly from float.f's word fpop.)
Finally, numeric constants are loaded.

Next we consider what happens during each iteration: we must pay careful attention to
the FPU stack because there are 5 items on it after initialization. We note we shall need
the factor (2n+1) × j n in two places: first, to calculate j n-1 , and second, to calculate the
next term in the sum. To work out the steps, we show the fpu stack after each machine
instruction:

 FXCH ST(1) FLD ST(1) FMUL ST(0), ST(3)
st(7)
st(6)
st(5) ... x x
st(4) x sum sum
st(3) sum 2n+1 2n+1
st(2) 2n+1 jn jn
st(1) jn jn+1 jn+1
st(0) jn+1 jn jn*(2n+1)

 FLD ST(0) FMUL ST(0), ST(3) FADDP ST(5), ST(0)
st(7)
st(6) x x ...
st(5) sum sum x
st(4) 2n+1 2n+1 sum'
st(3) jn jn 2n+1
st(2) jn+1 jn+1 jn
st(1) jn*(2n+1) jn*(2n+1) jn+1
st(0) jn*(2n+1) jn*(2n+1)*jn jn*(2n+1)

 FDIV ST(0), ST(5) FSUBRP ST(1), ST(0) FLD1
st(7)
st(6)
st(5) x ... x
st(4) sum' x sum'
st(3) 2n+1 sum' 2n+1
st(2) jn 2n+1 jn
st(1) jn+1 jn jn1

 23

st(0) jn*(2n+1)/x jn1 1

FSUB ST(3), ST(0) FSUBP ST(3), ST(0)
st(7)
st(6)
st(5) x ...
st(4) sum' x
st(3) 2n sum'
st(2) jn 2n1
st(1) jn1 jn
st(0) 1 jn1

That is, the complete sequence of instructions that performs one iteration is

fxch st(1) (87: jn+1 jn k=2n+1 sum x)
fld st(1) (87: jn jn+1 jn k sum x)
fmul st(0), st(3) (87: k*jn jn+1 jn k sum x)
fld st(0) (87: k*jn k*jn jn+1 jn k sum x)
fmul st(0), st(3) (87: k*jn^2 k*jn jn+1 jn k sum x)
faddp st(5), st(0) (87: k*jn jn+1 jn k sum' x)
fsubpr st(1), st(0) \ this is a sp. error in 486asm.f

 \ ^^^^^^ \ --- should be fsubrp, not fsubpr
fld1
fsub st(3), st(0)
fsubp st(3), st(0) (87: jn1 jn 2n1 sum' x)

Now, how can we test this to be sure it is correct? The beauty of testing an assembly
language subroutine within the Forth environment is that no linking step is required.
Thus we can assemble larger and larger subsets of the CODE word, testing each portion
and FORGETting it to test the next iteration. (Assuming, that is, that we have not caused
the system to crash in one of the experiments!)

The word ITERATE was built in stages and tested interactively at each stage. The
final stage added a BEGIN .. UNTIL loop. Many Forth assemblers
provide macros for this purpose, but since my aim was to create a subroutine that could
be ported easily to another high-level language (given the proper boilerplate header
and footer), I did not use the Forthspecific macro facilities.

Note that at the beginning of an iteration the current value of the Bessel function
(not yet properly normalized, of course) gets stored in its proper array element of the
array jbes{. This is done by computing the base address using the phrase jbes{ 0 }
which is then added to the offsets indexed by registers ebx and edi. Note that the array
index seems to be multiplied by 4 (bytes) as for 32bit precision. However, at this storage
step, the value in ebx is 2n because ebx has been decremented once. So in fact the
subroutine is written to store 64bit floating point numbers - vital because the magnitude
of the unnormalized functions (not to mention that of the normalization sum) can grow
easily past the numbers accommodated in IEEE 32bit precision.

In fact, the first dec ebx instruction (leaving 2n in ebx) marks the beginning of the
loop. The second dec ebx instruction marks the last computational step of the loop. We
label the beginning of the loop with the assembler's local label facility (the phrase

 24

L$1:) and use the Intel jns (“jump not sign”) instruction to loop back to it when the
decrement operation has not changed the algebraic sign of the index in the ebx register
(that is, while 2n-1 > 0).

Finally we must clean up the stacks. The exit value of the index (--1) needs to be
replaced in the ebx register (which is used as the top of the data stack by Win32Forth)
by whatever was on top of the stack before entering the subroutine. This is accomplished
by the pop ebx instruction. Since it does not particularly matter when this is done we
perform this last. The only number we wish to retain from the fpu stack is the sum so we
simply pop off the top three items with three repetitions of the instruction fstp st(0) ;
then we move the sum to the inmemory fstack (simply copying the code sequence from
fpush for this purpose); and finally we drop x from the fpu stack with one more
repetition of fstp st(0) .

Believe it or not, when I added this code and tested the high level word sphbes
given in the listing below, it worked perfectly, first crack out of the box. The entire test
sequence, including a mistake I had to correct, lasted 1520 minutes. I do not believe
MASM or TASM could come within an order
of magnitude of this time.

With the completion of the spherical Bessel function routine I end this call to
assembly. Class dismissed.

Appendix
Here is the complete spherical Bessel function routine, with the assemblercoded
iterative loop.

FALSE [IF]
Regular spherical Bessel functions j_n(x), n=039
(Assembly language version suitable for Win32Forth)
© J.V. Noble 1999. May be used for any purpose as long as this copyright
notice is retained.

Uses Miller's method of downward recursion, as described in
Abramowitz & Stegun, “Handbook of Mathematical Functions” 10.5 ff.

The recursion is
j(n1) = (2n+1) j(n) / x j(n+1)

The downward recursion is started with j40 = 0, j39 = 1 .
The resulting functions are normalized using
Sum (n=0 to inf) { (2n+1) * jn(x)^2 } = 1 .

Usage: To calculate j0j39 say, e.g.,

 3.0e0 sphbes
To access/display a value say, e.g.,
 jbes{ 3 } F@ F. .1520516620 ok
[THEN]

marker jbes

 25

include arrays.f
40 long 1 dfloats 1array jbes{
FVARIABLE x
HEX

code ITERATE (f: x ---) \ initialization
 finit \ clear fpu stack
 mov ecx, FSP [edi] \ move x from fstack to st(0)
 sub ecx, # B/FLOAT
 js L$2 \ > error handler
 fld FSIZE FSTACK [ecx] [edi] (87: x)
 mov FSP [edi], ecx \ done moving
 push ebx
 push # 4F \ 79d on data stack
 fldz (87: 0 x)
 fild dword 0 [esp] (87: 79 0 x)
 fldz
 fld1 (87: 1 0 79 0 x)
 pop ebx \ ebx = 79 = 2N+1
 (87: jn jn+1 2n+1 sum x) \ end of initialization
L$1:
 dec ebx \ loop begins here
 fst double jbes{ 0 } [ebx*4] [edi]
\ fwait \ may be needed
 fxch st(1) (87: jn+1 jn k=2n+1 sum x)
 fld st(1) (87: jn jn+1 jn k sum x)
 fmul st(0), st(3) (87: k*jn jn+1 jn k sum x)
 fld st(0) (87: k*jn k*jn jn+1 jn k sum x)
 fmul st(0), st(3) (87: k*jn^2 k*jn jn+1 jn k sum x)
 faddp st(5), st(0) (87: k*jn jn+1 jn k sum' x)
 fdiv st(0), st(5) (87: k*jn/x jn+1 jn k sum' x)
 fsubpr st(1), st(0) \ this is a sp. error in 486asm.f
\ ^^^^^^ \ --- should be fsubrp
 fld1
 fsub st(3), st(0)
 fsubp st(3), st(0) (87: jn1 jn 2n1 sum' x)
 dec ebx
 jns L$1 \ loop ends here
 (87: j0 j1 1 sum x)
 fstp st(0) (87: j1 1 sum x)
 fstp st(0) (87: 1 sum x)
 fstp st(0) (87: sum x)
 mov ecx, FSP [edi] \ sumfstack
 fstp FSIZE FSTACK [ecx] [edi]
 fwait
 add ecx, # B/FLOAT
 mov FSP [edi], ecx
 fstp st(0) (87: x ---)
 pop ebx (1 ---)

 26

 jmp L$3
L$2:
mov esi, # ' FSTKUFLO body \ error handler
add esi, edi
L$3:
next,
endcode

DECIMAL

: DO_X=0 \ handle the special case x=0
 FDROP F1.0 JBES{ 0 } DF!
 10 1 DO F0.0 JBES{ I } DF! LOOP ;

: NORMALIZE (f: sum ---)
 FSQRT F1.0 FSWAP F/
 39 0 DO FDUP JBES{ I } DUP F@ F* F! LOOP
 FDROP ;

: SPHBES (f: x ---)
 FDUP F0= \ x=0 ?
 IF DO_X=0 ELSE ITERATE NORMALIZE THEN ;

Correction
Julian Noble writes:
I detect a typo in Part I of "A Call to Assembly", on FW p. 19:

 the phrase to the left of the diagram should be

 4 7 STIB . 14 ok
 4 14 STIB . 7 ok

 exactly as on FW p. 22.

 27

Chris Jakeman
01733 352373

cjakeman@bigfoot.com

A Safer Mini-OOF
Chris Jakeman

Bernd Paysan’s mini-OOF is unsurpassed and remains the smallest object-

oriented extension for ANS Forth. This article adds some safety features.

The mini-OOF is available from Bernd’s web site11. It provides any ANS Forth with single
inheritance, polymorphism, late and also early binding in just 12 lines. See Forthwrite
Nov. ‘99 for a detailed exploration. More extensive packages12, such as Anton Ertl’s
OOF13 also provide data hiding, easier syntax and compile-time checking, but mini-OOF
is small, simple and appropriate for applications which can benefit from a little
inheritance.

I have been using mini-OOF in the construction of an XML parser and found a couple of
weaknesses that this article aims to fix. An XML document contains a tree of nodes with
similar but not identical properties. This makes it an obvious candidate for the object-
oriented approach. The various types of node can inherit from a common ancestor but,
thanks to overloading, each type can respond differently (eg. when told to print itself).

All object-oriented packages for Forth fall into one of two camps. They are either “object
method” (like mini-OOF and the packages in Gforth) or “method object” (like the Neon-
inspired package in Win32Forth). In the XML application, most of the objects are not
named but anonymous and the methods just take the object id from the stack which suits
the “object method” arrangement.

Mini-OOF is truly minimal and has no checking at all. If the method being applied to the
object on the stack is not appropriate for the class of that object, then your Forth system
will most likely crash instantly. After all, it’s equivalent to applying EXECUTE to some
random data.

For example, we could define a top-level class XMLNode for general XML nodes and
then inherit a sub-class XMLElement which is more specialised and supports the method
.AddAttribute. Eg:

XMLNode class
 method .AddAttribute
endclass XMLElement

We can make an object of each class using:

11 Paysan’s mini-OOF is at http://www.jwdt.com/~paysan/mini -oof.html
12 Gforth includes 3 optional OOF packages. For a comparison, see
http://www.delorie.com/gnu/docs/gforth/gforth_63.html
13 Ertl’s OOF can be found at http://www.delorie.com/gnu/docs/gforth/gforth_65.html

 28

XMLElement new constant anXMLElement
XMLNode new constant anXMLNode

but if we apply the .AddAttribute to these objects, the first will work correctly and the
second is inappropriate and will most likely crash:

anXMLElement .AddAttribute \ works fine
anXMLNode .AddAttribute \ will crash

After I fell over this several times, I extended mini-OOF with an optional run-time check
inside the method to stop safely if the object is not appropriate for it. This facility can be
included during development and, since it incurs a speed penalty, you may prefer to
exclude it once testing is complete.

The mini-OOF is unchanged (and, being so short, is repeated here for easy reference).
The additional code is a separate file/block which redefines some of the mini-OOF
words. It adds a unique signature or key to each method and a copy is kept in the object’s
class. These two are matched whenever the method executes. You might use the two
packages as:

include mini-oof.fth \ From Bernd Paysan
include safer-oof.fth \ After testing, comment out for more speed

The mini-OOF builds a
data structure like the one
here.

Each object points back to
its class and the class
holds a table of pointers
to its methods (the
“vtable” or despatch
table). The methods
themselves are built using
CREATE .. DOES>. The
CREATE part adding the
name and saving the
offset, while the DOES> provides common code for all methods. This code traverses from
the object (on the stack) to its class, offsetting down into the method table and back
across to execute the code for the current method.

My Safer-OOF builds a similar data structure as shown here but the DOES> part of the
method provides more complex code to match the method’s key with the one in the
method table.

class XMLNode

pointer to class size of object

size of method table

pointer to method 1

pointer to method 2

of
fs

et
 to

m
et

ho
d

1

anonymous code

object anXMLNode

anonymous code

offset

method .AddAttributeNode
DOES> method code

other object data

 29

class XMLNode

pointer to class size of object

size of method table

pointer to method 1

pointer to method 2
of

fs
et

 to

m
et

ho
d

1
anonymous code

object anXMLNode

anonymous code

offset

method .AddAttributeNode
DOES> extended
method code

other object data

method key

method key

method key

As with mini-OOF, we
build a vtable containing
pointers to a dummy
routine (Paysan uses NOOP
for this, but I think an
abort is appropriate - see
UndefinedMethod
below).
 Remember that
the top of each vtable
contains pointers to code
for the methods inherited
from the parent class and
ends in pointers for the
new methods added in
this class. The EndClass
word finishes by
overwriting the top of the
vtable with entries from
the parent’s vtable.

\ MINI-OOF.FTH from Bernd Paysan

: Method (m v -- m' v) Create over , swap cell+ swap
 DOES> (... o -- ...) @ over @ + @ execute ;
: Var (m v size -- m v') Create over , +
 DOES> (o -- addr) @ + ;

create object 1 cells , 2 cells ,

: Class (class -- class selectors vars) dup 2@ ;
: UndefinedMethod
 true abort" undefined class method called"
;
: EndClass (class methods vars --)
 create here >r , dup , 2 cells ?DO
 ['] Undefinedmethod ,
 1 cells +LOOP
 cell+ dup cell+ r> rot @ 2 cells /string move ;
: Defines (xt class "name" --) ' >body @ + ! ;
: New (class -- o) here over @ allot swap over ! ;
: :: (class "name" --) ' >body @ + @ compile, ;

Here is Safer-OOF which re-defines some of the mini-OOF words. The only non-obvious
part is that when each method is compiled, it leaves its key on the stack. These are in the
wrong sequence for EndClass which uses roll to extract them in the reverse sequence.

 30

\ SAFER-OOF.FTH for debugging to check that method is appropriate for class.

: Class (&Class -- &Class Key*m MethodOffset >Vars<)
 dup 2@ >r >r \ Save size of vars and methods
 r@ 2 cells / 1 ?do 0 loop \ Leave a dummy key value 0 for each method
 r> r> \ inherited from the parent class.
;
: CheckMethod (key1 key2 --)
 <> abort" Method not appropriate for class"
;
: Method (MethodOffset >Vars< -- Key NewMethodOffset >Vars<)
 create >r here \ Key = HERE
 swap \ bury key under MethodOffset
 dup , over , \ compile Offset then Key
 cell+ cell+ r> \ adjust Offset for next method
 DOES> (... o -- ...) 2@ \ -- object key offset
 2 pick @ \ -- object key offset class
 + \ -- object key methodPointer
 2@ >r CheckMethod r> execute
;
: EndClass (&Class Key*m MethodOffset >Vars< --)
 create here >r , dup ,
 2 cells / 2 -
 0 swap ?DO \ Loop to compile keys, oldest key first
 ['] Undefinedmethod , \ Compile default method function
 i roll , \ Add method key (1 roll = swap, 0 roll = no-op)
 -1 +LOOP
 \ Overwrite with contents of parent table
 cell+ dup cell+ r> rot @ 2 cells /string move
;

In the next issue . . .

Scripting with Forth
Did you know that Windows is fully programmable and the MS Word and Internet Explorer
applications too? Any scripting language that works with the free MS Windows Scripting
Host (WSH) will do the job and Microsoft themselves illustrate WSH with ForthScript, a
lightweight Forth.

Jim Lawless explores scripting and describes a Forth developed for the purpose.

 31

Henry Vinerts
Volvovid@aol.com

Across the Big Teich
Henry Vinerts

This material was prepared for Vierte Dimension by Henry Vinerts, and
printed by permission of Forth Gesellschaft (German FIG)

It has been almost a week since our last SVFIG14 meeting, and I must
confess that the longer I wait, the lazier I get about writing another
report. So let me "throw" a quick one at you again.

For a change, we had three speakers, but, as usual, Ting filled
most of the time. The group grew from about 14 in the morning to
over 20 in the afternoon. Except for some opinions about Windows XP
and Microsoft in general, we did not dwell on the current subject of
terrorism.

Dr. Ting started out with a call to organize a Win32Forth workgroup,
to cover the next release, add better documentation, device access,
etc.. It appears that Tom Zimmer wants to retire from having any
responsibilities for Win32Forth. As I mentioned before, Tom left
California for Texas some years ago. John Peters has been in touch
with Tom via e-mail and he listed a number of ideas that a workgroup
could implement to keep Win32Forth up to date.

Ting admits that the world is finally pushing him from FPC and
eForth to the Windows platform, especially in his recent work in
Taiwan, where he is studying various ways of inputting Forth with
Chinese characters. He is also developing programs of teaching Forth
to Taiwanese primary school children. He needed some help in adding
sound to such programs and had found it in Doug Dillon, who came
prepared to give us a lecture on how to access the sound-card related
DLLs with Win32Forth, as well as with Forth Inc.'s SwiftForth.

14 Silicon Valley Forth Interest Group

 32

There was enough time left before a long lunch period for Ting to
give us a very interesting description of the Chinese lunar
calendar, which has been running steadily and unerringly for over
4000 years, whereas our Gregorian calendar is but a baby. Of
course, Ting has worked out the way (on Win32Forth) to calculate
the conversion of the latter to the Chinese calendar, with special
emphasis on finding the correct Western date for Chinese New Year.
Incidentally, Ting mentioned that there were about 30 people at the
recent meeting of the Taiwan Forth Group that he attended.

I have a distinct feeling that Dr. Ting never sleeps. It is amazing how
much he has produced for Forth and how varied his interests are. He
concluded the day with another example of
something that had caught his attention recently and that he had
found worthwhile to study and to talk to us about. That was
another Forth system, the creation of a student in Australia. It
is downloadable from http://pringle.sphosting.com, and that is all
that I will say about it. It still seems to me that, except for Chuck
Moore, every creator of his own clever and unique version of Forth
will have to remain in relative obscurity and be content
with listening to his own singing or admiring his own brushstrokes. But,
isn't it wonderful to labor with enthusiasm, as long as those for whom
we are responsible are not running around freezing and hungry?

Mit besten Wuenschen,
Henry

 33

German FIG Conference 2002
Dear readers of Forthwrite,

Our Annual Conference will be held on April 19-21 2002 at Garmisch-
Partenkirchen, a place widely known for its skiing facilities (4th Olympic Winter
Games, 1936), at the base of the Bavarian Wetterstein mountain-range; the hotel
itself being 900 metres above sea level. The 2002 conference programme promises
to be an interesting one with Invited Guest Speakers are Willem Ouwerkerk,
chairman, and Albert Nijhof, editor, of Forth-gebruikersgroep, i.e., the Dutch FIG.
Details are also announced on our website at http://www.forth-ev.de/

This year's meeting place is Forsthaus Graseck, a hotel and mountain lodge which
combines facilities for both outdoor activities and seminars. A hotel-owned cable-
car takes us right to the lodge, 150 metres above the town. All rooms have showers,
W.C., telephone, balconies, and ISDN connections.

There are easy rail connections to Garmisch-Partenkirchen via Munich and car-
parking at the cable-car station.

Before the formal conference starts,
there will be a "free" day, 18th April.
Depending on the weather, we will
arrange a mountain walking-tour or a
visit to a museum. Also within the reach
of Garmisch-Partenkirchen are the most
enchanting castles of the eccentric 19th-
century Bavarian King Ludwig II.

The programme will leave time for ad-hoc discussions and workshops. Three
prospective authors have already announced the topics of their papers: Cross
Compilation, Lego Writing Machine, Forth in OR. If you wish to present a paper,
please send an abstract before 15th March.

If you should need further information, please don't hesitate to contact us at:
Heinz.Schnitter@physik.uni-muenchen.de or behringe@mathematik.tu-muenchen.de

Heinz and Ulrike Schnitter (organisers) and Fred Behringer (programme)

German FIG
Annual Conference 2002

 34

Dutch Forth Users Group

Reading Dutch is easier than you might think. And as Forth is an
international language, reading Dutch code is easier still for a Forth

enthusiast. Are you interested? Why not subscribe to

HCC-Forth-gebruikersgroep

For only 20 guilders a year (£6.30), we will send you 5 to 6 copies
of our "fig-leaf" broadsheet 'Het Vijgeblaadje' . This includes all our

activities, progress reports on software and hardware projects and
news of our in-house products.

To join, contact our Chairman:
 Willem Ouwerkerk
 Boulevard Heuvelink 126
 6828 KW Arnhem, The Netherlands
 E-Mail: w.ouwerkerk@kader.hobby.nl

The easiest way to pay is to post a 20 Guilder note direct to Willem.

 35

Letters

Boris
Fennema

Hi Boris,

> Sent: 10 January 2002 09:17
>
> As a novice Forth hobbyist I am (slowly) learning Forth.
>
> I can appreciate most of its features but I fall down in OO Forth
> and moderately advanced data structures.
>
> I can see how you build data arrays but how whould you operate on
> a singly-linked list ?
>
> What I am getting at is that there are idioms in any language that
> are preferred over others. A novice -> advanced dictionary of
> Forth idioms and data structures would be very useful to me.
>
>
> just a suggestion.

A very welcome one - thanks.

There's quite a lot of Forth material on lists themselves. For example,
Forth Dimensions ran a series from Neil Bawd called Stretching
Standard Forth which includes Linked Lists (July 97 p20). Dick

The Magazine Team are always pleased to get feedback and encouragement. Here we have
a suggestion/enquiry from Boris Fennema who is new to Forth and my response - Ed.

 36

Forth News Correction
John Peters (japeters@pacbell.net) writes:
“As you can see the Win32Forth fan club http://go.to/win32forth/
was the project of Ryon Root, not me. I am working on improving Win32Forth with
the members of the Silicon Valley FIG”

Pountain's book Object-Oriented Forth is as much about data
structures as about OOF and Chapter 3 is entirely devoted to lists.

Forth provides so much freedom that it can become seductive. I can
point you to several fascinating articles about doing clever things
with lists - eg. OOF classes to develop lists and trees or rings used
to implement
lists, queues and sets. However I cannot find an article devoted to
working with straightforward lists using ANS Forth. Neither can I
find anything suitable in the on-line tutorials.

Yours is a question that deserves to have an answer so I will pass this
on to Graeme Dunbar, our Librarian, and ask him to check the
Library; I am thinking especially of the books from Forth Inc.
(Forth Application Techniques and Forth Programmers Handbook).

If nothing turns up that fits the bill, then I'm sure we can find a
member willing and able to write effectively about the topic for a
future Forthwrite. In the meantime, if you have a specific problem I
might be able to help you myself. What are you trying to do with
your list?

 ____/ / __ / / / / /
Bye for now / / / _/ / / / /
 __/ / / __ / / /_/
Chris Jakeman / / / / / / / \
 __/ __/ ____/ ___/ __/ _\

 Forth Interest Group United Kingdom
Voice +44 (0)1733 753489 chapter at http://www.fig-uk.org

 37

Forthwrite Index

Jenny Brien maintains a set of 3 indexes to Forthwrite on the FIG UK web site and updates
them with each new issue. These indexes are sorted by date, by author and by subject
*going back to 1990. The subject index is published in the magazine annually (below), with
the new entries highlighted.

Back issues of Forthwrite may be borrowed from the Library without charge, so this is a
good way to catch up on topics of special interest. If you spot a topic that has not been
adequately covered, please drop a line to the Editor.

Forthwrite Subject Index 1990-2001

Subject Author Date Title

algorithms Hersom, Ed 92-10 Advanced course
algorithms Charlton, Gordon 93-04 Backwards (psychic programming)
algorithms Hersom, Ed 93-04 Trees & splines
algorithms Hill, Will 93-06 Solving with Newton-Raphson
algorithms Payne, John 93-12 Approximate pattern matching
algorithms Bennett, Paul 94-06 Fuzz, fibs and forms
algorithms Pochin, David 94-10 First attempts at Fuzzy Logic
algorithms Bennett, Paul 95-06 Fractionally angular
algorithms Charlton, Gordon 95-06 Easter Sunday
algorithms Ramsay, Chris 99-08 Forth and Genetic Programming
applications Green, Roedy 90-08 Abundance (database)
applications Brien, Jack 91-02 Typing tutor (code)
applications Kendall, Les 91-02 Terminal emulator for PC (code)
applications Smith, Graham 91-02 Logic gates
applications Grey, Nigel 91-06 Big Blue on the move IBM CAD (review)
applications Franin, Julio 92-08 Torsion measurement system
applications Stephens, Chris 93-08 Seven thousand networked micros
applications Anderson, Joe 98-07 Forth In Space
applications Trueblood, Mike 99-11 Radio Clock
applications Bennett, Paul 00-08 Logging on - statistically speaking
applications Paysan, Bernd 00-08 A Web-Server in Forth
applications Matthews, John 01-01 Forth as Preferred Development Environment
applications Kendall, Les 01-01 XML and Forth
applications Wong, Leo 01-04 Solving a Riddle
applications Brien, Jenny 01-07 "Quikwriter" proposal
applications Anderson, Joe 01-07 Forth for NEAR Spacecraft
applications Fowell, Jeremy 01-09 "Quikwriter" Project Launch

 38

applications Brien, Jenny 02-01 JenX revisited - A Simple XML Parser
arithmetic Jakeman, Chris 90-12 A high-level /MOD (code)
arithmetic Preston, Philip 91-02 Multi-cell arithmetic (code)
arithmetic Filbey, Gil 91-04 Tutorial
arithmetic Haley, Andrew 91-04 Function approx. by Chebyshev series
arithmetic Filbey, Gil 91-12 Mixed point arithmetic (tutorial)
arithmetic Payne, John 91-12 Fixed point arithmetic (word set)
arithmetic Filbey, Gil 92-02 Mixed point arithmetic (tutorial)
arithmetic Filbey, Gil 92-04 Mixed point arithmetic (tutorial)
arithmetic Brown, Jack 92-10 Floored v symmetric division (tutorial)
arithmetic Filbey, Gil 93-02 Floating point
arithmetic Filbey, Gil 95-02 Cube roots
arithmetic Bennett, Paul 97-02 From the 'Net - Square Roots (code)
arithmetic Hersom, Ed 98-07 Quad (Fixed-Point) Arithmetic
arithmetic Behringer, Fred 00-04 32-bit GCD without Division
arithmetic Pochin, Dave 00-06 Floating Decimal Fudge
arrays Jakeman, Chris 90-08 Arrays and records (code)
arrays Brien, Jack 92-02 Ways with arrays (code)
assembly Tanner, P. 96-05 Linking machine code modules with Forth
block tools Filbey, Gil 91-02 Bits and loading blocks (tutorial)
block tools Hainsworth, Chris 91-02 Editing blocks (tutorial)
block tools Charlton, Gordon 94-04 One-screen library load (code)
bons mots Bezemer, Hans 97-08 Th
bons mots Eckert, Brad 97-08 On Off On? Off?
bons mots Luke, Gary 97-08 Tally
bons mots Hersom, Ed 97-11 NVars [H] [D]
bons mots Payne, John 97-11 3rd Swap@ Sgn #>ASCII
bons mots Wenham, Alan 97-11 Z
bons mots Elvey, Dwight 98-01 Setting bits with MASK
bons mots Wenham, Alan 98-01 Printing binary with .SB U1B. U2B.
bons mots Hoyt, Ben 98-03 PLACE is to COUNT as ! is to @
bons mots van Norman, Rick 98-03 MANY for debugging
bons mots Wong, Leo 98-05 Laying down values with COURSE
concurrency Charlton, Gordon 91-10 Co-routine monitors (code)
concurrency Charlton, Gordon 94-04 One-screen concurrent Forth (code)
control flow Charlton, Gordon 90-04 Universal delimiter (code)
control flow Brien, Jack 91-02 Extended ANS structures (F83 code)
control flow Bennett, Paul 91-04 High level FOR..NEXT (code)
control flow Carpenter, R.H.S. 92-12 Flow-charting method
control flow Preston, Philip 93-06 Shortcuts and drop-outs
control flow Brien, Jack 94-06 Extending ANSI control structures
control flow Brien, Jack 95-06 Portable control structures

 39

control flow Charlton, Gordon 95-06 Trouble with DO
control flow Jakeman, Chris 96-05 If and begin - ANS style
database Filbey, Gil 91-08 FIG UK database (tutorial)
database Filbey, Gil 91-08 FIG UK database (tutorial)
design Payne, John 90-12 Simpler Forth (comment)
design Brien, Jack 91-10 Return stack ENTER ISNOW and aliasing
design Thomas, Reuben 92-06 Forth lifestyle
design Hersom, Ed 92-10 NVARS
design Charlton, Gordon 93-04 Upside down
design Smart, Mike 93-10 Computer Shopper Programmer's Challenge
design Matthews, John 94-02 On his September lecture
design Bennett, Paul 94-08 Taking exception ...
design Hersom, Ed 94-08 Simple user interface
design Flynn, Chris 94-10 Numerical input
design Allwright, R.E. 95-06 Pagination
design Jakeman, Chris 95-06 From the 'net
design Telfer, Graham 96-05 The specification method hunt
design Brien, Jack 99-01 Working with Wordlists
design Brien, Jack 99-06 Handling Literals
design Telfer, Graham 99-06 Skeletons - Designing a Recursive Application
dynamic data Charlton, Gordon 90-04 Dynamic words (code)
dynamic data Charlton, Gordon 94-06 Work, rest and play
editing tools Jakeman, Chris 90-02 Search and replace 1/2 (code)
editing tools Jakeman, Chris 90-04 Search and replace 2/2 (code)
editing tools Lake, Mike 91-02 Full screen editor in one screen (code)
editing tools Brien, Jack 95-06 Full screen editor
editorial Hainsworth, Chris 91-04 Forthtalk and EuroFORML report
editorial Jakeman, Chris 92-08 Soapbox - "Do it yourself"
editorial Payne, John 92-12 Fat, thin or inflatable?
editorial Wilson, R.J. 93-06 Seeing trees in the wood
editorial Rush, Peter 95-02 Honeywell Forth Bulletin Board
editorial Jakeman, Chris 96-05 From the 'net - perceptions
editorial Hersom, Ed 96-07 Why Forth?
editorial Jakeman, Chris 96-11 Sell-by-date
editorial Jakeman, Chris 97-02 FIG UK joins the World Wide Web
editorial Jakeman, Chris 97-02 Welcome Disk
editorial Brien, Jack 97-08 FIG UK Web Site
encryption Greenwood, Mike 98-03 File Encryption
exceptions Charlton, Gordon 91-04 CATCH and THROW (code)
exceptions Jakeman, Chris 93-10 Portable CATCH and QUIT (code)
exceptions Jakeman, Chris 93-10 Using CATCH and QUIT (code)
FANSI project Bennett, Paul 90-06 Time for a new FIG Forth (comment)

 40

FANSI project Charlton, Gordon 90-10 High-level /MOD using recursion (code)
FANSI project Charlton, Gordon 90-10 High-level multiply (code)
FANSI project Flynn, Chris 90-10 Discussion on REQUIRES
FANSI project Hainsworth, Chris 90-10 FANSI that (proposal)
FANSI project Bennett, Paul 90-12 FANSI environs (proposal)
FANSI project Flynn, Chris 90-12 Response to design proposals (comment)
FANSI project Payne, John 90-12 Response to design proposals (comment)
FANSI project Charlton, Gordon 91-06 FANSI definitions (code)
FANSI project Charlton, Gordon 91-08 FANSI bloomers (code)
FANSI project Payne, John 91-08 Notes on FANSI (code)
FANSI project Bennett, Paul 91-10 Report on FANSI
FANSI project Charlton, Gordon 91-12 FANSI vocabularies (proposal)
FANSI project Brien, Jack 92-02 FANSI (comment)
FANSI project Payne, John 92-02 FANSI (comment)
FANSI project Preston, Philip 92-02 FANSI (comment)
FANSI project Payne, John 92-12 FANSI QUIT
file tools Brien, Jack 91-02 Loading dependant source (code)
file tools Jakeman, Chris 93-02 File access, part 1 (code)
file tools Jakeman, Chris 93-04 File access, part 2 (code)
file tools Jakeman, Chris 93-06 File access, part 3 (code)
file tools Jakeman, Chris 93-08 File access, part 4 (code)
file tools Brien, Jack 95-10 Hierarchical screen filing
file tools Wong, Leo 98-10 ANS File Words for Pygmy Forth
file tools Behringer, Fred 99-01 ANS File Words for Turbo Forth - 1
fractions Charlton, Gordon 90-02 Vulgar words (code)
fractions Wilson, R.J. 90-04 Rational numbers (code)
fractions Wilson, R.J. 90-06 Transcendental rationale (code)
fractions Charlton, Gordon 90-10 Rational approximation (comment)
futures Jakeman, Chris 94-08 Telescript (comment)
futures Jakeman, Chris 94-10 Some future directions (editorial)
futures Jakeman, Chris 96-11 Forth and Java (comp.lang.forth)
futures Pelc, Stephen 99-11 FIG UK - The Next 20 Years
futures Jakeman, Chris 02-01 The Semantic Web
graphics Filbey, Gil 90-04 Plotting spirals (tutorial)
graphics Charlton, Gordon 92-06 Turtle graphics
graphics Payne, John 92-08 Flood fill
graphics Charlton, Gordon 93-08 Drawing a line
graphics Charlton, Gordon 93-10 Not drawing a line
graphics Payne, John 93-10 How Bresenham's line drawing alg. works
graphics Pochin, Dave 00-11 "BLT is not a Sandwich"
hardware Koopman, Philip 90-10 RTX 4000 (publicity)
hardware Fowell, Jeremy 92-08 P20 chip, part 1/2

 41

hardware Fowell, Jeremy 92-10 P20 chip, part 2/2
hardware Bennett, Paul 96-07 Chuck's chips
hardware Fowell, Jeremy 99-01 FIG UK Hardware Project
hardware Fowell, Jeremy 99-04 FIG UK Hardware Project - Progress
hardware Heuvel, Leendert 99-04 The 'Egel Coursebook
hardware Fowell, Jeremy 99-08 FIG UK Hardware Project - Progress
hardware Fowell, Jeremy 99-11 FIG UK Hardware Project - Progress
hardware Fowell, Jeremy 00-01 F11-UK Hardware Project - Progress
hardware Fowell, Jeremy 00-04 F11-UK Hardware Project - Progress
hardware Fowell, Jeremy 00-08 F11-UK Hardware Project - Launch
hardware Jakeman, Chris 01-01 F11-UK Hardware Project - Progress
hardware Jakeman, Chris 01-04 F11-UK Hardware Project - Progress
history Rather, Elizabeth 95-04 The evolution of Forth
history Rather, Elizabeth 95-12 The Forth approach to operating systems
history Hainsworth, Chris 99-01 Forthwrite Issue No. 1 revisited
history Powell, Bill 99-01 The Birth of FIG UK
history Behringer, Fred 99-11 Swap Dragon
history Brien, Jack 99-11 FIG UK - The Last 20 Years
history Jakeman, Chris 00-01 Did you Know? - EasyWriter
history Jakeman, Chris 00-04 From the 'Net, Forth for Novell
history Crook, Neal 00-06 The Canon Cat
history Jakeman, Chris 00-06 Did you Know? - Forth OS
history Jakeman, Chris 00-08 Computer Conservation
history Jakeman, Chris 00-08 Did you Know? - Forth v C
history Jakeman, Chris 00-11 Did you Know? - Open Firmware
history Jakeman, Chris 01-09 Did you Know? - smart cards
history Jakeman, Chris 01-11 Did you Know? - large Forth projects
humour Payne, John 90-12 A program that works the French way
humour Smith, Graham 95-06 Book titles
humour Jakeman, Chris 96-05 From the 'net - a drinking song
humour Allwright, Ray 98-05 A Story of Cowboys

humour
Gassanenko,
Michael 02-01 From the 'Net - the non-English view

interfacing Robinson, Dave 91-08 Mouse handling (F83 code)
interfacing Bennett, Paul 98-05 Reading the World - 1
interfacing Bennett, Paul 98-07 Reading the World - 2
interfacing Bennett, Paul 98-10 Writing the World - 1
interfacing Bennett, Paul 99-01 Writing the World - 2
internals Hainsworth, Chris 90-02 Kiss and run (exploring F-PC)
internals Charlton, Gordon 91-02 A replacement for DO .. LOOP (code)
internals Flynn, Chris 91-06 Forth engine on 68000
internals Bennett, Paul 92-10 Top-down development of a Forth system

 42

internals Bennett, Paul 93-04 QUIT, the story continues...
internals Preston, Philip 93-12 RatForth - ANS on F83
internals Preston, Philip 94-02 Ratforth revised etc.
internals Preston, Philip 94-06 Redefining colon
internals Preston, Philip 94-10 Simulating EVALUATE
internals Preston, Philip 95-10 Variables, values & locals
internals Wenham, Alan 95-12 Meandering Forth
internals Brien, Jack 97-08 Building a new inner interpreter
internals Allwright, Ray 98-03 From the 'Net - Minimal word sets
internals Allwright, Ray 99-04 From the 'Net - Turnkey Apps and Docs
internals Tasgal, John 00-04 An Introduction to Machine Forth
internals Brien, Jenny 01-09 Treating Data as Source
interpreting Jakeman, Chris 95-10 From the 'net - text interpreter
interpreting Brien, Jack 96-11 Implementing an outer interpreter
interview Moore, Charles 99-06 1xForth
interview Lawless, Jim 01-11 An interview with Tom Zimmer
interview Morrison, George 01-11 Charles Moore interview on Slashdot
library Hainsworth, Sylvia 91-04 FIG UK library bulletin
library Jakeman, Chris 96-11 Library assets
library Hainsworth, Sylvia 98-05 Purchases and current publications
logic Behringer, Fred 01-07 Arithmetized Logic in Forth
MCFAs Brien, Jack 90-08 Comment
objects Jakeman, Chris 94-12 Objects and so forth
objects Jakeman, Chris 98-11 OOF - A Minimal Approach
objects Prinz, Friederich 99-01 Counting Fruits the Classic Way
objects Jakeman, Chris 02-01 A Safer Mini-OOF
performance Jakeman, Chris 98-01 From the 'Net - Speed Demons
permutations Charlton, Gordon 90-02 Permutations, a new algorithm (code)
permutations Hersom, Ed 91-10 Permutations (code)
permutations Hersom, Ed 92-04 Permutations/combinations
permutations Baden, Wil 00-11 Permutation by Transposition Sequence ACM 115A
permutations Jakeman, Chris 00-11 Simple Forth Permutations
permutations Behringer, Fred 01-04 Generating Combinations
presentation Brien, Jack 90-02 Locals and more (discussion)
presentation Matthews, Keith 90-12 Stack diagrams (explored)
presentation Brien, Jack 91-02 GIST for indexing source (code)
presentation Bennett, Paul 91-06 Manual documentation (code)
presentation Charlton, Gordon 93-12 StackFlow
presentation Brien, Jack 94-10 Readable Forth
presentation Tanner, P.H. 94-12 Post indentation
presentation Charlton, Gordon 97-02 From the 'Net - StackFlow
probability Filbey, Gil 90-12 Probability of common birthdays

 43

probability Filbey, Gil 90-12 Random thoughts on probability
probability Payne, John 90-12 Probability of common birthdays
publications Haley, Andrew 91-12 FORML 87, 88 & 89 (review)
puzzles Hainsworth, Chris 90-06 Forth brain teasers
puzzles Charlton, Gordon 90-12 Name that word
puzzles Charlton, Gordon 91-02 Puzzle answers (code)
puzzles Filbey, Gil 92-10 Tethered goat puzzle, part 1/2
puzzles Filbey, Gil 92-10 Tethered goat puzzle, part 2/2
random nos. Filbey, Gil 93-06 Visualising random numbers on Apple II
random nos. Jakeman, Chris 93-06 Random numbers
random nos. Filbey, Gil 93-08 Testing for randomness
random nos. Payne, John 93-08 More on random numbers
review Charlton, Gordon 94-10 Riding the wild 'net
review Charlton, Gordon 95-02 Report from EuroForth '94
review Bennett, Paul 97-11 EuroForth '97 Conference
review Wenham, Alan 98-01 Vierte Dimension
review Fowell, Jeremy 98-05 Forth Programmers' Handbook
review Jakeman, Chris 98-05 Genetix - The Inside Story
review Payne, John 98-07 FORML Proceedings 94 & 95
review Flynn, Chris 98-10 A Hard Day Garbage Collecting
review Jakeman, Chris 98-10 jeForth
review Bennett, Paul 98-11 euroForth '98 Conference
review Wenham, Alan 99-01 Vierte Dimension
review Anderson, Joe 99-06 Forth for Virtual Reality
review Wenham, Alan 99-11 Vierte Dimension
review Jakeman, Chris 00-01 FIG UK 20th Anniversary Reunion
review Wenham, Alan 00-01 Vierte Dimension 4/99

review
de Ceballos,
Federico 00-04 21st FORML Conference

review Wenham, Alan 00-04 Vierte Dimension 1/00
review Wenham, Alan 00-06 Vierte Dimension 2/00
review Jakeman, Chris 00-08 euroForth '99 Conference
review Wenham, Alan 00-11 Vierte Dimension 3/00
review Jakeman, Chris 00-11 Forth in the UK
review Wenham, Alan 01-01 Vierte Dimension 4/00
review Ives, Robert 01-01 "Forth Application Techniques"
review Oakford, Howerd 01-01 euroFORTH 2000 Conference report
review Jakeman, Chris 01-07 Gesellschaft 2001 Conference report
review Abrahams, David 01-07 "Extreme Mindstorms" book
review Bennett, Paul 01-07 3 Free Forths and an OS too!
review Wenham, Alan 01-09 Vierte Dimension 2/01
review Wenham, Alan 01-11 Vierte Dimension 3/01

 44

review Vinerts, Henry 02-01 Across the Big Teich
roots Wilson, R.J. 90-08 Root of rational numbers (code)
roots Charlton, Gordon 90-10 Square root (code)
roots Trapp, John 91-02 Square-roots for double/floating point
roots Brien, Jack 97-11 From the Net - More on square roots
roots Behringer, Fred 98-03 Square roots once more
roots Behringer, Fred 98-05 Cubic roots without division
roots Jakeman, Chris 00-04 Cube Roots Again
roots Jakeman, Chris 00-04 From the 'Net - Cube Roots
roots Jakeman, Chris 00-06 From the 'Net, Cube Roots
searching Charlton, Gordon 90-12 A faster string search (code)
searching Charlton, Gordon 91-10 A binary search (code)
searching Hersom, Ed 91-12 Recursive BINSEARCH (code)
searching Charlton, Gordon 93-02 Shift-AND string search (code)
searching Charlton, Gordon 94-02 Best string search (code)
searching Jakeman, Chris 95-06 Linear search
sets Charlton, Gordon 90-06 Set manipulation (code)
sorting Charlton, Gordon 90-08 Radix, an extravagant sort (code)
sorting Charlton, Gordon 90-10 Sorting strings with qsort (code)
sorting Charlton, Gordon 91-10 Heapsort (code)
stacks Preston, Philip 92-12 Stocking fillers - stacks & write-only
stacks Charlton, Gordon 94-04 Stacrobaticus exotica
stacks Filbey, Gil 94-08 Stacks (tutorial)
stacks Jakeman, Chris 95-08 Stack manipulation
stacks Joseph, Neville 95-10 Stack manipulation
stacks Barr, Stan 95-12 A third stack
stacks Hersom, Ed 97-11 Multi-precision Stack Operators
standards Jakeman, Chris 91-06 Portable code (code)
state
machines Charlton, Gordon 90-10 Variables for state machines (code)
state
machines Dunbar, Graeme 98-07 Finite State Machines 1/3
state
machines Dunbar, Graeme 98-10 Finite State Machines 2/3
state
machines Dunbar, Graeme 99-08 Finite State Machines 3a
strings Leibniz, David 91-02 String stack routine (code)
strings MacLean, Ruaridh 91-02 High level DIGIT (tutorial)
strings Charlton, Gordon 91-04 A string pattern matcher (code)
strings Payne, John 92-04 Text processing
strings Preston, Philip 92-10 TACK and BLOCKL
strings Charlton, Gordon 93-04 ANSI and portability - STRLIT (code)

 45

strings Brien, Jack 93-06 Comment on Blockl & Tack
strings Charlton, Gordon 93-06 Similarity
strings Jakeman, Chris 95-12 From the 'net - please
strings Brien, Jack 96-07 String handling
strings Jakeman, Chris 97-02 Pattern matching - 1/3 (tutorial)
strings Jakeman, Chris 97-08 Pattern matching - 2/3 (FoSM with Forth)
strings Jakeman, Chris 97-11 Pattern matching 3/3 (Rex)
strings Borrell, Richard 98-03 Deferred Language Translation
strings Oakford, Howerd 98-11 Multiple Language Programs Made Easy
structures Brien, Jack 98-01 Building Forth Structures
systems Green, Roedy 90-08 BBL Forth (review)
systems Bennett, Paul 92-02 Pygmy Forth (review)
systems Tanner, Philip 92-04 As in a glass darkly
systems Hersom, Ed 93-02 Pocket Forth (review)
systems Tanner, P.H. 93-06 URForth (review)
systems Payne, John 95-02 A 32-bit Forth for Windows (review)
systems Stephens, Chris 95-02 Forth for the Transputer (review)
systems Behringer, Fred 97-08 Forth for the Transputer

systems
Worthington,
Thom. 98-01 Aztec - A Forth For Windows '95

systems Besemer, Hans 98-05 4th - The Alternative Compiler
systems Jakeman, Chris 99-01 Web Forth Project
systems Lancaster, Garry 99-04 Forth for the Z88
systems Jakeman, Chris 99-06 Web Forth Project
systems Ouwerkerk, Willem 99-08 ByteForth for MCS51 cpu's
systems Tasgal, John 00-06 An Introduction to Color Forth
systems Tasgal, John 00-06 The BMP Example
systems Zimmer, Tom 01-09 4-bit Forth
systems Eckert, Brad 01-11 Tiny Open Firmware
tools Jakeman, Chris 90-06 Patch programming aid (code)
tools Jakeman, Chris 90-10 Run-time operators (code)
tools Preston, Philip 91-12 ALIAS ALIAS ALIAS (F83 code)
tools Jakeman, Chris 92-12 Also and -Also (code)
tools Charlton, Gordon 93-04 Wrong way round!
tools Bennett, Paul 93-06 +MOD! (LOG?) and commenting words
tools Brien, Jack 93-10 Utilities for F83 on Amstrad PCW
tools Jakeman, Chris 93-12 Shell (code)
tools Bennett, Paul 94-02 Spooling and browsing
tools Jakeman, Chris 94-02 .Call and Assert (code)
tools Jakeman, Chris 94-04 Check (code)
tools Flynn, Chris 94-06 Conditional compilation
tools Preston, Philip 94-08 More fun with EVALUATE

 46

tools Charlton, Gordon 94-12 16-bit cyclic redundancy checksums
tools Franin, Julio 95-02 MC51 Forth debugging
tools Smith, Graham 95-06 MARK
tools Jakeman, Chris 95-08 Limit variables (code)
tools Abrahams, David 95-10 General purpose utilities for F-PC
tools Stott, Barrie 97-02 Stack checking (code)
tools Jakeman, Chris 99-06 From the 'Net - Iterative Interpretation
tutorial Charlton, Gordon 92-04 Two geese and a car
tutorial Brown, Jack 92-06 An indefinite loop example
tutorial Filbey, Gil 92-12 Escape codes and printing
tutorial Filbey, Gil 93-02 A conjuring trick
tutorial Hainsworth, Chris 93-02 Shallow end
tutorial Filbey, Gil 93-04 Some old words revisited
tutorial Filbey, Gil 93-10 Floating point
tutorial Charlton, Gordon 93-12 Create .. does> ..
tutorial Filbey, Gil 93-12 Postfix
tutorial Filbey, Gil 94-02 Editorial & Tu
tutorial Filbey, Gil 94-12 Floating point
tutorial Filbey, Gil 95-08 Immediacy
tutorial Filbey, Gil 95-10 Editorial
tutorial Telfer, Graham 98-07 Wondrous Numbers
tutorial Jakeman, Chris 98-11 jeForth Project
tutorial Pochin, Dave 99-01 Forth for the New Year
tutorial Pochin, Dave 99-01 Guide to Getting Started
tutorial Pochin, Dave 99-04 Getting Stuck Into Win32Forth
tutorial Pochin, Dave 99-08 Figuring it out with Win32Forth
tutorial Jakeman, Chris 99-11 Clock Challenge
tutorial Pochin, Dave 00-01 "See Win32Forth scroll the Window"
tutorial Jakeman, Chris 00-01 Clock Challenge - 2nd installment

tutorial Brien, Jack 00-04
All you need to know about STATE,
IMMEDIATE and POSTPONE

tutorial Pochin, Dave 01-04 Six Easy Fonts
tutorial Noble, Julian 01-09 A Call to Assembly 1/3
tutorial Pochin, Dave 01-09 Win32Forth Fonts
tutorial Noble, Julian 01-11 A Call to Assembly 2/3
tutorial Pochin, Dave 02-01 The End of the Line
tutorial Noble, Julian 02-01 A Call to Assembly 3/3
vectoring Charlton, Gordon 90-10 Resolving forward references (code)
vectoring Jakeman, Chris 91-02 Deferred words (code)
vectoring Preston, Philip 91-04 Forgettable vectors and smart compiling
vectoring Bennett, Paul 92-10 Vectoring with DOER and MAKE
vectoring Allwright, Ray 97-11 From the Net - Defer and Is

 47

Chairman Jeremy Fowell, 11 Hitches Lane, EDGEBASTON B15 2LS

 0121 440 1809 jeremy.fowell@btinternet.com

Secretary Doug Neale, 58 Woodland Way, MORDEN SM4 4DS

 020 8542 2747 dneale@w58wmorden.demon.co.uk

Editor Chris Jakeman, 50 Grimshaw Road, PETERBOROUGH PE1 4ET

 01733 352373 cjakeman@bigfoot.com

Treasurer Neville Joseph, Marlowe House, Hale Road, WENDOVER HP22 6NE

 01296 62 3167 naj@najoseph.demon.co.uk

Webmaster Jenny Brien, Windy Hill, Drumkeen, BALLINAMALLARD,

 Co. Fermanagh BT94 2HJ

 02866 388 253 jennybrien@bmallard.swinternet.co.uk

Librarian Graeme Dunbar Electrical Engineering, The Robert Gordon University,

 Schoolhill, ABERDEEN AB10 1FR

 01651 882207 g.r.a.dunbar@rgu.ac.uk

Membership enquiries, renewals and changes of address to Doug.
Technical enquiries and anything for publication to Chris.
Borrowing requests for books, magazines and proceedings to Graeme.

 For indexes to Forthwrite, the FIG UK Library and
 much more, see http://www.fig-uk.org

 Payment entitles you to 6 issues of Forthwrite
 magazine and our membership services for that

 period (about a year). Fees are:

National and international £12
International served by airmail £22
Corporate £36 (3 copies of each issue)

 Your membership number appears on your envelope
 label. Please quote it in correspondence to us. Look out

for the message "SUBS NOW DUE" on your sixth and last issue and please complete
the renewal form enclosed.
Overseas members can opt to pay the higher price for airmail delivery.

 Copyright of each individual article rests with its
 author. Publication implies permission for FIG UK to

reproduce the material in a variety of forms and media including through the Internet.

FIG UK Web Site

FIG UK Membership

Forthwrite Deliveries

Copyright

 48

FIG UK Services to Members

Magazine

Library

Web Site

IRC

Members

Beyond the
UK

Forthwrite is our regular magazine, which has been in
publication for over 100 issues. Most of the contributions
come from our own members and Chris Jakeman, the Editor,
is always ready to assist new authors wishing to share their
experiences of the Forth world.

Our library provides a service unmatched by any other FIG
chapter. Not only are all the major books available, but also
conference proceedings, back-issues of Forthwrite and also of
the magazine of International FIG, Forth Dimensions. The price
of a loan is simply the cost of postage out and back.

Jenny Brien maintains our web site at http://www.fig-uk.org.
She publishes details of FIG UK projects, a regularly-updated
Forth News report, indexes to the Forthwrite magazine and the
library as well as specialist contributions such as “Build Your
Own Forth” and links to other sites. Don’t forget to check out
the “FIG UK Hall of Fame”.

Software for accessing Internet Relay Chat is free and easy to
use. FIG UK members (and a few others too) get together on
the #FIG UK channel every month. Check Forthwrite for details.

The members are our greatest asset. If you have a problem,
don’t struggle in silence - someone will always be able to help.
Do consider joining one of our joint projects. Undertaken by
informal groups of members, these are very successful and an
excellent way to gain both experience and good friends.

FIG UK has links with International FIG, the German Forth-
Gesellschaft and the Dutch Forth Users Group. Some of our
members have multiple memberships and we report progress
and special events. FIG UK has attracted a core of overseas
members; please ask if you want an accelerated postal delivery
for your Forthwrite.

