

 ISS 0265-5195

news events people reviews projects programming

Sep
2002

Issue 118

FIGUK magazine:

Choosing Forth
Competitive Programming With Forth

Book Review
Forth, the Early Years

Iteration with Many:
Source Code Index

Across the Big Teich

Linear Interpolation

FIG UK – AGM 16

Forth News 2

Book Review “The Practice of
Programming” 14

Across the Big Teich 25

Linear Interpolation 8

Iteration with Many: 19

Choosing Forth 5

Competitive Programming 7

Forth – The Early Years 18

Letters ... 32

Source Code Index 23

news

reviews

programming

people

events

Sep
2002

Issue 118

projects

 1

Editorial
We approach our annual AGM with a full
complement of officers and a reasonably
healthy bank balance. FIG UK continues to
provide a good service to its members. Please

pass on your suggestions for improvements ahead of the meeting
or, better still, come along in person.

I'm pleased to include another book review from Boris Fennema.
Do any other members have a book they're keen to recommend?

FIG UK continues to innovate, launching a new service last month
– the Forth Code Index – see details here.

This issue contains two items which were refined through
feedback from the newsgroup – you get the benefit of peer
review.

Congratulations to Bernd Paysan (of German FIG) for his Forth
entry in the ICFP contest – see details here.

Finally, we're delighted to announce another Corporate Member
– Culver Consultancy Ltd.. Expect an interview in the next issue.

PS. Don’t forget the monthly IRC session. Our next one is
Saturday 5th October on the IRC server network called
“IRCNet”, channel #FIGUK from 9:00pm.

Until next time, keep on Forthing,

 2

Forth News

Forth Resources

Forth Code Index
In August FIG UK launched the Forth
Code Index, the first index to published
source code with a global coverage. This is
on-line at our web site - see later in this
issue for details.

FIG UK Enhances Web-Site
Jenny Brien has added a site map to the
FIG UK web site at

http://www.fig-uk.org/map.htm

The site map includes a Google search of
the site itself, especially useful for searching
the archive of Forth News.

Getting Started
Dave Pochin has updated his long-
established guide to getting started with
Forth using Win32Forth. The update
covers the latest version, Win32Forth
v4.2067 at www.sunterr.demon.co.uk

TSCP Chess
Ian Osgood has announced 2 upgrades to
his port of Tom Kerrigan's TSCP chess
engine. These provide much higher
performance, better documentation and
some bug fixes. See

http://ultratechnology.com/chess.html

URL Monitor
Marcel Hendrix and Krishna Myneni have
both published tools to monitor URLs such
as web pages for changes.

Marcel's program makes use of the w3m
browser, see
http://home.iae.nl/users/mhx/scooter.frt

and Krishna's program uses lynx and grep,
see
http://ccreweb.org/software/kforth/kforth4.ht
ml

Electronic Filter
Marcel has also updated his FIR program
for designing electronic filters at
http://www.iaehv.nl/users/mhx/eprograms.ht
ml

ANS Forth Published Papers
In the previous issue a link was provided
to proposals for Internationalisation.
Similar papers for cross-compiling can be
found at:

ftp://ftp.forth.com/pub/ANS%20Forth/

 3

Non-commercial
Systems

.NET
Microsoft lists .NET Language Partners
providing 16 languages that run on the
.NET platform. The entry for the Forth
language refers to Delta Forth shareware
product from Valer Bocan.

"Delta Forth .NET integrates seamlessly
into Microsoft's .NET platform and can
interoperate with programs written in other
.NET languages, such as C#, VB.NET,
JScript, etc.. The Delta dialect is simple
and easy to learn. It is excellent for
academic environments and it's the perfect
tool to write the scientific project you've
always wanted."

Download Delta Forth v1.1 from
http://www.dataman.ro/dforth/index.html

The site also records a dispute with
Tucows, the software library site. Tucows
alleged behaviour can only be described as
bizarre.

PicForth for 16F87x
Sam Tardieu has published his free Unix
(or Linux) hosted Forth compiler for the
Microchip PIC 16F87x family. It is in no
way finished yet (hence the low version
number 0.1) but does a good job at
generating efficient code. See

http://www.rfc1149.net/devel/picforth

Aztec Forth for Windows
Thomas Worthington has reposted his
Aztec Forth for Win32 which is pretty
small, hand-written in assembler and
allows full access to the DLLs. See
http://www.tww.cx/azintro.php

Ficl
John Sadler reports Ficl release 3.03 is
now available for download at
http://ficl.sf.net

Thanks to Daniel Sobral for this release,
which includes a number of bug fixes.

Coming soon: Ficl 4.0 will feature a
revised inner interpreter that's about twice
as fast as the original.

kForth
A new version of kForth, version 1.0.12,
is available for Linux and Windows at
http://ccreweb.org/software/kforth/kforth.html

 4

Commercial Systems

Global Positioning System
Triangle Digital Services have developed a
Forth-based data logging system which
collects location information from a GPS
receiver. The photo shows the logger and
the black hemisphere which is the GPS.

Application areas include agriculture,
security, transport, boats etc.. Information
that can be logged includes longitude and
latitude, date and time, pressures,
temperatures, rotation rates, flow rates,

linear or rotational position,
doors open/closed etc.

To recover data you can
read the card in a PC,
upload through a serial port
or read the data directly
into Excel spreadsheet.

Joining the F11-UK Mailing List:

Graeme Dunbar, our list moderator, has reported that the list has
received a number of requests of uncertain origin to join it. Since
spamming is a potential problem the banner on the List's home page
has been altered to ask prospective members to identify themselves
first. If you would like to join please apply to:

http://groups.yahoo.com/group/fig-forth-uk/

 5

From the 'Net -
Choosing Forth

This posting on comp.lang.forth encapsulates the Forth ideal so well, it

was worth re-printing.

Subject: Re: Hang on, isn't Forth out of date now?
Date: Sat, 10 Aug 1996
Organization: Bell Global Solutions

Andy, thanks for the provocative question. It's helped me compose my
thoughts for a flyer I'm writing.

No, Forth isn't out of date. Forth is still great because of the
following benefits:

 1. It is simple to build from the bottom up.
 2. You can get an _application_ to run in a miniscule amount of RAM.
 3. You can try things out in real time as you build your system.
 4. Compared to any other interpreted language, it is fast.

Allow me to elaborate:

1. Forth remains one of the few environments which is totally comprehensible
by one person. This is a big plus when you're working in
safety-critical systems, or whenever you need to verify program
correctness.

2. Forth does indeed make "the best out of a slow microprocessor with
little RAM." Such processors are more common than PCs -- they're called
embedded systems. It will be a long time before your car's fuel-
injection system has 16 MB and a 1.25 GB hard disk. (And most embedded
processors are NOT supported by Borland C++.)

3. There is simply NO substitute for an interactive interpreter when
debugging. Even an edit-compile-test cycle of 5 seconds feels clumsy,
after you're used to testing any subroutine by typing its name. Can
your debugger let you manually try different input parameters? (My
Borland compiler can't.) And you should try a modern interactive

 6

Forth to learn how easy it makes testing embedded hardware! I've yet to
meet the in-circuit emulator that lets me exercise I/O as easily as a
few simple lines of Forth code. (Or lets me test multiprocessors or
distributed systems at all!)

4. Forth is still fast. Modern compilers produce code as good as any
other language -- not all Forths use threaded code! (I could relate a
horror story I heard about an engine control system written in C++.)
Forth is certainly the fastest interpretive language around; and besides
the debugging advantage, I've found interpretive Forth to be superior
for incremental development.

However, I have other reasons for using Forth:

5. Forth is extensible. This means that if the language does not
support some feature or capability you need, you can add it...not as a
subroutine package, but as part of the language itself. Can you imagine
writing object-oriented code, if every reference to an object had to be
through a function call? That's how I feel about other languages'
implementations of multitasking, multiprocessing, and networking. Only
in Forth can these be truly transparent.

6. Forth lets me work at a high level of abstraction. Between
language extension and "active" data structures, when I write a Forth
application, I am really writing in the language of the application --
not the language of the compiler. This makes the program easier for a
newcomer to read, and easier to maintain.

Like most programmers, my choice of language is based on personal
preference. I find that I think more clearly in Forth and, from past
experience, I estimate I'm 5 to 10 times more productive in Forth than in
C. Others may not share this preference or facility. Forth may not be
your preference, but it's certainly "relevant" -- now more than ever.

--
Brad Rodriguez bj@forth.org Computers on the Small Scale
This brain for rent! See http://www.forth.org/fig/homes/brodriguez.html
Contributing Editor, The Computer Journal.... http://www.psyber.com/~tcj
Director, Forth Interest Group...................... http://www.forth.org/fig.html

 7

Competitive Programming
With Forth

Every year International Conference on Functional Programming holds a
programming contest and publishes the results at the conference afterwards.

Or as C/Net put it on http://news.com.com/2100-1001-956188.html :

"While the rest of the nation lounges on the beach and
bids farewell to summer, some computer programmers
will spend the Labor Day weekend creating software
robots that will deliver virtual packages while shoving
each other into lethal ponds.

The occasion for this creative exercise is the Fifth
ICFP Programming Contest, a 72-hour battle announced
Friday and ending Monday at noon. Winning robots will
square off against each other at the International
Conference on Functional Programming held this year in
Pittsburgh Oct. 4-6.

Entrants, vying for a $1,000 cash top prize, may
use any programming language they wish, but contest
organizers are confident that the prevailing robot will be
created with a functional programming language."

In 2001, there were 263 entries. The entries for this year
have just been completed and will compete against each
other at the conference. The table shows fewer entries
from functional languages than from non-functional
ones. However in past competitions, the functional language teams have
performed well which should please the ICFP. As the table also shows, this year,
and for the first time, there is an entry for Forth.

We have Bernd Paysan to thank for taking up the challenge on
behalf of Forth - read his report at

 The competition involves competing robots to operate within
a grid defined by a simple character map. For example, here is a (very
small) example board, where "#" represents an impassable wall and
"~" indicates lethal water. The robots take it in turn to issue a simple
text command (one of three possible ones). Speed of execution therefore is
irrelevant and only quality of decision counts. The robots communicate with the
game server using TCP/IP sockets. For details, see
http://icfpcontest.cse.ogi.edu/task.html

As Bernd explains, he wasn't able to spend the full 3 days on the contest,
but he got his robot working so he submitted it anyway. Now he's set an example
to Forth users everywhere, it would be great to see several Forth entries next year.

Language Entries
Java 28
C++ 23
C 21
Python 20
Ocaml 19
Perl 13
Haskell 10
Scheme 6
Lisp 4
Ruby 3
Erlang 2
Mercury 2
Delphi 2
Dylan 2
Ada 1
Forth 1
Icon 1
Prolog 1
Rice 1
SML 1
Smalltalk 1

7 5
..@....
.......
##.~~~~
...~~~~
.......

 8

cjakeman@bigfoot.com

Linear Interpolation
Chris Jakeman

The new Source Code Index (mentioned elsewhere in this issue) lists
several ways to extract data from a table of data points and estimate

the values in between the entries. This is called interpolation. With help
from regulars on the newsgroup, Chris develops a fast solution which

has not been previously documented.

The new Source Code Index lists several ways to extract data from a table of data
points and estimate the values in between the entries. In this example, the data
points provide the sine of an angle, with 8 data points are used to span a full right-
angle. (Linear Interpolation is fast and suitable for any function, but do check that
your Forth doesn't provide the function (eg FSIN) already.)

Sin Table

0

512

1024

0 32 64 96 128

X' x 128/90

S
in

(X
')

Linear Interpolation
Table Entries

create SinTable \ Sample table for 2^10 x Sin(X*8/90)
\ Y X X'
 0 , \ 0.00 0
 128 , \ 11.25 1
 256 , \ 22.50 2
 569 , \ 33.75 3
 724 , \ 45.00 4
 851 , \ 56.25 5
 946 , \ 67.50 6
1004 , \ 78.75 7
1024 , \ 90.00 8

This first example shows how easy it is to
build a data table and look-up a value.

 9

: Sin (Angle*8/90 – Sin{A}*1024)
 cells SinTable + @
;

4 Sin . .(should = 724)

Once we add interpolation for values between the data points, the code gets more
interesting. Brad Eckert has published a cubic interpolation
(http://www.tinyboot.com/cubic.txt) which fits a curve between 4 points to extract the
maximum accuracy out of the minimum number of data points.

At the other end of the spectrum, linear interpolation merely fits a straight line
between 2 points (as in the chart) but this approach is much faster. Brad Eckert
has also offered a linear solution which is complex but effective
(http://www.tinyboot.com/linear.txt). It uses arithmetic on double numbers treating the
top cell as an integer with the bottom cell as a fraction. I offered a shorter
alternative on comp.lang.forth which uses two divisions; /MOD to choose the table
entry and */ to calculate the result.

I am grateful to Marcel Hendrix for showing me how to devise a simpler, shorter
solution which is more than 10 times faster than either of these. The solution
offered here was refined on comp.lang.forth and owes its speed to the use of
RSHIFT in place of division. The solution is presented twice, with the second
version being a development of the first.

For the scheme to work, the X interval between data points must be a power of 2.
In this example, it is 24 or 16. We do as much work as possible at compile time.
Each entry in the data table contains 2 values, the Y value corresponding to X and
also the Y' – Y value, dY, which is the increase in Y to reach the next data point. We
can fetch both values at once using 2@.

: Entry, (Y Y' –- Y')
 swap 2dup - (-- Y' Y Y'-Y=dY)
 , \ Compile dY
 , \ Compile Y
;
create SinTable \ Sample table for 2^10 x Sin(X*128/90)
\ Y X X'
 0 \ 0.00 0
 200 Entry, \ 11.25 16
 392 Entry, \ 22.50 32
 569 Entry, \ 33.75 48
 724 Entry, \ 45.00 64
 851 Entry, \ 56.25 80
 946 Entry, \ 67.50 96
1004 Entry, \ 78.75 112
1024 Entry, \ 90.00 128
drop

We first create Entry, as
a convenient word to add
entries to the table.

 10

We will split the X value into two parts, the higher part matching one of the
entries in the table and the lower part indicating the amount to be interpolated.

In this example, the interval between each X entry is 16 and X = 39. This is split
into higher=32 and lower=7. 4 RSHIFT is used as a fast divide by 16, giving an
index down the table of 32/16=2.

We extract the two values corresponding to X=32, which are Y=392 and
dY=177.

Finally, we divide dY by 16 to give the interpolation and add that to Y for the
result.

 4 CONSTANT Bits/Step \ 2^4 = 16
15 CONSTANT BitMask \ Ie. Binary 00001111

: Interpolate (X*2^7/90 Table -- result*2^10)
 swap dup BitMask and >r \ Extract lowest 4 bits
 Bits/Step rshift \ Fast divide by 16 gets index
 2 cells * + \ Index down the table
 2@ \ Get pair of values for entry
 r> * \ Get interpolation
 Bits/Step rshift \ Scale it
 + \ Add dY to Y
;
: Sin (Angle*128/90 – Sin{A}*1024)
 SinTable Interpolate
;

39 Sin . .(should = 469)

"simpler, shorter and 10 times faster"
A more refined version follows. By storing extra data at the start of the table, we
can make it general, working with steps that are 2N, not just 24. It also includes an
optional range check.

We improve accuracy by rounding the interpolation quantity before the final
division, rather than truncating.

We also improve performance slightly by calculating 2 CELLS at compile-time.

The earlier version didn't work for the final value X=128, as this wasn't actually
included in the table data. To include this last value, repeat the last entry as
shown below.

 11

: Entry, (Y Y' –- Y')
 swap 2dup - (-- Y' Y Y'-Y=dY)
 , \ Compile dY
 , \ Compile Y
;
create SinTable \ Sample table for 2^10 x Sin(X*128/90)
\ Preamble
 BitMask , Bits/Step , \ used by Interpolate
 0 , 129 , \ Min and max+1 limits to X
\ Data Points
\ Y X X'
 0 \ 0.00 0
 200 Entry, \ 11.25 16
 392 Entry, \ 22.50 32
 569 Entry, \ 33.75 48
 724 Entry, \ 45.00 64
 851 Entry, \ 56.25 80
 946 Entry, \ 67.50 96
1004 Entry, \ 78.75 112
1024 Entry, \ 90.00 128
1024 Entry, \ Last entry repeated
drop

: Interpolate (X*128/90 Table -- result*2^10)
 swap \ -- Table X
 over 2@ \ Get Bits/Step and BitMask from table
 2 pick and \ Extract lower bits
 over >r >r \ Stash them and Bits/Step
 rshift \ Fast divide of higher bits gets index
 [2 cells] literal * \ Index down the table
 [4 cells] literal + \ Skip past the preamble
 + 2@ \ Get pair of values for entry
 r> * \ Calc interpolation
 r> 1- rshift 1+ 1 rshift \ Add 1 during division to round result
 + \ Add dY to Y
;
: SafeInterpolate (X &Table -- Result)
 2dup 2 cells + 2@ within abort" Outside range of look-up table"
 Interpolate
;
: Sin (Angle*8/90 – Sin{A}*1024)
 SinTable SafeInterpolate
;

39 Sin . .(should = 469)

For maximum accuracy, aim for dY values that never exceed the dX value
(although they do for most of the range of this example). Otherwise the
interpolation will never return certain values of Y.

 12

Also, if X is the result of other calculations, ensure these provide rounding to the
nearest integer so that X=127.51 becomes 128 not 127.

Here is a small puzzle from Michael Gassanenko. A word with this
behaviour is listed in the AS Forth core word-set. What is its name?

: X?
 2DUP > TUCK INVERT AND >R AND R> OR ;

 13

provides everything needed in a
professional-quality low-cost Forth
controller board.

Use it in industrial or hobby
projects to control a wide range of
devices using the well-known multi-
tasking Pygmy Forth.

Designed for hosting from a Windows
or DOS PC, you can test your
application as it runs on the F11-UK
board itself. The board was developed
by FIG UK members to provide an easy
way to explore the world of controlled
devices – a niche where Forth excels.

The kit includes both hardware and
software and is supported and sold to
members at a nominal profit through a
private company.

Software

PC-based PygmyHC11 Forth compiler
running under DOS produces code for
Motorola HC11 micro-controller.

Code is downloaded via standard serial
link from the PC to the FLASH memory (or
RAM) on the F11-UK single board computer
(SBC).

No dongle or programming adaptor of any
kind is required.

Forth running on the SBC is interactive
which makes debugging and testing much
easier.

Multitasking and Assembly included.

The serial link can be disconnected to
enable the SBC to function as a stand-alone
unit.

All source code provided - 78 pages
or so (unlike many commercial
systems).

Around 30 pages of additional
documentation is supplied including a
full glossary of the 300 or so Forth
words in the system.

Email mailing list for discussion and
limited support.

Hardware:

Processor:
 Motorola HC11 version E1 - 8 MHz (2
 MHz E-Clock).
Memory:
 32k x 8 FLASH
 32k x 8 battery backed SRAM
 512 x 8 EEPROM onboard HC11.
I/O:
 20 lines plus 2 interrupts (IRQ & XIRQ).
Analogue in:
 up to 8 lines using onboard 8-bit A/D.
Serial:
 1. RS232, UART onboard HC11

 2. Motorola SPI bus onboard HC11.
Expansion:
 Via HC11 SPI serial bus using
 2 or more of 20 available lines.
Timer system:
 Inputs: 3 x 16-bit capture channels
 Outputs: 4 x 16-bit compare channels.
PCB size: 103 x 100 mm.

Price to FIG UK members: £47.0 plus postage and packing (£2 UK, £4 overseas) plus $25.0

(US Dollars) for registration of 80x86 Pygmy Forth with the
author Frank Sergeant.

 Delivery: ex-stock.
 More information: jeremy.fowell@btinternet.com and 0121 440 1809

F11-UK

 14

fennema@gofree.indigo.ie

Book Review
“The Practice of
Programming”

Boris Fennema

Here is another welcome book review from Boris.

Introduction
This book covers the concepts of good programming practices – " topics like testing,
debugging, portability, performance, design alternatives, and style -- the practice of
programming -- are not usually the focus of computer science or programming
courses. Most programmers learn them haphazardly as their experience grows, and a
few never learn them at all. "

To do so, the authors illustrate their examples in a number of languages C,
C++ and Java and scripting languages (AWK mainly). The authors speak with some
authority; Brian Kernighan is the co-author of the C programming language and
represents the "K" in the AWK language. They have collaborated on joint books before.

Their main thrust is that a well-written program should observe four guidelines:

§ simplicity
§ clarity
§ generality
§ automation

The authors maintain that a program written with these in mind will be easier to
create, understand, maintain and revise and will be a better program all round.

The following aspects of programming practice are covered in 9 chapters: style,
algorithms and data structures, design and implementation, interface design,
debugging, testing, performance, portability, and notation. The book’s appendix
includes a collection of rules based on these 4 principles. The intended audience are
people learning to program and people involved in programming directly as
programmers or indirectly as managers or support staff.

Review

The Practice of Programming
Brian W. Kernighan and Rob Pike
Addison-Wesley, 1999
ISBN 0-201-61586-X
pp256, £11.49 from www.amazon.co.uk

 15

The first two chapters set the scene. The first chapter highlights the importance of good
style and naming when writing source code. The next chapter reviews some
fundamental data structures and some sorting and searching algorithms. It also
introduces the O(n) notation which will be used when discussing performance.

Chapter 3 discusses a program to generate text from an input text, but the
output is altered via a Markov Chain. The algorithm ensures that the output text
resembles the input text, but with some randomness thrown in. After the algorithm is
discussed, it is implemented in C, C++, Java, Perl and AWK and the differences in
implementation and performance discussed. The reader is invited to implement the
program in a language of his/her choice and see how it compares (Forth anybody?).

The fourth chapter provides an good insight into how hard it is to build a
production-strength utility library. It discusses library issues such as public access,
information hiding, resource and memory management and error handling. The
discussion is kept focussed by using a utility library to parse Comma Seperated Values
(CSV) – this makes the chapter very engaging to follow without being too long or too
abstract. It finishes with some guidelines on writing modular code.

The fifth and sixth chapter give useful guidelines on debugging and testing
techniques which are very useful for novice programmers. To have all the techniques
in one book makes it a useful refresher course for the hardened programmers among
us.

The performance and portability chapters are also useful, albeit specific to
C/C++.

The last chapter focuses on notation. This is an area which would be
recognised by Forth’ers as very powerful as, where a language notation can be
matched to the problem, it can be expressed more simply and elegantly. It describes
regular expressions, marshalling of data (describing a layout of a structure with a
simple type grammar).

It also shows that if the problem can be broken into stages and a specific tool
applied to each of the sub-problems, it can be solved quickly by using the leverage of
each of the tools. If needed, the problem could be re-expressed in a little language and
a specific compiler invented for this new language.

Summary
This is a useful book – it covers the 4 principles of clarity, generality, simplicity and
automation well. The main focus in its examples is on C/C++ but they are still
appropriate to other languages.

It shows the strengths of having a few appropriate languages in your
programmer’s tool box. Applying the correct language in the proper style to a problem
can make big differences – (since Forth is flexible in syntax, it can play a role where
languages with more strict grammars fail).

I did decide after reading it to invest some time in learning AWK and TCL (for
some reason I cannot get my head around Perl) which in itself was well worth the
effort.

 16

FIG UK – AGM

Our Annual General Meeting will be held on Saturday 19th
October at Doug Neal’s home, 58 Woodland Way, Morden from
2:00pm.
 All members are cordially invited to do attend. If you
cannot come, but wish to comment on the way FIG UK is going or
the direction you would like it to take, write or e-mail Jeremy or
myself before the meeting.
 Anyone who lives in the London area can get to Doug’s
house easily by Underground as he is just ten minutes walk from
the southern terminus of the Northern Line. You can get
directions from http://www.multimap.com for his postcode SM4
4DS or just phone him on 020 8542 2747.

Some of the topics likely to be discussed are:

§ Joint projects such as Quikwriter Project
§ Ideas for the Web Site
§ Finances – see annual accounts on next page
§ EuroFORTH 2003
§ Promoting Forth and FIG in the UK

The previous issue of Forthwrite included a review of "Writing Your
Own Programming Language" by Norman Smith. Boris Fennema
reports that this is available from http://www.amazon.co.uk for £13
(new) or £6 (used).

 17

Forth Interest Group UK: Revenue Account for year ending 31 March 2002

The information from these accounts will be discussed at the forthcoming AGM to
which all members are invited and reported in the next issue.

Income and Expenditure

Y/E 31/3/01 Y/E 31/3/02

1,293 Subscriptions 1,111
 Advertisements 144

8 Interest (net of tax) 4

 1,301 1,259

593 Printing Forthwrite 649
215 Postage 245
26 Other Printing
50 Library Expenses 55

 Website Expenses 80

 884 1,029

 417 Net surplus for the year 230

Balance Sheet as at 31 March 2002

Y/E 31/3/01 Y/E 31/3/02
 527 Accumulated Fund b/f 944
 417 Surplus for the Year 230

 944 1,174

Represented by:
 1,580 Cash at Bank 1,792
 Unexpired Expenditure 11

 1,803

586 Unexpired Subscriptions 618
50 Sundry Creditors 11

 636 629

 944 Net assets 1,174

Note: The subscription is treated as representing six issues of Forthwrite (five were
published in the year). No value has been placed on unsold back numbers, the library or
other stocks.

29th August 2002 NEVILLE A. JOSEPH
Marlowe House, Hale Road, Chartered Accountant
Wendover, Buckinghamshire

 18

Forth – The Early Years

"The Evolution of Forth", a 46-page history of the first 20 years of Forth
programming by Rather, Colburn and Moore was presented at the ACM SIGPLAN
History of Programming Languages Conference 1993, printed in Forthwrite (April
1995) and can now be found at http://www.forth.com/Content/History/History1.htm

Chuck Moore uses a rather
different style1 in his personal
history of the development of
Forth up to the formation of Forth
Inc. in 1973.

In particular, he traces the
development of each group of
words in the Forth dictionary,
showing how the applications he
was writing each required an
extension to the core until he felt
Forth had grown into a complete
entity.

Chuck also mentions the issue of
software patents and the strong
possibility that Forth would not have been released into the public domain.

This history can be found on-line at http://www.colorforth.com/HOPL.html

1 Chuck writes: "This paper was written for the History of Programming Languages
Conference. It was summarily rejected, apparently because of its style. Much of the
content was included in the accepted paper – The Evolution of Forth."

 Functionality Time Line

 SAO 1958 Interpreter
 SLAC 1961 Data stack
 RSI 1966 Keyboard input
 Display output, OK
 Editor
Mohasco 1968 Compiler
 Return stack
 Dictionary
 Virtual memory (disk)
 Multiprogrammer
 NRAO 1971 Threaded code
 Fixed-point arithmetic

 19

Iteration with Many:
Leo Wong and Chris Jakeman

A thread on comp.lang.forth2 asked how best to define a sequence of
integer constants – an enumeration. Responses ranged from the very
simple to the very general. Leo proposed Many: as a middle-of-the-
road solution and offered several examples showing that it has uses

beyond enumeration.

Here are some postings from the thread:

John Drake (drake@cis.uab.edu)
Recently I was working on a project and needed an enumerated data
type. I found two approaches to this at the Taygeta Forth
repository. Both worked by defining a way to create successive
constants. The first created a defining word that kept track of the
next constant value.

: ENUM (--)
 CREATE 0 , DOES> (-- n) DUP @ CONSTANT 1 SWAP +!
;

An example of use is:

 ENUM COLOR
 COLOR RED
 COLOR BLUE
 COLOR GREEN

ENUM defines a new enumerate called COLOR. COLOR can then be used
to define unique CONSTANTs for each color. In the example, RED
will return a value of zero, BLUE will return 1, and GREEN will
return 2.

That's ok, but I'm lazy. The thought of having to type:

ENUM MONTH
MONTH JAN MONTH FEB MONTH APR ...

etc. was a bit much for me. Then I found another enum example by
Everett Carter at ftp://ftp.taygeta.com/pub/Forth/Tools/enums.fth

This one worked as follows:

12 enums: jan feb mar apr may jun jul aug sep oct nov dec

2 Thanks to the regular posters on the newsgroup for helping to refine Many:

 20

That was ok. But what happens when the enums span more than one
line? (The problem I was working on needed 68 enums). Also I
didn't like the fact that I had to keep up with the number of enums
that needed to be created.

Elizabeth D Rather (erather@forth.com) responded with an approach which is
very simple but doesn't save John from typing ENUM exactly 68 times:

SwiftForth's version is even simpler:

: ENUM (n -- n+1)
 DUP CONSTANT 1+
;

So you start the sequence wherever you like:

1 ENUM JAN ENUM FEB ENUM MAR ... DROP

and lines, etc., aren't a problem. No need to be complicated about
this.

Wil Baden (wilbaden@netcom.com) has published a comprehensive solution he
calls Iterative Interpretation, see Forthwrite June 1999.

1 (: ENUM || JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC :)
DROP

which avoids repeating ENUM. The key point here is that Wil separates the
repetition provided by (: ... | ... | ... :) from the phrase ENUM that is
being applied. This makes his solution useful in a much wider range of situations.

Leo Wong suggested a less capable but simpler word MANY which also separates
repetition from application. John would use it as

: enums (n -- n+1) DUP CONSTANT 1+ ;
1 many enums jan feb mar apr may jun july aug sep oct nov dec
drop

This early version reads only to the end of a line and a second word MORE was
needed to read each additional line. With feedback from the newsgroup, Leo has
now refined MANY: to read multiple lines until it meets ";" – its terminator.
(MANY: has acquired a trailing ":" to avoid confusion with MANY, a "Bon Mots" from
Forthwrite March 1998).

Many: will also skip over comments indicated by (..) and \

 21

Many: might be used as follows.

§ to suit John Drake:

: enums (n -- n+1) DUP CONSTANT 1+ ;

1 many: enums jan feb mar apr may jun
 jul aug sep oct nov dec ; drop

§ to save on typing

: constants (--) <next> EVALUATE CONSTANT ;

many: constants
 3 three
 2 two
 1 one
 0 zero
 ;

§ to compile text into the Data Space

: string, (a u --) DUP C, 0 ?DO COUNT C, LOOP DROP ;
: wrds (--) <next> string, ;
CREATE speech

many wrds Four score and twenty years
 ago our fathers brought Forth
 on this continent.... ; 0 C,

which can then be printed using

: say (a --)
 BEGIN COUNT DUP WHILE 2DUP TYPE SPACE CHARS + REPEAT 2DROP ;

speech say

§ to create fields for structured data which remember their offset and size

: field (offset -- offset+length)
 <next> EVALUATE 2DUP 2CONSTANT CHARS + ;

0 many fields
 9 ssn
 20 firstname
 15 lastname
 35 street
 15 city
 2 ny (state)

 22

 9 zip \ etc.
; .

Many: is defined below. preparse looks ahead to the next word but rewinds the
input stream ready to re-read the word it found.

: <next> (-- a u) BL WORD COUNT ;
: preparse (-- a u) >IN @ >R <next> R> >IN ! ;
: many: (... -- ...) \ Usage: many: <word> ... ;
 ' >R
 BEGIN
 preparse 2DUP S" ;" COMPARE
 WHILE
 2DUP S" (" COMPARE 0= IF 2DROP POSTPONE (ELSE
 2DUP S" \" COMPARE 0= IF 2DROP POSTPONE \ ELSE
 NIP IF R@ EXECUTE ELSE
 REFILL 0= ABORT" ; missing after Many:"
 THEN THEN THEN
 REPEAT 2DROP
 BL WORD DROP \ Skip the ";"
 R> DROP ;

 23

Source Code Index

Following a substantial thread3 on the comp.lang.forth newsgroup about promoting a
"culture of sharing", FIG UK has published an on-line Source Code Index. This is
hosted on our web-site at http://www.fig-uk.org/codeindex/ and provides
references to as many items of published source code as possible. This is the first
ever index of source code to have a global remit and we hope it will become a
valuable service from FIG UK to the Forth community.

The Index begins with a summary page dividing the entries into topics. You can
examine the entire index or a single topic sorted by title, author, date, platform or
format. Here is a sample page for the topic "object-oriented".

The right-hand column provides a URL link to visit a web-page, download a file or
send an email request for a photocopy from a publication.

361 postings kicked off by John Passaniti - see

http://groups.google.com/groups?as_umsgid=uj6bcvfafpj89d@corp.supernews.com

 24

Unusually, the Index includes fields for Description and Comment, indicating the
scope of each entry and giving a hint to its likely value. The downside is that every
item has to be read and appraised; also the author may dispute the compiler's
opinion. Let's hope the benefits outweigh the brickbats.

The index was seeded with articles from
Forthwrite, Forth Dimensions, tutorials
and source files from member Krishna
Myneni's extensive collection. There are
currently 243 entries in 34 topics and
items are being added from ftp.forth.org
and forth.sourceforge.net.

When you visit the Index page, please
mention any material that is still missing to
the organisers. Also, note the topics where
there are few entries or none at all. Could
you make a contribution?

Building the Index was a challenge. In
theory, all the data could be stored in
an XML file and a subset of the data
retrieved, sorted and presented using
an XSLT script.

Learning all the procedures to
implement this for the FIG UK web
site server seemed too much of a
learning curve, so the current
implementation is simply a large set
of similar HTML pages with the same
data sorted in different ways.

But it's fast and suitable for
any browser. Changes are made in a
single place and the multiple pages
are then updated from a script.

 25

Henry Vinerts
Volvovid@aol.com

Across the Big Teich
Henry Vinerts

This material was prepared for Vierte Dimension by Henry Vinerts, and
printed by kind permission of Forth Gesellschaft (German FIG)

FIG Silicon Valley Chapter Meeting - June 2002

Greetings from Northern California!

On June 22nd the SVFIG met and celebrated the arrival of another
sunny summer, meteorologically speaking, at least. The next day's
headline in the San Jose Mercury News, the leading local newspaper,
read: "High-tech slowdown may be worsening", and "Silicon Valley's
high-tech hangover isn't over. In fact, it may be getting worse." According
to the paper, unemployment in Santa Clara County rose from 1.7% in
year 2000, to 7% in 2001.

I suspect that the typical SVFIG member falls outside these
statistics. In the past few years the attendance at our meetings has
not fluctuated markedly, nor have there been an unusual number of
inquiries for employment. It would be interesting to collect some
statistics from the "Forthers" to see how and why they differ from
the local mainstream and whether there are similarities among them
on a global scale.

Dr. Ting certainly has been busy, mainly with Forth in Taiwan.
His report filled the two hours in the morning without any breaks.
First, about his P8 and P16 prototype chips, which have been made in
Taiwan, and how they will work with eForth. Then, how the Nintendo
GameBoy Advance with its ARM7 microprocessor (see
http://www.gameshark.com) serves as a very nice platform for Forth
and provides portable technology for Chinese character generation.

Although Win32Forth would work on this system, Ting says that
he found Win32Forth too complicated and never could write a good
manual for it. Therefore he developed F#, a 32-bit, protected mode,
subroutine-threaded eForth implementation with a Windows interface.

 26

With F# he is helping to "fine-tune," or aesthetically adjust the
70,000 Chinese characters that are generated by a Taiwanese
program running on Windows XP (see also report of next meeting).

After the lunch hour (and that was the only break until quitting
time at 4 P.M.), Scott, a first-time visitor, related his 20 years of
work experiences, starting with Forth (MVP, F83) in machinery
controls and ending-but not yet being finished-with Forth (written in
TCL!) in his attempts to generate web-page-presentable automated
error-code finders for troubleshooting ladder-logic systems, such as
are used in PLCs (programmable logic controllers).

It was good to see the ex-president of FIG, Skip Carter. Could
it be that the slumping economy has granted him some time for Forth
again? Skip concluded our meeting with a demonstration of a brand
new PDA (personal digital assistant) from Sharp in Japan, the "Sharp
Personal Mobile Tool" SL-5000, which costs less than $600 in the
USA. Since it comes ready to run Linux and the GCC cross-compiler
from Sharp is free, Skip has wasted
no time to port Anton Ertl's Gforth
to it.
Using a wireless browser (from
http://www.caphnet.com, I believe)
that runs on PDAs and cell phones,
Skip can use the SL-5000 with a
wireless network card for Internet
access from practically anywhere.
For more details, go to Skip's web
site,
http://www.taygeta.com/forthcomp.
html

.
Incidentally, Skip said that in

Japan cell phones can do PDA work.
I wonder how long it will be before
cell phones replace the backpacks that children carry to school with
them? Or make it unnecessary to go to school at all? So far, however,

 27

cell phones have failed to help fight the tremendous forest fires
blazing in the U.S.A., but I would not be surprised that more money is
being spent on them than on relieving national disasters.

Carpe diem!

Henry

FIG Silicon Valley Chapter Meeting - July 2002

Hello, everybody!

The world has changed, but SVFIG marches on as before. As a
matter of fact, I could probably send you one of my old reports in
lieu of this one and not raise any suspicions among the readers.

Dr. Ting did his usual stint of nearly two solid hours in front of
the audience. Besides the indispensable coffee pot, he had also lugged
in a complete Compaq desktop, the only computer he could find that
was running Windows XP. This was needed for the demonstration of
Chinese characters that can be generated with the help of F#, which
is yet another Forth dialect--an implementation of eForth, developed
for XP by a young computer scientist in Taiwan.

Windows XP itself comes with about sixty thousand Unicode
Chinese characters, all of which can be constructed from perhaps
1,000 low-level components or strokes. F# generates the strokes and
stores them in bit-map form in less than one megabyte of memory.

As such, ported to Nintendo's GameBoy Advance which comes
with 8 MB of flash memory and a 256x256 pixel display, F# is hoped
to be the best way to surmount the biggest barrier which Chinese
youngsters have to learning programming - the need to know English.

Dr. Ting's demo included the GameBoy with various displays of
the Chinese characters. His most recent work is still centered around
enriching the single-line strokes to look more like brush strokes, i.e.,
changing the widths of the lines at each
point. Thus a bonus lecture on Bezier curves, quadratic and cubic

 28

equations, enough to make my head swim.
Next came a brief anouncement by John Peters of his idea to

collect onto one CD all Forth words that have ever been written and,
with the help of a heap-search mechanism, use it for encyclopedic
purposes. A number of people have already volunteered for this
project and additional helpers are invited.

I don't believe that at any time of the day my count of the
attendees exceeded 20, but after lunch the meeting seemed to go
pretty enthusiastically.

The little time left after the afternoon break barely allowed
Dennis Ruffer to finish his talk about his work at Apple Computers.
According to him, the only Forth jobs that are offered on the Web
are for F-code programming in the Open Firmware boot-up process,
which by now is on every Macintosh computer. Since Gforth is used to
compile the boot ROM,
Dennis fielded a lot of questions about this Forth, but he could not
tell us what the "G" stands for (GNU).

This brings me to my own idea for a project. I would like to see
a list of all of the Forths that have been named over the years, with
the dates of origin, names of authors, explanations of the names,
country or language of origin, major applications, etc.. I suppose the
database could include relatives like Postscript, FIFTH, etc, with
proper explanations. How about some input on this for me? I would
like to give John Peters an idea of how many waters to fish in for
Forth words.

Henry

FIG Silicon Valley Chapter Meeting - Aug 2002

Hello,

Bob Nash was the only scheduled speaker for this month's meeting
and had traveled about 100 miles from Sacramento (the State
Capital) to tell us about his work with SwiftForth. The Sacramento

 29

Municipal Utilities District (SMUD) has been using a number of Forth
Inc., products in real-time applications since the early 1990s. The
full-blown SwiftForth, running on
Windows, costs about $1500, but evaluation copies are freely
available from Forth Inc., either from their web site or by mail. There
is an SFTalk group on the web, hosted by Rick Van Norman, whom
Bob calls the "support genius".

Alan Furman added to the lecture with an interesting demo of
one of his applications of SwiftForth. After lunch there were a
number of short informal announcements and presentations, a
prolonged rest break, and last, but not least, a 10-person "round-
table" discussion led by Dr. Ting on the subject of preferred methods
of data storage and retrieval. Dr. Ting
maintains that blocks and files, like editors, are not fundamental to
Forth.

Wishing a good time to everyone who is taking a vacation,
intentionally or otherwise, I remain yours truly,

Henry

 30

Alan J M Wenham

01932 786440
101745.3615@compuserve.com

Vierte Dimension
Alan Wenham

Alan has been keeping us in touch with Forth events and developments in
Germany. Over the past 4 years, he has been a pleasure to work with.

In a feedback exercise recently, we found that these efforts were much
appreciated by members, so I am delighted to be able to announce that Joe
Andersen has offered to continue the work that Alan began. Joe lived for
some years in Munich and we look forward to his first report in the next issue.

.

Dear Chris,

I have been contributing summaries of Vierte Dimension for
several years now and it has been a great pleasure to do so.
However, my personal and domestic circumstances have
changed and I find that I am no longer able to continue with
this task.

I hope that you will be able to find somebody to take my
place, because I consider the German Forth scene to be very
important.

Yours sincerely,

Alan Wenham

 31

Deutsche Forth-Gesellschaft

Would you like to brush up on your German and at the same time get
first-hand information about the activities of fellow Forth-ers in
Germany?

Become a member of the German Forth Society for 80 DM (£28) per
year (32 DM (£11) for students and retirees). Read about programs,
projects, vendors and our annual conventions in the quarterly issues
of Vierte Dimension.

For more information, please contact the German Forth Society at the e-mail address
SECRETARY@ADMIN.FORTH-EV.DE

or visit http://www.forth-ev.de/
or write to
 Forth-Gesellschaft e.V.
 Postfach 161204
 18025 Rostock
 Germany
Tel.: 0381-4007872

 32

Letters

Thomas
Worthington

Hi Chris,

Anyway, I'll drop you a line once Aztec is back up. [See Forth
News, Ed] I started on a Linux version but it ground to a halt as I
tried to decide WHICH Forth I want to use under Linux: ANS or
Colo(u)r. I'm interested by Chuck's current system but I have
grave doubts about applying it in an OS setting where the purity he
has achieved has to be compromised to fit into the system.

On the other hand, I've never really been happy with ANS, in
particular the difficulty of manipulating the return stack to
produce code such as the old BNF parser.

I got as far as simple colon-style definitions (in 8K) and started
dithering and I've decided to wait until I have a design ready
instead of just typing whatever comes to mind!

Thomas

The Magazine Team are always pleased to get feedback and encouragement. The first
letter comes from an old member, well-known for his innovative implementation of Forth on
Windows – Aztec.

 33

Phillip
Eaton

Hello All,

I've just joined the group, so here's a quick introductory message.

In a previous, happier, life I spent several years working on
commercial SCADA control and monitoring projects using Forth-
based systems, both embedded (HD64180/Z80/8086) and on the PC,
for a company called Lee-Dickens Limited. See
http://www.lee-dickens.co.uk/systems/prod_rtu.htm for information.

My interest in Forth is extended by my other hobby, restoring old
arcade games from the late 70's early 80's. Running on 6502, Z80
and 6809 hardware, these are the perfect hardware for
implementing a Forth operating system for developing new programs
(especially for testing the hardware) and generally having some fun
with.

Due to other current commitments, I don't have much time for Forth
activity, but when I do get a minute, I'm also devleoping an Atari
Centipede game emulator (6502 emulation based) on the PC using
MPE PowerForth.
See it here www.phillipeaton.com/personal/arcade.htm .

Thanks for your time,
Phillip Eaton

This letter comes from a new user of the F11-UK Forth controller kit.

 34

James
Power

> Hi James,
>
> I am the editor of Forthwrite magazine, the journal of FIG UK. I
> found your paper on the internet and also your list of publications
> and was wondering whether any work was continuing in this field.
>
> I recognise your references to Peter Knaggs and Bill Stoddart (a
> FIG UK member). Would you mind explaining why you chose Forth
> as the subject of your investigation? Was it connected with the
> simplicity of Forth or were there other reasons?

Hi Chris,

Thanks for your note and interest in our work.

Really we were working on Forth with one eye on the Java Virtual
Machine (JVM) which incorporates stack-safety verification as part
of its dynamic class loader.

David and I were interested in developing an approach that could
provide an environment for verifying similar properties of Forth
programs. The basic idea is to try an statically verify (where
possible) that a program won't cause a stack error at runtime.

We haven't moved the work significantly forward since the paper
you mention. I guess our next step would be to try out our model on
some "real world" Forth programs and see if we can sensibly verify
some properties. We'd certainly be interested in hearing from
anyone with a related interest.

James Power

Our final letter comes from an academic based in Ireland who published research into
Forth. last year. For a full list, see http://www.cs.may.ie/~jpower/Research/Papers/
James invites anyone with an interest in this field to contact him via james.power@may.ie

 35

Chairman Jeremy Fowell, 11 Hitches Lane, EDGEBASTON B15 2LS

 0121 440 1809 jeremy.fowell@btinternet.com

Secretary Doug Neale, 58 Woodland Way, MORDEN SM4 4DS

 020 8542 2747 dneale@w58wmorden.demon.co.uk

Editor Chris Jakeman, 50 Grimshaw Road, PETERBOROUGH PE1 4ET

 01733 352373 cjakeman@bigfoot.com

Treasurer Neville Joseph, Marlowe House, Hale Road, WENDOVER HP22 6NE

 01296 62 3167 naj@najoseph.demon.co.uk

Webmaster Jenny Brien, Windy Hill, Drumkeen, BALLINAMALLARD,

 Co. Fermanagh BT94 2HJ

 02866 388 253 webmaster@figuk.plus.com

Librarian Graeme Dunbar Electrical Engineering, The Robert Gordon University,

 Schoolhill, ABERDEEN AB10 1FR

 01651 882207 g.r.a.dunbar@rgu.ac.uk

Membership enquiries, renewals and changes of address to Doug.
Technical enquiries and anything for publication to Chris.
Borrowing requests for books, magazines and proceedings to Graeme.

 For indexes to Forthwrite, the FIG UK Library and
 much more, see http://www.fig-uk.org

 Payment entitles you to 6 issues of Forthwrite
 magazine and our membership services for that

 period (about a year). Fees are:

National and international £12
International served by airmail £22
Corporate £36 (3 copies of each issue)

 Your membership number appears on your envelope
 label. Please quote it in correspondence to us. Look out

for the message "SUBS NOW DUE" on your sixth and last issue and please complete
the renewal form enclosed.
Overseas members can opt to pay the higher price for airmail delivery.

 Copyright of each individual article rests with its
 author. Publication implies permission for FIG UK to

reproduce the material in a variety of forms and media including through the Internet.

FIG UK Web Site

FIG UK Membership

Forthwrite Deliveries

Copyright

 36

FIG UK Services to Members

Magazine

Library

Web Site

IRC

Members

Beyond the
UK

Forthwrite is our regular magazine, which has been in
publication for over 100 issues. Most of the contributions
come from our own members and Chris Jakeman, the Editor,
is always ready to assist new authors wishing to share their
experiences of the Forth world.

Our library provides a service unmatched by any other FIG
chapter. Not only are all the major books available, but also
conference proceedings, back-issues of Forthwrite and also of
the magazine of International FIG, Forth Dimensions. The price
of a loan is simply the cost of postage out and back.

Jenny Brien maintains our web site at http://www.fig-uk.org. She
publishes details of FIG UK projects, a regularly-updated Forth
News report, indexes to the Forthwrite magazine and the library
as well as specialist contributions such as “Build Your Own
Forth” and links to other sites. Don’t forget to check out the
“FIG UK Hall of Fame”.

Software for accessing Internet Relay Chat is free and easy to
use. FIG UK members (and a few others too) get together on
the #FIG UK channel every month. Check Forthwrite for details.

The members are our greatest asset. If you have a problem,
don’t struggle in silence - someone will always be able to help.
Do consider joining one of our joint projects. Undertaken by
informal groups of members, these are very successful and an
excellent way to gain both experience and good friends.

FIG UK has links with International FIG, the German Forth-
Gesellschaft and the Dutch Forth Users Group. Some of our
members have multiple memberships and we report progress
and special events. FIG UK has attracted a core of overseas
members; please ask if you want an accelerated postal delivery
for your Forthwrite.

