Moultiple Code Field Data Types
and Prefix Operators
Klaus Schleisiek

POB 202 264
2000 Hamburg 20
West Germany

Abstract

This paper presents compilers for creating “intelligent™ data types which have more than
just one code field. as words in classical FORTH do. These compilers introduce a prefix syntax
into FORTH to create a whole class of data structures, the first of which became known in the
FORTH community as the “TO’ concept in 1979.

Prefix Syntax in FORTH

FORTH isan RPN language with a few exceptions. Whenever a string of characters is expected
from the input stream, a prefix operatoris used,e.g.” : or .” . Another caseis the word COMPILE
which precedes the word which is supposed to be compiled. These are cases where the prefix syntax
iseither inherent in the nature of the problem (expecting a string from the input stream) or leads to
an elegant implementation of a function (COMPILE <name>).

In 1979, the first paper appeared [BAR79] proposing a prefix operator for a data type, namely
TO. TO was supposed to change the behavior of a VALUE, which usually would behave like a
CONSTANT, but when preceded by TO, it would act equivalently to <variablename> ! . The
reason for introducing this structure was twofold:

a) to get away from manipulating addresses, hence making programs more portable,
b) to enhance the readability of programs.
(A TO Bversus A @ B !)

This concept did not gain acceptance due to its problems:

a) The way it was implemented resulted in slower execution compared to using VARIABLE:,
especially in a multitasking environment.

b) There was no simple means of getting the address of the TO variable, which, amongst other
things, gave rise to the prefix +TO.
(1 +TO A versus | A +!)

Shortly thereafter, a proposal was publised [L.YO80] to switch the decision process of how a
prefixable data type ought to behave from execution to compilation time by using data types with
more than one code field and compiling the appropriate code field, depending on the prefix. This
proposal was not actually implemented until 1982 when it was shown [ROS82] that it has its merits.

The Journal of Forth Application and Research Vol. I, Number 2. Dec. 1983.
55

56 The Journal of Forth Application and Research, Volume |, Number 2

Rosen presented two data types, QUAN and VECT, each having three code fields acting as follows:

QUAN A VARIABLE A
A == A@

TO A - Al

AT A == A

VECT A VARIABLE A
A == A @ EXECUTE

TO A == Al

AT A == A @

This technique results in expressions which not only compile into fewer bytes, but also execute
faster (if implemented in machine code) than the equivalent phrases using VARIABLEs. Although
multiple code field words (MCF-words) with their prefixes do not add any new features to FORTH,
their alternative syntax can enhance program readability. They also execute faster and take less
space than their single code field counterparts. This gave rise to developing the following tools
which enable a programmer to utilize prefixes and MCF-words in a readable and transportable
way:

a) Adefining word for creating prefixes which will select a certain code field of their associated
MCF-word. including an error check on data type compatibility.

b) A set of words for defining defining words that create MCF-words, associating a certain
prefix with each code field.

¢) A word which gains access to the parameter field address of an MCF-word from its
compilation address.

d) A word which allows one to tick a certain code field of an MCF-word.

The following discussion is based on an implementation that exhibits the following
characteristics:

- 8-bit processor (hence a preference for accessing bytes)

- Indirect threaded code

- Preincrementing address (inner) interpreter

FORTH-83 Standard, notably 'returns the compilation address of a word (formerly called
“code field address™).

i

Other implementations (DTC. ITTC, JSR-threading) have not been evaluated as yet. Multiple
code fields will likely be more costly in terms of memory usage in DTC and JSR systems though.

Syntax of Proposed Words

a) Prefixes

A prefix is a state-smart, immediate word which is only valid if used immediately preceding its
associated MCF-word. Hence an error check is included in every prefix, testing its applicability to
the word following in the input stream. A prefix selects a certain code field of the word it precedes,
and, depending on the state of the system (compiling or interpreting), either compiles or executes it.
Prefixes are created using the following syntax:

+n Prefix <name>

where +n is the code field number identifying the code field to be selected. Code fields are counted
starting from zero. Note that a prefix which was defined with +n equal to zero will select the first

Multiple Code Field Data Types and Prefix Operators 57

code field of the MCF-word following, which has the same effect as using the MCF-word without a
prefix.

b) Defining Multiple Code Field Words (MCF-words)

A defining word has to be defined which exhibits several DOES> parts, so to speak. one for
every code field of the MCF-word to be created by this defining word. Picking up on a proposal for a
new syntax for defining defining words [RAG80] paved the way for a solution. The behavior of the
code fields of an MCF-word is defined prior to the definition of the constructing part of the data
type (also called the “create part™). These code field routines are coded using DO> or CODE>,
depending on whether they are defined in high level or machine code. The constructing part of the
data type is a colon definition including the immediate word BUILD., which will compile
information left by DO>and/or CODE>. and later on will create a dictionary entry and compile the
specified code fields.

Hence the following syntax emerged:

n codefields

’

<prefix.n~1> Do>

* <prefix.n-2> Do> RN n code field
. . . definitions
" <prefix. 1> Code> ... end-code
Do> :
: <pame> ... build

Later on using the phase:

<name> <namex>
will create the data type <namex> with n code fields.

Preceding DO> or CODE> with the compilation address of a prefix results in the association of
the prefix with this codefield routine, which makes possible the error check mentioned earlier.
Similar to DOES> in classical FORTH, DO> lets <namex> push its parameter field address on the
stack at execution time. But there is no longer a fixed offset between one of the several compilation
addresses of <namex> and its parameter field. Instead it has to be computed. and the offset depends
on the location of the code field being executed within the series of code fields of an MCF-word.
This offset is compiled by DO> or CODE>, given the information on how many code fields there are
altogether (n) and the rank of DO> or CODE> within the sequence of code field definitions. Note
that the outermost code field is defined first and the first code field last. Every definition of a code
field leaves its code address on the stack, which later on will be compiled appropriately by the
immediate word BUILD within the definition of <name>.

¢) Locating the Parameter Field Address
The word >BODY in FORTH-83 computes the parameter field address, given a word’s
compilation address. This is no longer trivial if words may have a varying number of code fields.
The solution is two-tiered:

1. Another word, >MBODY. is defined which returns the parameter field address of MCF-
words. This is simple given the information compiled by DO> or CODE>. But the
programmer has to take care of using the “proper” >BODY for a data type.

2. Thesystem has to be recompiled such that every relevant code field routine is preceded by its
parameter field offset, according to the structure compiled by DO> or CODE> such that,
for example, ' <constantname> >BODY returns the same as ' <constantname>
>MBODY outlined under 1. Then >BODY may be implemented the “smart” way.

’

Note that the Standard does not specify >BODY such that it may be used to locate the
beginning of machine code from the compilation address of a word implemented in machine code in
ITC systems. However, it may work in many ITC systems and be misused to that end.

58 The Journal of Forth Application and Research. Volume 1. Number 2

d) Ticking () the rth Code Field of an MCF-word
The word ’ "gives access to code fields other than the first one of an MCF-word <namex>. The
phrase:

o

<prefix> <namex>

returns a compilation address of <namex>, the one which is associated with <prefix>. Unfortunately
anew word has to be introduced. The alternative, to make “smart enough to recognize prefixes and
act accordingly, would no longer allow one to tick a prefix itself.

Implementation

Implementing MCF-words in a transportable way requires one to write a piece of machine code
to make DO> work properly. When a code field gets executed which was defined in terms
of DO> ,asmall piece of machine code precedes the threaded addresses of the high level definition
for that code field. Generally, this would be a JSR-instruction to a routine called (DODO ., though
in many ITC systems a JMP (DODO will suffice (this is true for Z-80, 8080, 8086). A snapshot of
the state of the FORTH pseudo registers 1 and W after the execution of NEXT. but before the
execution of the second code field of the MCF-word <namex>, will reveal the kind of function to
be performed by (DODO (Fig.1).

C? high level code
{ e ; being interpreted

by inner interpreter
Py
<namex> c0 cl c2 parameters MCF-word
{1
(1
high level code

@ JMP (DODO threaded code for second code field

compiled by DO>
@(8080, Z-80)

=T given

O
l:l == sought for

Fig. 1

This discussion is based on a Z-80 processor. The pfa has to be pushed on the stack pointing to
the parameter field of the data type <namex>. This address can be computed by adding 1, which had
been compiled by DO>, to W. It has to be pushed on the return stack, and newl is the content of HL
incremented by three.

Compiling Defining Words that Create M CF-words

One primitive word, (CODEFIELD, handles the compiling part for both DO> and CODE>.
Its input parameters are, from bottom to top, #code, the number of code fields to be generated
altogether, and #sequence, the code field number of the latest code field routine defined, and

Multiple Code Field Data Types and Prefix Operators 59

optionally the compilation address of a prefix. Note that prior to compiling the first code field
routine, #sequence is initialized to equal #code; the word CODEFIELDS simply does a DUP. The
presence of a prefix address is detectable since #sequence will be a “small” number (at most eight in the
current implementation. allowing for at most eight code fields) which is well below any compilation
address of a prefix. Note that this may not automatically be true in an ITTC system. If a prefix
address is present, its parameter field address is compiled into the dictionary to allow for error
checking on data type compatibility (see below). Then #sequence is decremented by one. and now
the current state of #code and #sequence allows one to compute the byte offset of the code field being
defined to the parameter field address of the MCF-words characterized by this code field routine.
This byte offset is compiled into the dictionary. Now HERE points at what will become the code
address of the current code field routine, and it is rotated under #code and the updated #sequence to
be passed to BUILD, within the constructing part of the current data type definition. Then in the
case of DO>. JMP (DODOis compiled, and the system enters compile state: in the case of CODE>,
the Assembler becomes the first vocabulary in the search order.

BUILD compiles into the colon definition of the constructing part of the data type a word
which, when executed. will create a header in the dictionary without any code field. Then the word
(."is compiled. followed by the code addresses left by DO> or CODE>. When (.”is executed, it will
compile these addresses as the code fields of the data type. Note that a simple error check on
completeness of the code routine definitions is possible since #sequence will be decremented to zero
upon completion. The reason for making BUILD an immediate word to be used within a colon
definition (as opposed to BUILD>in [RAG80]) was to allow for computations to take place prior to
creating a header in the dictionary for the new data type <name>.

Prefixes

Prefixes which were created by the defining word PREFIX tick the word following the input
stream. returning its compilation address. This address happens to be the address of the first code
field. Then the code field number, the parameter used to define this very prefix. is added, yielding the
compilation address to be executed or compiled.

The error check mentioned above works in the following manner. If a code field routine defined
in terms of DO> or CODE> was associated with a prefix. its parameter field address has been
compiled into the dictionary. Hence a comparison against the prefix’s parameter field address may
take place. resulting in an abort sequence if there is no match. See Figure 2 for the code being
compiled.

high level code
pfa 1 JMP (DODO threaded code routine
<3 bytes> ’
<namex> c0 6 cl c2 parameters MCF-word
<prefix.2> doprefix 2

®

et
aa
o

60 The Journal of Forth Application and Research, Volume I, Number 2

Accessing the Parameter Field Address

The implementation of > MBODY is straightforward. Since the byte offset of the parameter
field address, relative to a certain code routine, is compiled in front of that code routine, it can be
fetched and added to one of the compilation addresses of the MCF-word.

Ticking Prefix Specific Code Fields

This is straightforward, too. Since a prefix contains the byte offset of a certain code field,
relative to the first code field of an MCF-word in its parameter field. the prefix is ticked first, its
offset extracted. and then the MCF-word is ticked and the offset added. Also, an error check on data
type compatibility may be included, along the lines outlined under Prefix.

Conclusion

Prefix operators are usually regarded as running contrary to the FORTH philosophy. Buteven
classical FORTH can not live without prefix syntax as outlined in the introduction. Hence I felt
justified to invest the effort of creating compilers to create “intelligent,” multiple code field data types
and prefixes as selection operators. These may be useful in several respects:

a) To build non-FORTH-like languages on top of FORTH.
b) To utilize their inherent code compactness and execution speed if used with care.
¢) To give a choice of syntax if it helps to make programs more readable.

I have the feeling that these compilers have matured far enough to be both understandable and
safe to use. Due to the implementation. extensive error checking can be performed if desired.
Furthermore. these structures are easily metacompiled. a feature which is inherited from the
structure first outlined in [RAGS80].

Acknowledgments

I’d like to thank the referees for their comments and criticism on the first draft of this paper. It
resulted in a thorough revision in terms of presentation and implementation.

References

[BAR79] P. Bartholdi. “The ‘TO’ solution. and ‘TO’ solution continued.” FORTH Dimensions,
Vol. I. No. 4/5, 1979.

[LYO80] G.B. Lyons, “Note on the ‘TO’ solution.” FORTH Dimensions, Vol. 1. No. 5, 1980. p.
56.

[ROS82] E. Rosen. “High Speed, Low Memory Consumption Structures,” Proceedings
FORML Conference 1982.

[RAG80] W. Ragsdale, “A New Syntax for Defining Defining Words.” Proceedings FORML
Conference 1980, p. 122.

Manuscript received May 1983.

Klaus Schleisiek attended the Universitaet Dortmund, Germany, and studied computer
science. In 1979-81, he developed a mulii-channel sound synthesizer in New York, New York,
getiing experience with FORTH for the first time. He is currently a partner and the system designer
Jor System Partner GmbH, Germany, a firm dedicated to developing fault rolerant turn-key
business micro systems, using FORTH exclusively for both the operating system and application
programs.

Multiple Code Field Data Types and Prefix Operators

61

Appendix I

Implementation of multiple code field data types and prefix operators for Z80 and 8086.

Create (dodo Assembler (Z-80)
X 2dec X) A ld X 2inc X 2inc X 2inc
W X exx X- add A X- mov CS 7 X+inc 7J?
X 2dec X push "1 @ jmp (exitvia docolon)
end-code
(Note: X :== HL ., W :== DE)

. dodo, 0C3 c. (dodo . :

Create (dodo Assembler (8086)
R dec R dec I R) mov W) I mov
-1 1 D) A- mov cbw W A add A push
[inc I inc 1 inc Next end-code

: dodo, 0E9 c. (dodo here 2+ - | :

. Prefix (codefield -)
Create 2* ¢, immediate
does> * over c@ + (determine code field)
swap over @ 3 - @
- abort” invalid Prefix”
State @ IF . exit THEN execute :

: codefields dup :

: (codefield (#code #seql [prefix] - addr #code #seq2)
dup 8 u> IF >body . THEN (compile pfa of prefix)
I- 2dup - 2* c, (compute and compile offset)
here -rot : (pass code address)

—~

An alternative for error check afficionados:)
: (codefield (#code #seql [prefix] -~ addr #code #seq2)
dup 8 u> IF >body dup >r c@ over [- 2%
- abort” wrong prefix” r> . THEN
1- 2dup - 2% c, here -rot :

1 Do> #code #seql [prefix] - addr #code #seq2)
(codefield dodo.] (smudge) :

: Code> (#code #seql [prefix] - addr #code #seq2)
(codefield Assembler :

: header Create -2 allot

2 (.7 > count 2dup + >r (access in line string)
here swap dup allot cmove (and compile it)
: build (addrn-1 . . addr0Q #code #seq -)

abort” incomplete”
compile header compile (,”
dup 2¥ ¢. 0 DO . LOOP ; immediate

62

The Journal of Forth Application and Research. Volume 1. Number 2

: >mbody (cfa - pfa)
(- cfa)

Some examples of usage:

a) The classical ones

dup @ |- c@ + ;
" >body c@ ' + :

Appendix 11

I Prefix TO 2 Prefix +TO
3 codefields " +TO Do> +!
" TO Do> !
Do> @ :
: VALUE build 0 . :
I Prefix TO 2 Prefix AT
3 codefields * AT Do> :
"TO Do>!:
Do> @
: QUAN build 0 . :
3 codefields ~ AT Do> @
"TO Do> !

Do> @ execute :

: VECT build ["] noop . :

b) Some which proved useful

I Prefix -> ("into”) 2 Prefix [] { “content-of”)
3 codefields [] Do> @ :
" -> Do> !
Do> .
. Variable build 0 . :

This form of a Variable is “upward compatible™ to the Standard Variable but allows the equivalent of
@ and ! via prefixesina more memory efficient way and with faster execution speed if implemented in
code.

| Prefix -> 2 Prefix make

Create restore | r> r> !

3 codefields
“ make Do> r> over dup >r @ >r restore >r
dup 2+ >r @ swap !
" -> Do> I
Do> @ execute :
: Executor build [’] noop . :

If used without prefix it just behaves likea VECT. Using the phrase "~ <name> -> <executor> ™ will
assign <name> to <executor>. The phrase “ make <executor> <name> " . which is compile only.
will temporarily assign <name> to it until EXIT is executed which will restore <executor™ to what it was
before.

Multiple Code Field Data Types and Prefix Operators

An example of usage:
Executor ?

: lost .7 press <cr>"
: fine .” ok” " fine > ?

: game make ? lost
BEGIN key dup 0D = IF drop exit THEN
Ascii ? = 1F ? THEN

H

AGAIN ;

¢) Finally. an example which shows an unusual vet meaningful use of multiple code field words.

2 codefields Do> @ >r ;
Do> dup 2- ., 2+ >r ;
: Compiler build here 0 .] immediate ;

: Executes compile exit here swap ! : immediate
Ascii ” word c@ 1+ allot

Compiler .” " Executes r> count 2dup + >r type :

Compiler ” .” Executes r> count 2dup + >r ;

”

Compiler abort”
Executes IF sp! here count type space
r> count type quit THEN

r= count + >r |

