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Abstract

Engineers at the Johns Hopkins University Applied Physics Laboratory have designed
and built two computers which will control and monitor the Hopkins Ultraviolet Telescope,
a 1986 Space Shuttle experiment. These computers implement a microcoded FORTH
nucleus in a word-addressed AMD 2900 series bit-slice architecture. All programs for them
are written in FORTH, which takes the place of assembly language in this architecture.

Background

The Hopkins Ultraviolet Telescope (HUT) is a Space Shuttle experiment designed to
obtain the far ultraviolet spectra of astronomical objects ranging from Halley’s comet to
stars, galaxies and quasars as faint as the 17th magnitude. Accurate real-time computation of
the wavelength of each photon sensed by the HUT detector requires greater processing
power than is available in any space-qualified single chip microprocessor being produced
commercially. In addition, the complex and changeable control and monitoring requirements
of HUT dictate the use of a powerful and flexible computer system which can be
programmed in a high level language.

Since HUT is a single-purpose embedded computing application, a significant perform-
ance advantage may be gained by sacrificing the generality of traditional processors with a
processor which executes a single language very efficiently. With this philosophy in mind, the
HUT designers chose to implement a computer architecture which executes FORTH
exclusively. FORTH was chosen for the following reasons:

—simplicity of implementation

—extensibility and flexibility

—experience from previous projects.

This article describes the FORTH-based computer system which resulted from the
development effort to meet HUT’s data processing requirements. The first of two prototype
processors executed its first FORTH program in April, 1982, and the final flight versions of
the hardware and software will be complete in May, 1984,

System Architecture
Figure 1 shows the interfaces which connect the HUT flight computer system to the
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other components of the telescope and to the Space Shuttle’s experiment support equipment.
Two independent processors provide the computational power which HUT requires: the
Spectrometer Processor (SP), and the Dedicated Experiment Processor (DEP). The SP
receives data generated by the telescope’s detector, which is a 1024 element self-scanned
linear photodiode array (Reticon). As the SP reads the Reticon output, it performs a high-
speed centroiding algorithm to compute the wavelength of each ultraviolet photon detected
and periodically forwards the accumulated spectral data to the DEP. The DEP receives this
data from the SP, handles telescope control and monitor functions, interprets commands
and generates displays for HUT’s astronaut-operator. In addition, it acquires and analyzes
starfield TV pictures to assist in telescope pointing, and transmits the spectral, status and
video data to the ground via the Shuttle’s telemetry system. Figures 2 and 3 summarize these
functions and their performance requirements.

SP Functions Performance Requirements
Read data from UV detector 1024 6-bit A/ D conversions/ millisecond
Compute photon wavelengths Once per photon, up to 9,000 per second
Send UV spectrum to DEP 2067 words every 2 seconds
Interpret 5 command types from DEP Once per command

Figure 2. HUT Computer Functions: Spectrometer Processor

DEP Functions Performance Requirements
Receive spectrum from SP 2067 words every 2 seconds
Control 8 motors, 6 power Occasional, as commanded

supplies, 14 heaters

Monitor 60 analog, Once every 2 seconds
56 discrete lines

Interpret 88 command types Once per command
Generate one of 4 displays Once every 2 seconds
Analyze TV picture, compute Once every 20 seconds

pointing errors

Transmit telemetry to 97,656 bits/sec continuous
ground station

Control observing sequence Continuously during observation,
average duration 20 minutes

Figure 3. HUT Computer Functions: Dedicated Experiment Processor
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Hardware Architecture

The SP and DEP have identical CPU and memory designs, with additional boards to
handle unique SP and DEP 1/O requirements. Each processor executes approximately
500,000 FORTH primitives per second, and Figure 4 lists some of the hardware features of
the SP and DEP. The CPU is a 16-bit microprogrammed machine containing four Am2903
four-bit microprocessor slices, an Am2910 sequencer, an Am2902 carry look ahead unit, an
Am?2904 status and shift control unit and an Am2925 programmable clock generator from
Advanced Micro Devices, Inc. The microprogram consists of 512 64-bit words stored in
PROM, and the microinstruction execution time varies from 200 to 400 nanoseconds under
microprogram control.

SP DEP

Size 3 6”x 11.5” boards 8 6” x 11.5” boards
Power ~30 watts ~60 watts
CPU 16-bit microprogrammed 16-bit microprogrammed
Clock rate 25 MHz. 25 MHz.
Microcycle rate 2.5-5.0 MHz. 2.5-5.0 MHz.
Instruction rate 500,000 FORTH 500,000 FORTH

primitives/sec. primitives/sec.
Microstore PROM 512 64-bit words 512 64-bit words
Hardware signals 16 available, 4 used 16 available, 10 used

(analogous to interrupts)

Main memory RAM 20K 16-bit words 48K 16-bit words

redundant main memory

64K 16-bit words
video memory

Main memory PROM 4K 16-bit words 4K 16-bit words

170 access Memory-mapped Memory-mapped

Figure 4. HUT Computer Hardware Features

The memory is a 16-bit wide, word addressable design using 16 kilobit NMOS com-
ponents. The effective speed of the memory is 480 nanoseconds for a write and 400
nanoseconds for a read. Various CPU and memory design features have been incorporated
to reduce sensitivity to transient and permanent faults caused by radiation.
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Figure 5 is a memory map of the HUT computers’ address space. Word addresses 0
through OFFF hex are available to address memory-mapped /O devices. 1000 is the initial
program execution address at power-up, and words 1000 through 1FFF contain bootstrap
PROMs. 2000 through 3FFF are unused, and 4000 through FFFF contain RAM (words
4000 through AFFF are unpopulated on the SP). FFAQ is the address of the initial process
descriptor, a four word data structure which supports concurrent programming. FFCF and
FFEF are the initial parameter and return stack pointers, respectively, and both stacks grow
toward lower memory addresses. After power-up, additional process descriptors and stack

FFFF 16
hardware
FFFO semaphores
FFEF Initial
return
FFDO stack
FFCF Initial
parameter
FFA4 stack
FFA3 Initial
process
FFAQ descriptor
FF9F
General
purpose
RAM
(DEP and SP)
B000
________________________ ——
AFFF
General
purpose
RAM
(DEP only)
4000
3FFF
Unused
2000
1FFF
Bootstrap
PROM
1000
OFFF Memory
mapped
0000 I/0

Figure 5. HUT Computers: Memory map
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areas may be defined in any area of RAM. Words FFFO through FFFF are the fixed
locations of the 16 available hardware semaphores used to synchronize processing to
external events.

Microcode

Slightly over half the microcode space of the SP and DEP is used to implement proces-
sor initialization, the macroinstruction fetch-execute loop and 61 FORTH primitives. This
microcode is the same in both processors, while the remainder of the microcode space is
available for the migration of application software to microcode. This additional space in the
SP contains data collection and centroiding routines used in calculating the wavelengths of
ultraviolet photons. The DEP uses this space for video processing, character string manipu-
lation and FORTH dictionary search routines. The processor-specific microcode routines are
accessible to the programmer as additional FORTH primitives.

Six of the sixteen general purpose registers in the AM2903 are dedicated to maintaining
the FORTH machine context, while the rest are available for temporary storage within
FORTH primitive routines. The dedicated registers are:

IAR — instruction address register

RSP — return stack pointer

PSP — parameter stack pointer

RUN —  pointer to process descriptor of running process

HEAD — pointer to process descriptor of highest priority process
SCHED — indicates whether processor rescheduling is enabled.
The use of these registers is described below.

FORTH Implementation

The version of FORTH implemented on the HUT processors deviates from the
FORTH-79 standard in two significant ways. First of all, because the memory is word-
addressed, the FORTH words which access byte-oriented data cannot conform to the
standard. Instead, the two nonstandard primitives @C and !C address bytes using a base
address and a byte offset as input stack parameters. Secondly, since the flight processors do
not contain mass storage, the disk access words are not implemented. They are replaced by a
set of words which support transfer of ASCII data to and from files on a host system via a
serial port. Other small deviations from the standard exist, since language standardization
was not one of the original goals of this project.

Figure 6 shows the dictionary entry format used in the SP and DEP. Based on the
polyFORTH* format, it consists of a four-word header and an optional variable-length
parameter field. The first two header words form the name field and contain the immediate
bit, character count and the first three characters of the name. The third word is the
dictionary link, which points to the name field of the previous entry in the vocabulary. The
last header word is the compilation address, or “opcode” of the FORTH word being defined.
The parameter field, if any, contains a string of opcodes and other parameters which make
up the word’s definition.

For a microcoded primitive, the opcode is the microstore address of the microcode
routine which implements it. For non-primitives, the opcode is the main memory address of
the first word of the parameter field. As described later, the inner interpreter microcode
executes such opcodes directly as machine instructions. Thus every non-primitive FORTH
definition actually adds a new opcode to the instruction set of the processor.

*polyForth is a registered trademark of FORTH, Inc., Hermosa Beach, CA.
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Figure 6. Dictionary Entry Format

As shown in Figure 5, memory addresses 0 through FFF hex are reserved for I/O and
therefore are never accessed during instruction fetches. This allows the four most significant
bits of an opcode to distinguish primitives from non-primitive FORTH definitions. Opcodes
below 1000 hex represent microcoded primitives, while opcodes 1000 and above represent
FORTH definitions stored in main memory.

Figure 7 shows four consecutive dictionary entries of various types starting at location
4000 hex. An entry for a primitive, such as DROP , consists only of a header. No
parameter field is needed because the definition of the primitive is in the microstore. The
parameter field of a colon definition, such as 2DROP or 3DROP, contains the opcodes of
the words in its definition, terminated by the opcode of (;). The parameter field of any other
non-primitive contains the opcode of the run-time or DOES> portion of the defining word
which created it, followed by any additional parameters needed. For the example ABC in
Figure 7, (CONSTANT) is a microcoded primitive which performs the run-time action of the
defining word CONSTANT . The structure would work the same way if ABC were created
by a defining word written in FORTH. In this case, the first word of ABC’s parameter field
would contain the address of the beginning of the DOES> portion of the defining word’s
definition. This address is, in effect, the opcode of the run-time part of the defining word.

The heart of the FORTH machine is the fetch-execute microcode, which implements the
inner interpreter as shown in Figure 8. This loop is a direct threaded code version of NEXT
which executes only four microinstructions (800 nsec.) in addition to the FORTH instruction
fetched from memory.

The inner interpreter microcode first fetches a one-word opcode from the instruction
stream and increments the IAR. It then examines the four most significant bits of the opcode
to determine whether it is a microcoded primitive or a higher level FORTH word. If these
bits are zero, the inner interpreter jumps to the indicated microcode routine, which
performs the function of the primitive and then jumps back to the inner interpreter.
Otherwise, it simply pushes the IAR onto the return stack and loads the opcode itself into
the IAR. Further cycles of the inner interpreter then start executing code sequentially from
that address until (;) causes a return to the caller or another non-primitive invokes a
further nesting level on the return stack. The return stack push (equivalent to () or
docolon in other implementations) takes two microinstructions and executes in 480 nsec.

The inner interpreter also services hardware generated signals after every instruction
cycle as indicated in Figure 8. This processing is analogous to interrupt servicing in other
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Figure 8. Microcoded FORTH Inner Interpreter
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processors and is described in detail below. It only requires processing time in excess of the
800 nsec. of the inner interpreter loop if any previously unserviced hardware signals are
pending.

Figure 9 lists the microcoded primitives. Words which are not part of FORTH-79 are
briefly described in the comments. In addition, the words supporting the concurrency
features of the HUT computers are all described in detail below.

Stack manipulation: Constants, variables:
DUP 0 (Returns constant 0)
DROP I (Returns constant 1)
SWAP —1 (Returns constant —1)
OVER (LITERAL) (FORTH-79 ‘literal”)
ROT (CONSTANT) (FORTH-79 ‘constant’)
R> (VARIABLE) (FORTH-79 “variable’)
>R
R@ , 1
J Logical:
AND
Arithmetic: OR
XOR
+ ROTATE
NEGATE
I+ Comparison:
1_
2% >
2/ <
M#* (Signed multiply) u> (Unsigned > )
U* U<
+! =
OVF (Return arithmetic 0<
overflow flag) =, NOT
CARRY (Return arithmetic
carry flag)
Control flow:
Memory reference: G)
@ BRANCH (FORTH-79 ‘else’)
! 0BRANCH (FORTH-79 "if")
(LOOP) (FORTH-79 ’"loop”)
(MOVE) (Block move to (/LOOP) (Unsigned loop control)
memory) (+LOOP) (FORTH-79 "+loop”)
FMOVE (Block move to (DO) (FORTH-79 'do")
I/O channel) EXECUTE

Figure 9. Microcoded FORTH Primitives
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Figure 9 continued.

CPU register access: Concurrency:
@SP (Fetch parameter DISABLE (Inhibit processor
stack pointer) rescheduling)
ENABLE (Enable processor
ISP (Store to parameter rescheduling)
stack pointer) WAIT (Suspend process until
@RP (Fetch return indicated event occurs)
stack pointer) SIGNAL (Indicate occurrence of
'RP (Store to return software-generated
stack pointer) event)
@RUN (Fetch RUN
register)
@HEAD (Fetch HEAD DEP-specific:
register)
'HEAD (Store to HEAD @C (Fetch byte from string)
register)
1C (Store byte to string)
SP-specific: (FIND) (Dictionary search)
@V (Fetch video word)
CUMUP (Collect raw UV v (Store video word)
detector data) @P (Fetch video pixel)
CENTROID (Compute photon P (Store video pixel)
wavelengths)

Concurrency Features

The SP and DEP microcode extends FORTH to support concurrent programiming,
allowing the definition of any number of independent processes which compete for the
processor on a priority basis. Hardware events (analogous to interrupts) and software
initiated interprocess signals are represented by counting semaphores. Processes use the
WAIT and SIGNAL primitives, respectively, to wait for and indicate the occurrence of
events which particular semaphores represent. Source code for a sample process is shown in
Figure 10.

Each process consists of a code body, parameter and return stacks and a process
descriptor. The process descriptor is a four word data structure which saves the context of
the process when it is not executing. This context consists of the values of the IAR, RSP and
PSP at the point of suspension. Loading these saved values back into the processor registers
at a later time causes the process to continue from that point.

The first word of the process descriptor is a link field. The process descriptors of all
active processes are chained in a circular singly-linked list in priority order as shown in
Figure 11. The CPU’s HEAD register points to the descriptor of the highest priority process,
while the RUN register points to the descriptor of the running process. Position with
respect to HEAD in this process list determines process priority, and the descriptor of the
lowest priority process is linked back to the HEAD process descriptor.
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FFF6 CONSTANT HARDWARECLOCK

VARIABLE TIME
VARIABLE 8TICKS

10 20 PROCESS: TIMERPROCESS

0 HARDWARECLOCK !

( CLOCK SEMAPHORE ADDRESS )

( REAL TIME COUNTER

( REAL TIME / 8 COUNTER

{ DEFINE TIMERPROCESS

( RET. STACK: 10 WORDS

( PARAM. STACK: 20 WORDS
( INIT CLOCK SEMAPHORE

)
)

0 TIME ! ( INIT REAL TIME COUNTER
BEGIN
80
DO
HARDWARECLOCK WAIT ( WAIT FOR CLOCK TICK
1 TIME +! ( INCREMENT REAL TIME
LOOP
8TICKS SIGNAL ( SIGNAL REAL TIME / 8
AGAIN
:PROCESS
Figure 10. Hardware Clock Service Process
Link
Instruction Address Register
Return Stack Pointer
Parameter Stack Pointer
Process Descriptor
l HEAD ]——»} o — ° > ° S o
IAR IAR IAR IAR
RSP RSP RSP RSP
| RUN | PSP PSP PSP PSP
PROC1 PROC2 PROC3 PROCn

Process List

Figure 11. Concurrency Data Structures
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A semaphore is a one word VARIABLE anywhere in memory which represents a
particular event. SIGNAL increments the semaphore variable, while WAIT decrements it
(down to a minimum of zero, at which time the process is suspended). Thus the value of a
semaphore is the number of times the event corresponding to the semaphore has occurred
without being balanced by a WAIT for the event.

A process uses the WAIT primitive (with the semaphore address as a stack parameter)
to suspend itself until an event occurs. Likewise, it uses the SIGNAL primitive to signal
the occurrence of an event to another process. Both WAIT and SIGNAL may cause the
processor to be reassigned to another process, depending on process priorities and the value
of the semaphore involved. Hardware generated events simply cause the SIGNAL
operation to be performed for semaphores at fixed locations in upper memory. This
processing is performed after each FORTH primitive by the inner interpreter microcode (see
Figure 8).

Normally, WAIT , SIGNAL and hardware events cause the processor to be
reassigned to the highest priority process not WAITing for an event to occur. The DISABLE
and ENABLE primitives may be used to inhibit and resume processor rescheduling for
critical program segments. Hardware and software events which occur while rescheduling is
DISABLEd are not lost, but are tallied in the corresponding semaphores. Processes
WAITing for these events run (priority permitting) as soon as rescheduling is e ENABLEd.

Figure 10 is an example of a process called TIMERPROCESS which services a clock
wired to signal the hardware semaphore at address FFF6 hex. After performing initialization,
it enters an infinite loop which increments the variable TIME each time the hardware
clock ticks. In addition, it signals the software semaphore 8TICKS every eighth hardware
clock tick. Another process can use 8TICKS (justas TIMERPROCESS uses HARD-
WARECLOCK ) to perform other processing every 8 clock ticks. Notice that the distinction
between hardware and software events is determined solely by semaphore addresses and is
otherwise transparent to the processes which service them.

PROCESS: is a defining word which creates a dictionary header, builds a data
structure containing process initialization information, allocates stacks and a process descrip-
tor, and enters compile mode. Its arguments are the sizes of the return and parameter stacks
to be allocated. :PROCESS ends the definition of a process by exiting compile mode. The
execute-time action of a word defined by PROCESS: is to return the address of its process
initialization block. This is used by the words which initialize process descriptors, activate
processes at particular priorities and deactivate running processes.

These concurrency concepts are used extensively in the HUT applications software. The
SP software consists of 7 independent processes, while the DEP software is implemented as
26 processes. The ability to divide the required functions easily into independent processes
with simple communication and synchronization interfaces has simplified the software
development task tremendously. This simplification began in the initial software design
phase and led to an understandable modular design. As a result, it has been easy to
incorporate significant changes in requirements at all stages in the development cycle. The
simple concurrency scheme extends the modularity of FORTH into multitasking in a natural
and consistent way.

Software

The HUT software engineers have developed several support tools in addition to the SP
and DEP application software which will control the telescope in flight. These tools include
a microassembler, a metacompiler, PROM programming support software and interactive
diagnostic and test packages.

The microassembler is a general purpose program based on the work of Greg
Cholmondeley (reference 1). It supports user-defined microword formats with shared fields,
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microinstruction labeling with forward and backward referencing, conditional assembly and
sorted symbol table output. This program is used to assemble and document all of the
microcode for the breadboard and flight processors.

The metacomplier allows for target compilation of programs which run in environments
different from the original compilation environment. It supports target applications stored at
any address in either RAM or PROM, and provides tools for adding defining words and
other metacompiler directives in a uniform way. The metacompiler is used to generate and
maintain the operating system for each processor as well as the portions of the HUT
application software which are stored in PROM.

Both the microassembler and the metacompiler use the PROM programming support
tools. With this software, the output of either can be sent directly to a PROM programmer
or stored and used later to program PROMs. All of the HUT microcode and software
PROMs are programmed in this manner.

The diagnostic and test software is designed to verify the operation of the hardware in
each processor. It includes memory, processor and I/O tests for both the DEP and SP. In
addition, the SP software includes routines which thoroughly test the interface to the
telescope detector. The diagnostic package is useful for initial debug of new interfaces, and
will later be part of the formal verification and documentation package for the integrated
telescope.

Project Status

The engineering prototypes for both the SP and DEP computers have been running
since August, 1982. Fabrication and checkout of flight versions, qualified for the Shuttle
orbital environment and designed for efficient heat dissipation in a vacuum, will be
completed by April of 1984, Development of all microcode and of the SP application
software is complete, and the DEP application software will be completed by May 1984,
Integration with the rest of the telescope will begin in May, and the complete instrument will
be delivered to Kennedy Spaceflight Center in December 1984 to begin the Shuttle mission
integration process. The first of three 10-day Shuttle flights is scheduled for March, 1986, to
coincide with the encounter with Halley’s comet.

The HUT engineers have started to design a single-board implementation of the
architecture described above for use in future applications. The board will contain, as a
minimum, the processor, 60K bytes of byte-addressable memory, and a serial port. This
machine will offer higher speed and use less power than the HUT processors. In addition, it
will allow use of memory IC’s of various technologies and execute the recently approved
FORTH-83 version of the FORTH language.
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