Technical Notes

polyFORTH on the NCR/32

Michael L. McBride
VLSI Processor Products
NCR Microelectronics
1635 Aeroplaza Drive
Colorado Springs, Co. 80916

Introduction

A very high performance polyFORTH II system implemented on the NCR/32 chip set
was presented at the 1984 Rochester Forth Applications Conference. This technical note will
clarify some aspects of the implementation.

Overview of the NCR/32 Chip Set

The NCR/32 chip set consists of a full 32-bit microprocessor and a complete family of
support chips. The chips in the family are the NCR/32-000 Central Processor Chip (CPC),
the NCR/32-010 Address Translation Chip (ATC), the NCR/32-020 Extended Arithmetic
Chip (EAC), the NCR/32-500 System Interface Controller (SIC), the NCR/32-580 System
Interface Transmitter (SIT), and the NCR/32-590 System Interface Receiver. These chips
communicate over the Processor Memory Bus, a full 32-bit multiplexed bi-directional bus.
To implement a system based on the NCR/32, an Instruction Storage Unit (ISU) and
Memory Storage Unit (MSU) are also required.

CpC

The Central Processor Chip is a full 32-bit microprocessor. This chip is externally micro-
programmable and has 16 32-bit general registers, a 32-bit ALU, a 32-bit external data path
and 22 16-bit special purpose internal registers. It also has a separate 16-bit wide data path to
the external microprogram store. It can address up to 16 megabytes of real memory and
4 gigabytes of virtual memory. It can address up to 64k of 16-bit wide microinstructions. The
CPC will be discussed in additional detail later.

ATC

The Address Translation Chip performs several functions. It translates virtual memory
addresses to real memory addresses; it handles Error Checking and Correcting for the
memory, including generating ECC bits when data is written to memory and checking and
correcting data being read from memory; it handles memory refresh and scrubbing (a
technique for reading memory and correcting errors during the refresh cycles). It also
provides a Time of Day clock and time interval monitoring.

The Journal of Forth Application and Research Volume 2, Number I, 1984
77

78 The Journal of Forth Application and Research Volume 2 Number 1

EAC

The Extended Arithmetic Chip is a performance booster for the chip set. It does multi-
plication and division on single and double precision fixed point data; adds, subtracts,
multiplies and divides on single and double precision IBM 370 format hex floating point
data; adds, subtracts, multiplies and divides on decimal floating point data; and performs
data conversions between these formats.

SIC, SIT and SIR
The System Interface Controller, Transmitter, and Receiver chips form a high speed

serial communications subsystem. It can transmit and receive data at up to 24 megabits per
second.

System Clocks
The NCR/32 uses a two phase, non-overlapping clock. Each phase is 75 ns long, giving
the system a cycle time of 150 ns. The basic clock frequency is 13.3 megahertz.

PM Bus

The Processor Memory Bus is a 32-bit, multiplexed, bi-directional bus that is used for
inter-chip communication.

ISU

The Instruction Storage Unit contains the user alterable external microcode for the
CPC. It consists of up to 64k by 16 bits wide of fast (45ns access) static RAM. This is
accessed from the CPC over the ISU bus. The ISU bus is a 16 bit wide, multiplexed, bi-
directional bus that is completely separate from the PM Bus.

MSU

The Memory Storage Subsystem (MSU) consists of up to 16 megabytes of real memory.
It is organized in a 32 bit wide word with 7 additional bits for storing the ECC codes. Using
64k memory chips, the minimum memory size is 256 kilobytes. Using 256k chips, the
minimum size is | megabyte.

NCR/32 Performance

The NCR/32 chip set has a basic cycle time of 150 nanoseconds. About 95 percent of
the CPC microinstructions execute in one cycle. The rest of the instructions execute in 2
cycles.

polyFORTH Implementation

The polyFORTH implementation on the NCR/32 is a full 32-bit FORTH implemen-
tation. All cells that are 16 bits on a 8-bit or 16-bit FORTH implementation are 32 bits wide
on the NCR/32 polyFORTH. Double width data is 64 bits long. An option has also been
provided that allows the user to extend the polyFORTH by compiling words into CPC
microcode. Since the readers are assumed to be familiar with FORTH, this explanation will
not go further. If desired, additional information on this polyFORTH implementation can
be obtained from FORTH Inc.!

The following sections provide an overvew of programming the NCR/32. Additional
information on programming the NCR/32 can be obtained from NCR Microelectronics.?

! FORTH Inc., 2309 Pacific Coast Highway, Hermosa Beach, Ca. (213) 372-8493.
2NCR Microelectronics, 1635 Aeroplaza Drive, Colorado Springs Co. 80916, (800) 525-2252 or (303)
596-5612 (In Colorado or outside the Continental U.S.)

Notes: polyFORTH on the NCR/32 79

CPC Hardware

This section provides a brief description of the hardware resources in the CPC.

Instruction Format
The CPC has a register to register instruction format. Each instruction is 16 (or in a few
cases 32) bits wide. These instructions are read and placed in the pipeline 16 bits at a time.

Pipeline
The CPC has a three stage pipeline for the external microinstructions. The first stage

fetches the instruction from the ISU. The second stage decodes the information and the third
stage executes the instruction.

General Registers

The CPC has 16 general purpose 32-bit general registers. All 16 registers are word or
halfword addressable. The first four registers (register 0 through 3) are also byte addressable.

Internal Registers
The CPC has 22 16-bit special purpose registers. They are used for such functions as
microinstruction jump registers, state registers, and other specific functions.

ALU

The CPC has a full 32-bit ALU. It can do arithmetic, boolean, and comparison
operations on word (32-bit) and byte (8-bit) data.

Field Instructions

The CPC has implemented hardware to simplify the use of fields of data. A field can be
from 1 to 64k bytes long. Special instructions are provided to perform arithmetic, compari-
son, boolean, and data move operations on these fields.

CPC Programming

This section provides a brief overview of the CPC instructions.

Data Move Instructions
The CPC provides instructions for moving words, halfwords, bytes, and digits between
registers. It can also move words between registers and memory. It can move halfwords

between registers and internal registers and can move words between registers and external
registers.

Arithmetic Instructions

The CPC provides binary add and subtracts on word, byte, and field data. It provides
packed and unpacked decimal arithmetic on byte and field data.

Compare Instructions
The CPC provides compare instructions on word, byte, and field data.

Boolean Instructions
The CPC provides boolean (and, or, exclusive or) operations on word, byte, digit, and
field data. It also provides an invert (one’s complement) operation for word and byte data.

Jumps

The CPC provides conditional and unconditional jumps. They may be relative or
absolute jumps. The offset for relative jumps is contained in the instruction. The address for
absolute jumps may be contained in the instruction, in a general register, or in a jump
register. One feature supported by the CPC is delayed jumps. When a jump is executed it
takes three cycles to flush the pipeline and move the new instruction to the execution stage.

80 The Journal of Forth Application and Research Volume 2 Number]

When an immediate jump is executed, the two instructions in the CPC pipeline are not
executed. To provide better performance, the CPC has implemented delayed jumps. These
jumps allow the two instructions in the pipeline to be executed. This feature can significantly
reduce the execution time of a program.

polyFORTH Performance

This section contains a list of several frequently defined FORTH words and their execu-
tion time on the NCR/32. All timings include NEXT and are therefore complete, including
interpreter overhead. Arithmetic timings are worst case. Timings assume a 150ns cycle time.3

Word(s) Clocks Microseconds
colon entry 13 1.95
DOES> entry 17 2.55
EXIT 10 1.5

IF, WHILE, UNTIL 12to 16 1.8t024
ELSE, REPEAT, AGAIN 10 1.5
LOOP 18 to 20 2.7 to 3.0
+LOOP 22to 23 33t03.45
CREATE, VARIABLE, etc 13 1.95
LITERAL (explicit or implicit) 12 1.8
USER variable 17 2.55
CONSTANT 16 2.4
2CONSTANT 21 3.15
>R 13 1.95
R>,1 12 1.8

r 13 1.95

J 14 2.1
2>R, 2R>, DO 17 2.55
LEAVE 12 1.8

@ 10 1.5

! 15 2.25
+! 18 2.7
C@ 13 1.95
C! 14to 15 2.1t02.25
2@ 15 2.25

2! 20 3.0
U@+ 11 1.65
Ul 19 2.85

¥ All timings and coding examples are courtesy of and copyright by FORTH Inc, and/or Athena
Programming
*The U@ and U! words are used to fetch and store data in ISU.

Notes: polyFORTH on the NCR/32

81

Word(s)

H@?
H!

Hx
*

U=
M=

H/
H/MOD
/MOD
MOD

/
U/MOD
M/

*/MOD
*/

DUP

DROP
SWAP, OVER
ROT

IDUP

’S

2DUP
2DROP
20VER
2SWAP

+, —, NEGATE
1+, 1=, 24, 2—, 2%, 2/
4% 4/

D+
DNEGATE
M+

AND, OR, XOR, 0=, 0<{, NOT
< = >, U

WITHIN

ABS

MIN, MAX
RELEASE

5 The H@ and H! words are used to fetch and store 16 bit words in MSU.

Clocks

12
18

84
178
182
187

102
104
213
211
228
217
230

384
402

9
10
12
17
11
10
14
10
18
22
11

&

9
19
IS5
17

1
14
18
9to 11

13
14 to 15

Microseconds

1.8
2.7

10.6
26.7
273
28.05

15.3
15.6
31.95
31.65
34.2
32.55
34.5

57.6
60.3

1.35
1.5
1.8
2.55
1.65
1.5
2.1
1.5
2.7
33
1.65
1.2
1.35
2.85
2.25
2.55

1.65

2.1

2.7
1.35to 1.65

1.95
2.10t02.25

82 The Journal of Forth Application and Research Volume 2 Number 1

Word(s) Clocks Microseconds
HERE 17 2.55
PAD 19 2.85
HOLD 23 3.45
DIGIT 13 1.95
UPDATE 17 2.55
COMPILE 21 3.15
MOVE 11+5n/4 1.65+.19n
CMOVE 16+17n/4 2.4+.64n
FILL, ERASE 14+21in/4 2.1+.79n
—TEXT (n chars before no match) 21+7n/4 3.15+.26n

Why do you need such a powerful FORTH machine? The answer to this question may
seem self evident to anyone who has ever run out of computing power. The main reason is
that it opens up new fields for FORTH applications. Also, it can extend the range of existing
applications. One case in point is an application where this FORTH is used to drive 200
interactive terminals. The average response time when all terminals were active is under 100
milliseconds.

Why does this FORTH run so fast? Aside from the fact that the basic machine has a
very fast cycle time, it is specially designed to emulate different computers.® Since the core set
of FORTH words can be viewed as an instruction set for a “FORTH computer”, the CPC is
an ideal vehicle for implementing FORTH.

Because of the way the CPC instructions are partitioned, a good programmer can make
use of nearly every machine cycle. For example, to fetch a word from memory requires two
CPC instructions (a fetch and a receive) that each take one machine cycle. It takes three
cycles for the fetched data to be valid on the bus. This third cycle (between the fetch and
receive instructions) can be used for any single cycle instruction that does not access the PM
Bus. The delayed jump is another instruction that enhances CPC performance. It takes three
cycles for a jump instruction to take effect. (This is due to the fact that any instruction must
be stepped through the pipeline, which takes three cycles.) An immediate jump bypasses the
execution of the other two instructions currently in the pipeline. A delayed jump allows these
two instructions to be executed. We will see how this can be used when we look at the
NEXT word.

Finally, since the CPC’s external microcode is user alterable, the FORTH can be
optimized for particular applications. Functions that are run frequently, or are very time
sensitive, may be microcoded. This allows the most efficient use of the processing time
available to the application.

6 For example, it has support features to allow emulation of an IBM System/370. For a description of
this see [MCB84b].

Notes: polyFORTH on the NCR/32 83

Typical FORTH Words
This section contains the definition of the FORTH words NEXT, DUP, EXIT, and
colon. Only the NEXT will be discussed.

NEXT

Definition
LABEL next ITF)+O0RCV 0Q03221'SIF: 0JOR
0WF+1RCV [JOR D
LABEL semi uHERE 2+ 1 QO 128 JRZ
4#RSUB R ST 4#SSUB S ST UN NEXT D
11 F)+ WT MOV

or, to organize it more logically;

I F)+ 0 RCV
Q0 322 I'S IF: 0 JOR
W E)+ 1 RCV

F
JOR D uHERE2+ 1 QO 128 JRZ
RSUB R ST 4#S SUB
ST

1
0
0
1
4
S UN NEXT'D 11 F+ WT MOV

N B L B e

Line [fetches the next cell from memory and increments the address to point at the
next cell in memory. Line 2 determines if this cell references a code definition. If it references
a code definition, it jumps directly to the microcode. Line 3 fetches the first word of the code
field and sets up the parameter field address. Line 4 determines if the code field refers to a
microcode routine. Note that the uHERE corresponds to the HERE word for microcode
accesses. If it does, control is transferred to that routine. Line 5 is executed for DOES>
definitions. Line 6 continues processing the DOES>.

There are 4 entry points to this routine. This is done to allow microcode routines to
fully utilize processor cycles. For example, a routine can initiate a delayed jump to NEXT
and execute the first two instructions in NEXT after the delayed jump. In this instance, the
entry point to NEXT would be the third instruction.

Executing a NEXT to code takes 7 clocks, or 1.05 microseconds. Executing a NEXT to
:code takes 11 clocks, or 1.65 microseconds. Again, for more information on this, contact
FORTH, Inc.

DUP

CODEDUP(n—nn)lIIF+ 4#S SUBO RCV S ST next
4+ BR D 0 Q0 3 2 I'S IF: 0 JOR

EXIT
CODE EXIT R R F)+f UN NEXT DI RCV I I B+
colon

LABEL colon W W F)+ 4 # R SUB 0 RCV R ST W I MOV 0 Q0 3
2 PSIF: 0 JORO W F)yt semi BR D 1 RCV 1 JOR D

84 The Journal of Forth Application and Research Volume 2 Number |

Conclusion
The microprogrammability of the NCR/32 allows a very compact, high performance
FORTH implementation. Because the microcode is user alterable, the system can be easily

optimized for different applications, making it an ideal microprocessor for a wide variety of
FORTH computers.

Manuscript received August 1984.

References

[MCB84a] McBride, Michael L., “Implementing Forth on the NCR/32”, 1984 Rochester
Forth Applications Conference. Institute for Applied Forth Research, Inc.,
Rochester, NY. 1984,

[MCB84b] McBride, Michael L., “Microprogrammable chipset emulates mainframe process-
ing”, Electronic Design, Aug. 9, 1984, page 229.

