Conference Abstracts

The following abstracts are from presentations made at the 1983 Rochester Forth Appli-
cations Conference, June 6-9, 1984. Many of these presentations appear as papers in the
Proceedings of that Conference, published by the Institute for Applied Forth Research, Inc.

Computer Music Programming Environments
David P. Anderson
Computer Science Department University of Wisconsin Madison, WI 53706

Computer-based digital sound generation systems offer a wide range of new musical possibili-
ties. Some applications for such systems are: (1) algorithmic composition and performance, possibly
including random or human-specified elements; (2) programmed interpretation of human-composed
works; (3) use of the computer as a human-playable instrument whose “notes” may include process
invocations.

Technological advances have made the hardware capabilities for computer music affordable.
Still lacking, however, is a widely available programming environment in which to do computer
music. This paper explores the design and implementation issues involved in such an environment.

Among the needed features are:

(1) Concurrent programming with interprocess communication and synchronization.

(2) Accurate timing control of output events, independent of the CPU usage in computing the
parameters of the events.

(3) A layered interface to the synthesis hardware providing a more powerful “virtual synthesizer.”

(4) Programming abstractions for computer music. These abstractions are crucial for the convenient
specification of musical structure and nuances.

(5) A fast, interactive user interface.

Forth provides the means for specifying and implementing these capabilities in a potentially
portable way. We will outline a design for a Forth computer music programming environment, and
will give some details of its implementation.

FORTH Processors in the Hopkins Ultraviolet Telescope
Ben Ballard, Bob Henshaw, and Tom Zaremba
The Johns Hopkins University
Applied Physics Laboratory
Laurel, Maryland

Engineers at the Johns Hopkins University Applied Physics Laboratory have designed and built
two computers which will control and monitor the Hopkins Ultraviolet Telescope, a 1986 Space
Shuttle experiment. These computers implement a microcoded FORTH nucleus in a word-addressed
AMD 2900 series bit-slice architecture. All programs for them are written in FORTH, which takes
the place of assembly language in this architecture.

The first part of this presentation briefly describes the scientific objectives of the Hopkins
Ultraviolet Telescope and outlines the requirements which drove its processor designs. These
requirements include speed, power, cooling, size and radiation tolerance. This introduction leads
into a discussion of the computer hardware designs and special features incorporated to meet some
of the more unusual requirements. The custom interface between the telescope’s ultraviolet detector

The Journal of Forth Application and Research Volume 2, Number 2, 1984
77

78 The Journal of Forth Application and Research Volume 2 Number 2

and the computer system is described in some detail.

The second half of the presentation describes the way FORTH is implemented and used in the
telescope. The microcoded inner interpreter, which forms the fetch execute loop of the processors, is
presented in depth, as well as the dictionary structure which supports the outer interpreter. The
microprogrammed concurrency routines are described briefly to demonstrate the multitasking
features of the computers. The presentation concludes with some illustrative programming examples
taken from the telescope’s application software.

The VT52 — Terminal Emulation in Forth
James Basile
Department of Computer Science
Long Island University — C. W. Post Campus
Greenvale, NY 11548

This paper explores the general principles of terminal emulation and in particular focuses on an
emulation of the DEC VT52 terminal. The use of state tables to process 1/O is examined and

general techniques for implementing an emulation in Forth are developed.

Four Vocabulary Tools
Roberr Berkey
Dysan, Inc.
455 Bob Jones Ln.
Scotts Valley, CA 95066
The concept of VOCABULARY is decomposed into two elements: the search order and the
ordered list. :SEARCH-ORDER is a defining word that defines search orders. GROUP is a defining
word that defines ordered lists. An additional vocabulary access word, THE, is described for access to
words outside the CONTEXT. GROWING is a name preferred to CURRENT.

Correction of Systematically Induced Instrumentation Errors
on Streak Camera Data
Robert Boni
Laboratory for Laser Energetics
250 East River Road
Rochester, New York 14623
At the Laboratory for Laser Energetics (LLE), streak cameras are implemented to time resolve
sub-nanosecond laser pulses. These streak cameras have three main components: the streak tube that
time resolves the laser pulse, the intensifier which amplifies the resolved pulse, and the Optical
Multichannel Analyzer (OMA) which digitizes the output for numerical analysis. The non-linear signal
response of the streak tube and its signal saturation level cause intensity distortion of the data, after
which the intensifier induces pincushion distortion (non-linear spatial stretching) of the data. Software
algorithms are used to remove these distortions. These algorithms, which will be discussed, provide an
efficient means for correcting these distortions. -

Implementing FORTH on a New Processor
FORTH for the 65816 and 65802
John Bowling
Starlight Forth Systems
15247 35th St
Phoenix, AZ 85032

This paper covers the creation of an assembler for a new processor in FORTH and generation of a
FORTH meta-target compiler using that assembler. The techniques used can be implemented for any
processor on any host system with FORTH. The host employed for this task was an OSI C8P-DF
running fig-FORTH for the 6502 under OS65D DOS. The scheduled targets are OSI, Apple, Atari,
and Commodore, each with a 65802 processor installed in place of the 6502 processor.

Conference Abstracts 79

The reader will be shown how any present system using a 6502 or a 65002 can be upgraded by
installing a 65802 processor in place of the 6502 and installing the newly created FORTH. With no
other hardware changes, the system speed will more than double, and the space taken for CODE words
will be reduced by nearly one-third.

Mealy Machines in FORTH
John Bowling
Starlight Forth Systems
15247 35th St
Phoenix, AZ 85032

This paper covers the implementation of a Mealy (State Active) Machine structure in FORTH.
The Mealy Machine resides in a present state, and performs operations based on the present state and
incoming parameters. The operation performed can change the state of the machine as it executes the
desired function.

An example using the Mealy Machine as a multi-layered CASE: array will be given. This
operation implements several functions, each with its own interpretation of the keyboard. It may reside
as a turn-key overlay to FORTH, and allows Spread Sheet, Data Base management, Text Editing,
FORTH editing, Help, etc. to be operated from what appears to be a single high level package.

From power up, a user selects an operation by a single keystroke. The user is then placed in an
operating structure that allows temporary entrance to another operational package, return to previous
or entrance to an additional, etc. all controlled by the Mealy Machine. Transfer may save the status of
the existing function, and upon return enter it where it left off. Data may be transferred when going
into another package, or data may be shipped off to another function to be manipulated, somewhat
ransparently, allowing spread sheet manipulation of numbers while editing in the data base.

Command Completion in Forth
Mitch Bradley
Sun Microsystems
2550 Garcia Ave.
Mt. View, CA 94043

Command completion is a technique for speeding-up user input to a computer. Instead of having
to type entire names, the computer accepts any unambiguous initial substring of a command name as
an abbreviation. The computer then completes the command name for the user. If a substring is
ambiguous, the computer can tell the user all the valid choices.

Command completion has been used in a number of operating systems, notably TENEX and
TOPS-20. It has proven to be a very well-liked feature of these systems.

Command completion fits in well with Forth, since most words that the user types are expected to
be already present in the dictionary. The implementation of command completion is surprisingly
simple.

This paper discusses the concept and use of command completion, and presents the author’s
implementation of command completion for Forth &3.

Structured Data with Bit Fields
Mitch Bradley
Sun Microsystems
2550 Garcia Ave.
Mt. View, CA 94043
A structured data item is a data item composed of several subfields of various types, analogous to
the “struct” declaration of C or the “RECORD” types of Pascal and Modula-2.

80 The Journal of Forth Application and Research Volume 2 Number 2

Address Space Unification and Forth
James C. Brakefield
Technology, Inc.

5803 Cayuga
San Antonio, TX 78228

The following talk gives a philosophical background for the Forth software system. It places Forth
within a larger context of the programming universe. I am interested in how this is viewed by the
active, experienced Forth community.

The address interpreter can be generalized so that direct threaded code and indirect threaded code
can coexist, even to the point that a given code string contains both. A second modification of the
address interpreter permits compaction of the addresses so that a P-code style is possible. This coexists
with the aforementioned direct and indirect threaded code.

The resulting interpretation of Forth code strings is that the Forth primitives are reserved
addresses and that addresses are executable objects. Philosophically, the programmer is using addresses
as op-codes. Subroutines are known by their addresses just like primitives. Subroutines have the same
stack interface as primitives (op-codes) so that conceptually they are no different and thus may be
abstracted in the same way.

The various concepts of advanced computer science and the artificial intelligence community can
be mapped directly into the Forth context. Thus this extended Forth provides a foundation on which
to build the rest of computer science.

Examples:

—Lisp is Forth with I plus 1 addressing,

—Address code strings are a possible internal parse tree representation for compilers,
—VForth has the most general extensibility of any language,

—Type checking and overloading are simple modifications of the text interpreter.

Status Threaded Code
Bob Buege
RTL Programming Aids
10844 Deerwood SE
Lowell, MI 49331
RTL is a Relocatable Threaded Language which I developed to overcome some of the weaknesses
of FORTH. Because of the requirements which I demanded from RTL, I was forced to invent a new
class of threaded languages which is more flexible than languages based on either direct threaded code
or indirect threaded code. The purpose of this paper is to describe this new type of threaded code
which I call status threaded code and show how it was used to advantage in the creation of RTL.

MA2301 FORTH: Modular Software to Complement Modular Hardware
Gordon Cook
National Semiconductor
2900 Semiconductor Dr.
Santa Clara, CA 95051

National Semiconductor’s new MA2XXX Macrocomponent™, the ROM-based MA2301 FORTH
module, reflects the modular theme of the MA2XXX family. A description of the features of the
FORTH Macrocomponent™ is followed by a brief introduction of the compact, lower power,
MA2XXX Macrocomponents™ utilized in the specific applications addressed by the paper.

A section on specific applications of the MA2301 FORTH module includes a program for a 300
BAUD MODEM, and an ANALOG INPUT unit, both companion Macrocomponent™ units. A
program for use with an LCD display and keyboard interface further demonstrates the MA2301
FORTH module’s flexibility.

A summary of the MA2301 FORTH module’s capabilities concludes the paper, and a detailed
appendix is attached.

Conference Abstracts 81

The Use of FORTH in the Instruction of Introductory Robotics
Alan J. Cotterman, Daniel M. Willeford, and James E. Brandeberry
Dept. of Computer Science
Wright State University
Dayton, OH 45345

At the Digital Control and Robotics Laboratory at Wright State University, students use an
implementation of fig-FORTH to design a teach mode control program for modified toy robot arms.
This program allows the arm to be taught multiple trajectories of up to 100 points (unigue arm
positions) and then permits repeated execution of these trajectories. The program successfully realizes
real-time position monitoring, motion-execution algorithms, management of the trajectory database
and features a menu-driven, user-friendly operation.

The hardware environment consists of the host PDP-11/34 minicomputer operating under RSX-
11, and four LSI-11 microprocessor workstations. TASK4TH, a standalone derivative of fig-FORTH,
is down-line loaded from the host into the workstation and is capable of supporting peripheral
equipment which includes serial and parallel I/O and also analog-to-digital and digital-to-analog
conversion. Toy robot arms with five degrees of freedom are connected to the workstations and have
been modified to operate under computer control. Position detection is accomplished through analog-
to-digital conversions on the outputs of Hall-effect sensors (mounted on the axes of rotation) and arm
motion is accomplished by actuating solenoids via the paraliel port.

Solution Introduction to Continuous-Flow Analyzer
by Rotary Valve and Robot Arm — a Forth Application
Don C. Cox, Frank W. Kerner, Leonard C. Jones, and William B. Furman
Center for Drug Analysis
Food and Drug Administration
St. Louis, Missouri 63101

Our laboratory monitors the quality of drugs produced in the U.S.A. We use commercially built,
automatic continuous-flow analyzers to measure the amount of drug in individual tablets or capsules.
Each tablet or capsule is dissolved in a known volume of liquid. Small portions of these sample
solutions (and of standard solutions at intervals) are manually poured into disposable cups and placed
on the carrousel of a commercially built, automatic sampler device. The automatic sampler mechanically
turns the carrousel in steps and inserts a probe sequentially into each cup; each solution is pumped
through tubing from the probe into the automatic analyzer. Between each sample or standard solution,
the sampler lifts the probe briefly into the atmosphere and then inserts the probe into blank solvent. In
this way, an air-segmented stream is pumped into the analyzer in the sequence: wash solution, air
bubble, sample solution, air bubble, wash solution, air bubble, sample solution, air bubble, etc. A
standard solution of known drug concentration is used to calibrate the automatic analyzer at regular
intervals in the sequence. In a typical hour’s work, an operator must pour 40 to 120 solutions into cups
and place them on the carrousel; from five to 15 analyzers are in use on a given day.

We want to eliminate the manual transfer of prepared sample and standard solutions to the small
cups required by the commercial automatic sampler. To do this, we replace the commercial sampler
with a five-port rotary valve and a robot arm. The robot arm sequentially inserts the probe directly into
the same containers of liquid that were used to dissolve the individual tablets or capsules, thus
eliminating manual transfer of solutions. The rotary valve sequences the flowing streams properly for
introduction of air, sample solution, or standard solution to the rest of the automatic analyzer. Forth
programs control the valve and position the robot arm over a rectangular matrix of containers for
sequential introduction of prepared solutions to the analyzer in real time.

82 The Journal of Forth Application and Research Volume 2 Number 2

Extensions of FORTH for Functional Programming
R. D. Dixon, W. M. Edmundson, R. D. Franklin, and J. L. Sloan
Dept. of Computer Science
Wright State University
Dayton, OH 45345

In order to provide facilities in a FORTH environment similar to those in Backus’ FP, an interface
was written between Ray Duncan’s Z-80 FORTH and a functional language developed at Wright State
University calleld BADJR. BADJR provides automatic storage allocation, garbage collection and
compactification, unlimited precision numbers, strings and sequences. BADJR differs from FP in that
functions may have several input and output parameters as well as local variables which may be
assigned a value exactly once.

The result is an extended FORTH, called FORJR, which is pleasant and easy to use. Recursion is
supported and stack reduction is done for tail recursion. This system is experimental and not meant for
other than testing ideas but it has led us to some further proposals for a new FORTH model which
incorporates the functional support features in its kernel. Such a FORTH would have much more
flexible conditions on the addition and deletion of dictionary entries.

The Smallest Quter Interpreter
R. M. Dumse
New Micros, Inc.
808 Dalworth
Grand Prairie, Texas 75050
When an application program is target compiled, the ability to use the interactive nature of
FORTH for debugging is lost with the removal of the dictionary and outer interpreter. Creating an
“open” system by including the complete outer interpreter and dictionary headers in the final program
would defeat the purpose of target compilation. In most instances, the added overhead to the compiled
kernel would be unacceptable. A happy medium does exist, however, as evidenced by the “Micro
Monitor” of the R65F11 Single Chip FORTH Based Microcomputer. This small program included in
the kernel of the chip allows interactive use of all kernel and user defined words, even in target
compiled systems. The details of this and other enhanced versions of “small outer interpreters” are the
subject of this paper.

Operating System Services in Forth for VAX/VMS
David L. Forster
Telelogic, Inc.
One Kendall Square
Cambridge, MA 02139
The Forth programming language has been extended to facilitate access to system services
provided by the VMS operating system on the DEC VAX super minicomputer. The complete
interactive access to system services thus provided allows quick and efficient manipulation of system
resources and information. Complex data structures, which are used by some system services, can be
built interactively in Forth. Fields within these structures have been made directly accessible by name,
through the use of some of the C programming language’s “Struct” concepts. Second order defining
words, which are defining words that build defining words, have been used to automatically build
common system, service data structures, thus eliminating the task of building these structures
repeatedly by hand. These features eliminate many of the difficulties in working with system services.

A Forth-Based Operating System for Embedded Real-Time Applications
Harvey Glass and Ted Neff
College of Engineering
University of South Florida
Tampa, FL 33620
Forth has been used extensively in the implementation of small specialized applications —
particularly in real-time control and in interactive packages. This paper discusses the implementation of

Conference Abstracts 83

a real-time operating system written principally in Forth.

The system was originally designed to operate in a high speed, high volume, time critical
communications environment. It furnishes a set of sychronization primitives and real-time clock
support. The development environment provided by the operating system was designed to allow
interactive simulation and debugging as well as in-circuit emulation of the prototype application.

Although the system was used initially to perform a highly specialized function, it has proven to be
both transportable and useful in a variety of applications. There is no doubt that Forth contributed
greatly to the generality and transportability of the system.

Forth Coding Conventions
Kim Harris
Dysan Corporation
455 Bob Jones Lane
Scotts Valley, CA 95066
A set of conventions for Forth programming will be presented. The conventions include spacing
within definitions, screen layout, interface and stack comments, and indentation.

Controlling a PDS Microdensitometer with FORTH
Arne A. Henden
Goddard Space Flight Center
and
Systems & Applied Sciences Corp.

5809 Annapolis Road

Hyattsville, MD 20784
A PDS Microdensitometer is an instrument with a motorized X-Y stage and a light source/detector
mounted perpendicular to the stage. It is used to digitize photographic plates. We have written a
FORTH program to control the stage motions, acquire the A/D data, and store the data on magnetic

tape. Unique aspects of this control program will be discussed.

Computerized Process Control for Food Science Students
George Houghton
Cornell University
Food Science Dept.
Ithaca, NY 14853
Since students in Food Science can expect to work in such diverse lines of work as food
processing, food engineering, quality control, product development, etc., they must be familiar with a
wide range of scientific and technological fields. In the past few years this has come to include aspects
of computer science. We are in the second year of developing a laboratory module to familiarize
students with computerized process control. Qur objective is to introduce this topic without requiring a
background in computer technology. In this module, a small computer is programmed to control a
simple, but realistic model process, namely a hot water heater. Since the software that controls this
process is written in FORTH, students are given a short introduction to the language.

Forth Meets Smalltalk
Norman D. Iverson and Charles B. Duff
KRIYA
505 N. Lake Shore Dr.
Chicago, IL 60611
Several advantages are inherent to an “object-oriented” approach to programming languages: the
source code resulting from use of such a system offers a clear insight into the underlying design;
pathological couplings between the various parts of a program are minimized; and the close relationship
between data structures and their associated operations encourages users to solidify their designs before
any coding begins. Previous approaches to object-oriented systems have sacrificed efficiency for
generality, often making them impractical for production use. We have implemented a set of extensions

84 The Journal of Forth Application and Research Volume 2 Number 2

to Forth that permit Class definition/instantiation and Subclass inheritance in the manner of Smalitalk
and Simula. These extensions take advantage of Forth’s compile time behavior to preserve runtime
efficiency while providing many of the benefits of an object-oriented approach.

Our solution allows the following: definition of classes with hierarchical class/subclass inheritance;
definition of methods for such classes triggered by selectors and messages; instantiation of classes as
objects that associate private data areas with the owning class’s methods; and the capacity to build a
class’s private data from previously defined objects, thus allowing the creation of nested data
structures/defining words, previously impossible in Forth.

We will describe our formulation of the problem as well as design and implementation consider-
ations. This work grew out of our creation of a Forth development environment on the Apple
Macintosh computer.

Forth as a Development Tool for Micros
Man Chor Ko
Ascent Inc.
1983 Landings Dr.
Mountain View, CA 94030

Ascent Inc. is a software development company specializing in microcomputers. We are currently
using Forth to develop a programming language for micros known for its graphics, and a productivity
software package for lap-size computers. This talk will summarize our experience in using Forth as a
professional development language for team projects.

Development of OMNITERM 2,
a MS-DOS Communications Program in FORTH
David J. Lindbergh
Lindbergh Systems
49 Beechmont St.
Worcester, MA 01609

From May 1982 to March 1984 my principle project was OMNITERM 2, a highly capable general
purpose communications, file transfer, and terminal emulation program for the IBM PC (and soon
other MS-DOS machines). It is written under Miller Microcomputer Services MMSFORTH. Tl
briefly describe the program itself (I don’t intend to sell it, just give a quick overview) and my decision
to use FORTH for its development.

Pll talk about the advantages and disadvantages I found with FORTH for developing such
projects (the program runs about 80K of object code, and was about 300 blocks of FORTH and
assembler code) including documentability and readability, ease of transfer to other machines,
problems with 16 bit address spaces, etc.

Poster Session: Color and Sound for the IBM PC in FORTH
David J. Lindbergh
Lindbergh Systems
49 Beechmont St.
Worcester, MA 01609

The IBM PC has the capability to emit sounds through a software-controlled speaker. I have
written some routines that allow me to specify the frequency and duration of any desired tone very
easily in FORTH. The frequency is computed in Hertz to 7 digits of precision using integer math, and
the duration is controlled by a heartbeat interrupt routine.

The IBM PC can also be equipped with a Color/Graphics card supporting the 16 foreground
colors and 8 background colors, plus blinking. I have some very simple and elegant FORTH words
that allow me to say things like “RED BLUEB” for red letters on a blue background, or “GREEN
BRIGHT BLINK YELLOWB?” for bright green blinking letters on a yellow background. Normally one
must look up the desired colors from a table and specify the codes found, but FORTH allows me to
simply type the desired color.

Conference Abstracts 85

Number Crunching with 8087 FQUANSs: The Mie Equations
Ferren Maclntyre
Center for Atmospheric-Chemistry Studies
Graduate School of Oceanography
University of Rhode Island
Narragansett, RI 02882-1197

By long-standing tradition, FORTH uses scaled-integer arithmetic in preference to floating-point
operations, principally because of the inefficiencies of the latter. However, there are operations in
which half of the possible precision is lost for any scaling. In addition, the appearance of the 8087
numerical co-processor has removed the stigma of inefficiency, and we have reached the point
anticipated by Charles Moore, at which it becomes preferable to use floating-point operations.

Taking the IBM PC BIOS single-precision routines as baseline for the heavily numerical Mie
equations, the 8087 is 115 times faster. Precision increased from one significant figure (round-off error
dominates in the recursive calculations) to complete agreement with published 6-figure values.

Because arithmetic and stack operations are fast on the 8087, while 10-byte stores and fetches are
relatively slow, it pays to design algorithms which keep operands on the 80-bit-wide, 8-word-deep 8087
stack. It is, for instance, possible to replace two complex numbers with their sum and difference,
without leaving the stack.

The net result is an algorithm which produces a result in 15 minutes, compared to all day in the
queue for a l-second run on an available CRAY-1 supercomputer.

Implementing Forth on the NCR/32 Chip Set
Michael L. McBride
NCR Microelectronics
Colorado Springs, Co.

Greg Bailey
Athena Programming
Santa Barbara, Ca.

Mary Anne Ryan
NCR Microelectronics
Colorado Springs, Co.

The NCR/32 chip set is a high speed, full 32 bit, externally microprogrammable microprocessor
family that is an excellent vehicle for implementing a powerful FORTH computer. The chip set will be
discussed in detail. The particular architectural features that enhance a FORTH implementation will be
examined. Finally, the performance of a FORTH implementation will be discussed.

Kitt Peak Multi-Tasking FORTH-11
Thomas E. McGuire
Health Systems International
100 Broadway
New Haven, CT 06517
An overview of the Kitt Peak National Observatory (KPNO) real-time environment is presented.
The eleven optical telescopes at Kitt Peak employ a variety of experimental instruments, including
Fourier Transfor Spectrometers and large array digital cameras, that impose a diverse set of real-time
requirements. Presented next will be a historical perspective of FORTH at KPNO over the last decade
outlining the evolution of the embryonic version of FORTH on an 8K byte minicomputer to the
current KPNO implementations on mainframe (CDC), mini (Digital VAX-11 and PDP-11), and micro
(Digital LSI-11) machines. The real-time attributes of FORTH in general and KPNO multi-tasking
FORTH-11 in particular are discussed. Some details of the implementation of FORTH-11 are
presented to reveal the power of this real-time programming environment. Finally, the KPNO CCD
camera system will be used to illustrate a complex real-time application of multi-tasking FORTH-11.

86 The Journal of Forth Application and Research Volume 2 Number 2

A FORTH Profile Management System
John Michaloski
National Bureau of Standards
Industrial Systems Division
Washington, DC 20234

A new approach to program management is presented called Profile Management (PM). Differing
from conventional file systems, PROFILE not only handles those problems of off-line source code
management, but extends this concept to deal with the on-line status of the machine. The basis of this
new approach is the “profile”, i.e., a partition of source code on the disk. Each profile names a section
of code that can be used throughout the loading process, plus allowing various forms of status
information to be accessed via commands within the Profile Management system. Further, each profile
can be subdivided into smaller partitions that themselves act as an individual profile or as a part of the
parent profile. These subdivisions offer a flexible mechanism for loading entire programs or just
individual components. In addition, the profile management system is only a stepwise upgrade from
current Forth source block management systems. All profiles are embedded as a commenting structure
so that PM can operate either on-line or off-line to extract loading information. On-line PM produces
named profiles in the dictionary with status pertaining to disk block location, load status, and a pointer
to the name on disk. Off-line PM does selective code generation through a query system to create load
blocks for the user. The system requirements of this package are approximately 2K memory and 30
source blocks. Finally, source code and examples will be detailed to illustrate how to fully exploit the
power of a PROFILE Management system.

Multiple Mirror Telescope Coalignment and Cophasing Software Control System
J. W. Monigomery
Multiple Mirror Telescope Obervatory
Tucson, AZ 85721

The Multiple Mirror Telescope (MMT) located -at Mount Hopkins, 64 kilometers south of
Tucson, Arizona, is a demonstrated revolutionary concept in telescope design. Instead of having a
single large monolithic primary mirror, it employs a cluster of six 1.8-meter Cassegrain telescopes and
computer controlled transfer optics to focus the incoming light at a common plane. The telescopes are
supported by an altitude-azimuth mount and housed within a four story co-rotating building. Without
the current advancements in computer technology the MMT would not be feasible. This paper dis-
cusses the successful use of the FORTH language for orchestrating open and closed loop coalignment
as well as open loop cophasing of the six telescopes.

Forth as a Design Tool
Gary Nemeth
Hampton Corporation
20800 Ctr. Ridge Rd. #229
Rocky River, OH 44116

In this application, Forth was used to design an 8085 assembler program. Half of the Forth
program simulated the operating environment, and half was analogous to the desired 8085 program.

The desired 8085 program was a communication protocol for a controller computer. Already
coded in assembler, the controller sequenced a small group of factory tools. The communication
protocol was to be added for strategic coordination. The author had never written such a protocol, was
not normally on location, and was new to the project.

All aspects of the controller system were simulated in Forth: the existing timer modules, interrupt
modules, the nature of the 8085 instructions and assembler, the USART chip, the ROM/RAM aspect
of the final product, the new calling programs which would be required, and the symmetric protocol
modules of the other network computers. Thus Forth was used to avoid a duplicate development
system or being on location.

The Forth program evolved expeditiously. The design process was interactive, and thus more
efficient than pencil, paper, and pseudo-code. Quickly rewritten in the 8085 assembler language, the
program was squirted into the controller computer.

Conference Abstracts 87

A Brief Note on the Kuiper Airborne Observatory C141
Submillimeter Spectroscopy
Hans Nieuwenhuyzen
University of Utrecht
Grunoplantsoen 10
Bunnik 3981 GT
The Netherlands

In the 1970’s a number of different molecules were detected in the interstellar gas clouds in our
Galaxy. They revealed unexpected gas components in the interstellar clouds, comprising some of the
largest known galactic objects.

One of the regions where interesting molecular information can be found is in the difficult to
access sub-mm to mm region (due to the very high radio-frequencies, e.g. 260 Ghz for CO(2-1)
transition, and to the low transmittance of the earth’s atmosphere).

In 1974, the European Science and Technology Center (ESTEC) and the Utrecht Observatory in
Holland started a collaboration to develop a suitable spectrographic sub-mm and mm instrument
package and to do observations from high ground-based observatories and from the Kuiper Airborne
Observatory. The following is a note on how the language FORTH was chosen for the control and
data-reduction program. It is presented as a Case Study on the use of FORTH in an interactive, highly
demanding, environment.

Complex Integer Arithmetic in Forth
Vic Norton
Department of Mathematics and Statistics
Bowling Green State University
Bowling Green, Ohio, USA 43403
Every Gaussian integer, z = m + ni, can be uniquely represented as a base 2 + 1 numeral,

.k .
= = 2+ + + 24+1)+
4 ak.”ala0 a, 2+1) Sty (2+1)+a

0
with digits a. from the set of “quints” 0, 1, 1, -1, -i. We explore the arithmetic of this quinary positional
system in FORTH by setting up a Q-stack (for quinary numerals) fed by the word

Q (-- quinary numeral ,) : put a quinary numeral
from the input stream onto the Q-stack.

The words Q+, Q-, Q*, QNEGATE are defined to do arithmetic on quinary numerals and the FORTH
system for integers is further duplicated by the words QDUP, QDROP, QSWAP, Q., Q@, Q!, QVARI-
ABLE, etc. The main problem is this: how does one define Q/ MOD and is this even possible?

Using Native Machine Code Analogs
of Interpreted FORTH’s Elements for High Performance
Walr Pawley
Sun Studs, Inc.
2635 Old Highway 99 South
Roseburg, OR 97470

Sun Studs is a small timber products company which develops much of its own technology for
process control — most notably nonanthropomorphic computer controlled ‘robots’. The require-
ment for high performance has dictated the use of assembly language for the overwhelming majority
of programs used in these systems. To investigate its feasibility in real time work, it was decided to
develop a FORTH for the Perkin/Elmer computers Sun Studs uses. The kernel was adapted from a
microcomputer version of FORTH and written using a macro processor to provide highly readable,
but still interpreted, code. Before this was completed, however, it became clear that native machine
code structures could be substituted for the interpreted structures allowing FORTH code to execute

88 The Journal of Forth Application and Research Volume 2 Number 2

directly,. It was only necessary to change the code-generating macros and the definition of a few of
the kernel’s words.

Several new words have been added to support the gamut of environments used at Sun Studs.
The result is a fast, compact FORTH that supports both 16 & 32-bit systems operating in either
user or executive modes. It also works with standard files from these systems, rather than defining
its own mass storage structure. Unfortunately the jury is still out on the applicability of such a
FORTH in our real time systems.

Nicolet DXFTIR: Real-Time, Multi-Tasking FORTH and Other Tricks
Joel V. Petersen
Nicolet Instrument Corporation
5225-1 Verona Road
Madison, WI 53711

The software package developed for the Nicolet DX series FTIR spectrometer represents the
largest single FORTH program ever developed by the author. With the object code extending over
64K of 20-bit words, the program spans an enormous range of concepts. The heart of the DXFTIR
program is a simple real-time multi-tasking FORTH that was developed for the Nicolet 5-MX, a
ROM-based FTIR spectrometer. Under control of this multi-tasking supervisor, the DXFTIR
program can collect and process a 8192 word data array once a second while displaying one
spectrum with full ROLL and ZOOM function and plotting a second spectrum.

The operator interface starts with a menu-driven mode with single keystroke operation and
numerous help messages and culminates with a programmable command language complete with a
screen editor. With a configuration program, the operator can customize the DXFTIR program
according to which spectrometer bench, which plotter, and how much memory he has. The operator
can also write their own programs in FORTRAN, PASCAL, FORTH, or assembly language to be
run as overlays to the DXFTIR package. Finally, the operator can access the FORTH vocabulary
of the DXFTIR package and add his own commands to the command language.

Language Trade-Offs for Real-Time Programming Applications
Richard Poulo
Control Automation
P.O. Box 2304
Princeton, NJ 08540

We examine the advantages and disadvantages of FORTH vis a vis conventional programming
languages, with Pascal chosen as a representative. Some properties of these languages can be compared
by identifying the part of the software life cycle to which they are relevant, while some properties can
only be measured by other criteria.

We also examine two similar industrial vision systems that are programmed in Pascal and
FORTH and discuss the requirements and constraints of each system. These requirements originate
from both technical and non-technical considerations but all have an impact on the choice of language.
In particular the requirements determine the relative priorities of the properties of the candidate
languages.

Historically the vision system programmed in Pascal was developed first and the FORTH system
two years later. The change in product emphasis that led to a change in language is used as an example
of how to apply product requirements to make a language choice.

High Speed Image Capture and Image Generation
Tom Sargent
Io Incorporated
1806 W. Grant Rd. #105
Tucson, AZ 85745

A modular image capture and graphic display system has been built using bit slice technology.
Used as a graphics device, a dual, 32-bit, microcoded graphics engine copies, scales and rotates pre-
defined patterns into a 1024 x 1024 color graphic display memory at 6 million pixels/sec. Used in the

Conference Abstracts 89

frame capture mode, the system can accept a data stream at up to 96 million pixels per second.

The image capture/generation hardware is controlled by a VME bus computer running multiple
MC68000 microprocessors programmed exclusively in FORTH.

The first graphics application of this system has been a Computer Aided Design machine for
printed circuit board design. The frame capture capability is being used in cartographic and medical
imaging applications.

User’s View of FORTH for the Study of Optical Thin Film Coatings
Ansgar Schmid and Mark Guardalben
Laboratory for Laser Energetics
250 East River Road
Rochester, NY 14623
At the University of Rochester’s Laboratory for Laser Energetics, FORTH is the language of
choice for the automated control of experiments designed to investigate the interaction of intense
radiation with thin film materials. A DEC PDP 11/23 is used in conjunction with a Chromatics Color
Graphics computer in the acquisition, reduction, and subsequent color display of data. All processes
involved in the acquisition of data are automated via a CAMAC serial highway.

A FORTH Application to Infrared Astronomy
Justin Schoenwald
Dept. of Physics and Astronomy
University of Rochester
Rochester, NY 14627
A PDP-11 is programmed for data collection from a 32 x 32 InSb array with charged coupled
device readout. The same computer serves to process and display images at the telescope using a
Peritek VCH-Q graphics board. Extensive image processing is performed in the lab, where coding of
FORTH above 64K is accomplished with the LSI 11/23 extended memory feature.

A VAX Implementation of the FORTH 79 Standards
William Sebok
Dept. of Astrophysics
Princeton University
Princeton, NJ 08544

A public domain implementation of Forth has been written for the VAX819 super-mini that runs
under 4.1 and 4.2 BSDUNIX829. It has been running now for about two years at the Astrophysics
Dept. at Princeton and is used for image processing. It follows the 79-Standard except: 1) entries on the
parameter stack are 32-bits wide, 2) addresses are 32-bits (rather than the demanded 16-bits) wide, 3)
certain escape sequences beginning with a backslash are recognized in the printing word .”......"

Some extensions to the 79-Standard are: 1) A character string stack, with a full set of string
operators. This also makes manipulating Unix file names infinitely easier. 2) A floating point stack.
3) A set of Unix interface words.

Colon definitions are compiled as a series of bsb, bsbw, or jsb instructions (the shortest one that
will reach) rather than as a list of pointers. When a word defined by the ICODE operator is compiled
its code is stuffed in-line rather than referenced. Number references are compiled as the shortest of the
many possible instructions to push that number onto the stack.

TASK4TH — A Multi-Tasking FORTH Workstation
John L. Sloan
Department of Computer Science
Wright State University
Dayton, OH 45435

TASKA4TH is a standalone multi-tasking FORTH system derived from the PDPI1 version of the
public domain fig-FORTH. TASK4TH provides facilities for interrupt handling, process synchroni-
zation and message passing.

90 The Journal of Forth Application and Research Volume 2 Number 2

TASKA4TH is down-line loaded from a multi-user PDP-11 minicomputer to a single user LSI-11/2
microcomputer. The LSI-11 target system requires no native software other than the standard micro-
coded ODT monitor, and no native peripherals other than a console terminal and a serial communi-
cations line to the host PDP-11.

Once TASKATH is loaded, the target system may be used in either of two modes. In terminal
mode, the target system can be used as a standard terminal to access the host system. In FORTH
mode, the target system enters the FORTH interpreter, and may request FORTH screens from the
host. A file server utility on the host reads screens from a screen file on a large shared hard disk and
passes the data to the target over the serial line.

Each TASK4TH user’s logical FORTH screen file is split into two physical files. The first file is
common to all users on the host system, while the second file is unique to each TASK4TH user. The
physical split is transparent to TASK4TH.

TASK4TH has been in use by under-graduate and graduate students for nearly a year. Projects
include inter-processor communication, real-time grahics, and control of various robot arms.

SPHERE: An In-Circuit Development System With a Forth Heritage
Evan L. Solley
Infosphere, Inc.
4730 SW Macadam Ave.
Portland, OR 97201

The development of embedded realtime applications for industrial and scientific control and
measurement is a complex task demanding an effective toolkit and development methodology.
Interactive development within the domain of the execution vehicle has been shown to lower costs and
development time.

SPHERE defines the minimum required functionality of an idealized, abstract engine for solving
realtime problems. The current implementation, available on the most popular microprocessors,
utilizes concepts from Forth to efficiently realize that functionality.

This paper describes the features of SPHERE that make it an ideal choice for system integrators
solving industrial control problems. The Forth community will be especially interested in:

1. An ergonomic user interface,

2. A pre-emptive, priority-driven multitasking executive,

3. Advanced data types for realtime control solutions,

4. Conditional evaluation capabilities that enhance code portability,
5. An extensible mass storage interface, and

6. A ROMmed, “silicon software” package.

An Approach to a Machine-Independent Forth Model
N. Solntseff and J.W. Russell*

Unit for Computer Science
McMaster University
Hamilton, Ontario L8S 4K1
This paper is a progress report on the research work described in [1] and [2]. The earlier papers
introduced an Abstract Forth Machine (AFM) and described an instruction-set architecture specifically
designed for the Forth system. The aim of the project is to provide a description of the Forth Nucleus
in terms of the AFM code, henceforth called F-code, instead of the machine language of the computer
that hosts the Forth system. Once this is done, the F-code routines can be translated by a macro
processor into the assembly language of any host computer for further processing by a standard
assembler. The use of F-code for nucleus words and high-level Forth for the remainder of the Forth-
system kernel leads to a Forth model which is machine independent to a high degree. (Only terminal
and disc 1/O routines remain to be coded in machine language.) The effort needed to implement a
Forth system on any host computer is significantly reduced because the F-code machine has fewer than
32 instructions for which macro definitions have to be written in host-computer machine language.
The paper describes the design and implementation of a macro processor suitable for converting
Forth words expressed in F-code into assembly language for Z80 and MCS6502 micro-processors.

Conference Abstracts 91

Preliminary results and experience gained with this approach will be discussed. As an example, it has
been found that the use of the macro processor results in a Forth-system kernel which is 15-20% longer
than that produced by the original Fig-Forth78 model.

* On leave from Niagara College of Applied Arts and Technology, Welland, Ontario L3B 5S2.

[1JN. Solntseff, “An abstract machine for the Forth system,” Proceedings of the 1982 Rochester Conference
(1982), pp. 149-155.

[2]N. Solntseff, “An instruction-set architecture for abstract Forth machines,” Proceedings of the 1983
Rochester Conference (1983), pp 175-183.

A Break Point Utility for Forth
N. Solntseff and J.W. Russell*
Unit for Computer Science
McMaster University
Hamilton, Ontario L8S 4K1
The goal of the work described in this paper is to provide the Forth programmer with a tool to
examine the operation of high-level Forth words. The idea of such a tool was provided by Leo Brodie
in [1] which describes a word BREAK to transfer control to a special interpreter. BREAK has to be
compiled into a word being examined so that several recompilations are needed to examine any Forth
word in a number of places. This approach precludes an easy way of stepping through a definition one
execution address at a time. In the break point utility described here, the execution address of any
word within a definition is saved and replaced by the execution address of BREAK. Whenever
BREAK is executed, a special interpreter is available to examine the state of the Forth machine. Before
execution is resumed, the break point is automatically moved to the next word in sequence, so that
single stepping through an entire definition is very easy. The utility can be used to single step through
any high-level Forth word, including those in the Forth-system kernel (provided that they are RAM
resident), without the need for repeated re-compilations.

* On leave from Niagara College of Applied Arts and Technology, Welland, Ontario L3B 5S2.

[1] Leo Brodie, “Add a break point tool,” Forth Dimensions, Volume V, No. 1 (May/June 1983), p 19.

Of Widgets and Clock Ticks
Dr. Michael Starling
148 Union Carbide Technical Ctr.
Building 770, P.O. Box 8361
South Charleston, W.VA 25303

Traditional programming is centered around a logical construct, the language. The program so
generated must interact with the outside world in a time which is relevant to a human interface.

The programming of devices in the real world must often be based around the stringent timing
concerns of the device, system, or experiment which the program knows as the real world. Real-time
programming is much more concerned about time than is most other programming.

The device, or widget, which forms the visible heart of the real world interface is too often the
central theme of discussion about the real time environment. Though a specific device may set the
limits of a problem, several concerns form the nucleus of a real-time programmer’s view of the world.
This paper discusses the following elements of that view:

1. A real world interface

2. Time

3. Tasking as a means of simplification

4. Distribution as a means of simplification

92 The Journal of Forth Application and Research Volume 2 Number 2

HELLO, A REPTILI AM
Israel Urieli
Sunpower, Inc.

225 Highland Ave.
Athens, OH 45701

REPTIL (a Reverse Polish Threaded Interpretive Language) is a Forth-like language which has
been designed with the specific motive of being a viable alternative educational language to BASIC or
LOGO. It is not limited to education, however, and can “grow” with the student over the entire range
from computer literacy through interactive applications programming.

There are some significant departures of REPTIL from Forth in order to make it more palatable,
consistent and pedagogically sound. Thus, the various structured constructs can be used either
interactively, or within a verb definition. Furthermore, the defining verb is not limited to one level, and
nested definitions are allowed. The prompt symbol includes a comprehensive line by line status report,
including the number of elements on the stack, the radix base, and the various unclosed structures
used. Syntax checking of the correct nesting of structured constructs is done throughout.

The basic set of fundamental verbs and structures have been designed for ease of readability and
writeability, and the entire language is specified in terms of structured REPTIL algorithms.

REPTIL has been implemented on a 6502 based microcomputer using less than 8K of memory.
The various utilities such as dissassembler, file storage, editor and high resolution ‘turtle’ graphics are
currently being implemented.

Forth Machine Design Considerations
Christopher Vickery
Computer Science Dept.
Queens College of CUNY
Flushing, NY 11367
Two common approaches to the design of a Forth language processor are translation of a software
model such as (Ragsdale, 1980) into hardware structures, and implementation of Forth language
primitives as the microcode of a conventional processor augmented with a hardware stack. This paper
discusses the strengths of these two approaches, and then explores the possibility of developing a
“Forth Architecture” which transcends historical implementations and hardware details. Such an
architecture must deal not only with compiler facilities and stacks, but also with such other issues as
the structure of memory for code and data as well as the processors control flow mechanism.
Furthermore, the paper also discusses multi-tasking structures for the architecture, justified by the
argument that Forth is often used in process control applications and that such applications are often
best developed as multitasking systems.
The paper concludes with a brief description of the architecture which has evolved from these
considerations at Queens College and reports on our plans to build a machine which realizes this
architecture.

Asynchronous Words for FORTH
R. G. Winterle W. F. S. Poehlman

Institute for Materials Research Department of Engineering
MacMaster University
Hamilton, Ontario L8S 4M1

The asynchronous word (A-word) has been developed to provide an extremely convenient way to
program concurrent real-time interrupt service routines. By adding only three new words (27, *>7
and “ACTION") to a programmer’s vocabulary, A-words that support the full process model can be
defined, quickly and easily. This includes the implicit operation (interrupt response code) plus up to
(currently) eight process housekeeping command operations. All operations are user-definable in high
level FORTH statements. The syntax model is:

Conference Abstracts 93

:: <A-word name>
[interrupt service definition]
> (interrupt return)

INIT> [init housekeeping definition]
START> | start housekeeping definition]

[up to eight process housekeeping definitions]

; (end of dictionary entry)

where INIT> and START> are mneumonic words that call ACTION to set up the housekeeping
dispatcher. With this approach, these complex word definitions can be supported with all of the
standard FORTH tools. Indeed, the A-word is a pure superset of the standard FORTH vocabulary.
This paper deals with the implementation and evaluation of the above syntax model.

CCD Detectors and the Palomar 200 Inch Telescope
Barbara A. Zimmerman
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109
The application of Forth to support real time data acquisition from instruments at Palomar using
array detectors will be discussed. A brief history of Forth’s support of such instrumentation will be
given as a background for the use of Charge Coupled Device (CCD) detectors on the 200 in. telescope.
Four instruments currently use CCD’s at Palomar. Forth, running on a Digital Equipment Corp.
PDP11/44 reads the detectors, stores the data on tape and disk, and displays the data on a Grinnell
Image Display system. The Palomar Forth system will be described with emphasis on the latest
instrument on the telescope, a ground based version of Space Telescope’s Wide Field Planetary
Camera, which uses four Texas Instrument 800x800 CCDs.

