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Abstract

At the Digital Control and Robotics Laboratory at Wright State University, students
use an implementation of fig-FORTH to design a teach mode control program for modified
toy robot arms. This program allows the arm to be taught multiple trajectories of up to 100
points (unique arm positions) and then permits repeated execution of these trajectories. The
program successfully realizes real-time position monitoring, motion-execution algorithms,
management of the trajectory database and features a menu-driven, user-friendly operation.

The hardware environment consists of the host PDP-11/34 minicomputer operating
under RSX-11, and four LSI-11 microprocessor workstations. TASK4TH, a standalone
derivative of Fig-FORTH, is down-line loaded from the host into the workstation and is
capable of supporting peripheral equipment which includes serial and parallel 1/0O and also
analog-to-digital and digital-to-analog conversion. Toy robot arms with five degrees of
freedom are connected to the workstations and have been modified to operate under
computer control. Position detection is accomplished through analog-to-digital conversions
on the outputs of Hall-effect sensors (mounted on the axes of rotation) and arm motion is
accomplished by actuating solenoids via the parallel port.

Introduction

The Wright State University Robotics Laboratory employs FORTH to offer senior level
engineering students a unique opportunity to develop control programs for a small robot
arm. In addition to being easy for students to learn, FORTH has interfaced easily and
effectively with our system’s extensive feedback controls and motion controlling mechanisms.
This paper discusses the laboratory programming environment, surveys the programming
projects done by students, and offers a brief evaluation of the environment and the use of
FORTH in this application.

Laboratory Environment

The System

The host system is a PDP 11/34 minicomputer operating under RSX-I11. Four
workstations, each equipped with its own robot arm, are connected to the host via an RS-
232c link. Each workstation employs a LSI-11 microprocessor, 64K bytes of read/write
memory, parallel and serial input/output, and a sixteen channel analog-to-digital board.
When a user logs onto a workstation, he is prompted with a FORTH menu similar to the
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one shown in Figure 1. Using these options, students can quickly “find their way around” the
system and become proficient at building and debugging applications programs. Editing of
screens takes place on the 11/34. Screens can then be downline loaded into the workstation.

B — Backup files TASK4TH Version 1 Release 2
C f 1 — Copy screens to seq files

D s — Delete screen Looking for screens 1 through 100

E s  — Edit screen in screen file 1LB3:[1,60]FORTH

F — New screen Files

H — Host forth Looking for screens 101 through 254
I — Initialize diskette in screen file SY:[1,10]FORTH

L f 1 — Load screens from seq files

M s d — Move screen Using TASK4TH located in LB3:[1,60]
(6] — enter host system commands

P f 1 — Print screens Logged onto account [1,10]

R — Restore files

S n  — create screen file

T s — Type screen

U — Unlock screen files ? — redisplay menu

W - Workstation forth null — exit back to host system

X n  — eXtend screen file

Function [ars! [ars2]]?

Figure 1. TASK4TH Main Menu. Various utility functions are available for manipulating
screens and files. ‘Host forth’ is FORTH running on the PDP-11/34. “Workstation forth’
downloads a standalone version of FORTH to the workstation.

Robot Arm

The Armatron toy robot arm features five degrees of freedom and a gripper that opens
and closes. The two joysticks which engaged the gearing controlling motion of the arm have
been replaced by a set of six levers. Two opposing solenoids are required for each lever for
forward and reverse directions. Hall-effect sensors were added to the waist, shoulder, elbow,
wrist, and gripper to provide position information to the computer. An optical encoder
supplies information regarding wrist-roll positioning.

Motion of the arm is controlled via the parallel output facility and is as simple as
writing out a 12-bit word with 1 bit active (low). The example below shows definitions of
words that cause the shoulder to be moved down or up. Due to power considerations, only
one joint is moved at a time.

HEX
SHLDER-DN FFFE PIOPUT ;
SHLDER-UP FFFD PIOPUT ;

The position of a particular joint can be determined by performing an A/D on the
output of that joint’s Hall-effect transducer. The Hall-effect device operates by measuring the
field due to a magnet which is mounted on the rotating joint. The transducer is positioned as
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in Figure 2. Using a supply voltage of 10 volts, the transducer output varies sinusoidally
from approximately 8v when positioned over the north pole of the magnet to about 2v when
positioned over the south pole. Between 90 degrees and 270 degrees, the output voltage is
unique. Therefore, absolute position information is available if joint range is restricted to 180
degrees and the magnet is positioned correctly. However, if the joint range exceeds the 180
degrees, some values will be repeated. (See Figure 3.)

The output of each Hall-effect sensor is connected to an input channel of a Ov to 10v,
12-bit A/D converter in the workstation. The word WAIST? returns the digitized output
from analog input channel seven.

: WAIST? 7 A-TO-D ; ( channel -- data )

A-TO-D is a hardware dependent routine that provides a high level view of the A/D
facilities.
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Figure 2. Hall-effect sensor and magnet for a typical joint.
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Figure 3. Output of Sensor vs. Rotation of Disk. As the disk (fixed to one link of the joint)
rotates, the Hall-effect sensor (Micro Switch, 91SS12-2) produces a sinusoidal output
voltage, varying six volts between the north and south poles of the magnet (Permag,
SD1701).
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Because the wrist roll is not suitable for Hall-effect monitoring, an optical shaft
encoding technique is used. A round, paper ring, as shown in Figure 4, is attached to the
rotating wrist surface. Two optical sensors, with some additional circuitry, provide a TTL
signal that is fed to the A/D and the parallel input port, providing relative position
information.

Optical Sensor B

Optical Sensor A

Optical Reflection
Pattern

Figure 4. Two phototransistors (TRW Optron, OP125A) mounted over a reflection pattern
provide information concerning wrist roll. The offset pattern gives a resolution of 32 state
changes (wrist positions) and the direction of rotation.

Photo 1 shows some of the detail of the modifications to the Armatron. The Armatron
robot arm is available from Radio Shack for thirty to forty dollars. The solenoids, magnets,
Hall-effect sensors and various interface parts are generally available for less than one-
hundred dollars total. The most expensive aspect of the modification is the machining and
assembly of the levers and base plate, which was performed for us by the Wright State
Instrument Shop. A reasonable upper bound to the total modification cost is three-hundred
dollars. Because the modification is relatively cheap and straightforward, we have been able
to obtain enough arms to have one for each workstation and several backups. Additional
information concerning our Armatron modification can be found in a recent Robotics Age
article [1].

Applications

The Robotics Laboratory

The facilities described above are used primarily in supplemental laboratory instruction
for an introductory course in robotics. This course is offered as a four quarter-hour elective
for senior level engineering and computer science students. Generally, one or two sections,
each with approximately thirty students, are taught during a year. Major topics surveyed in
the course include an introduction to FORTH, matrix coordinate transformations, robot
arm kinematics, trajectory planning and arm dynamics, feedback control loops for joint
motion control, and computer/robot vision research.

The backgrounds of the students who take the course range from that of the engineers,
which includes a foundation in both mechanical and electrical systems but minimal program-
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Photo I. The original Super-Armatron. An improved model is currently used in the
Robotics Laboratory, incorporating small PC boards for a heavier power supply and the
interface circuits, and a neater arrangement for running sensor leads along the arm. Note the
six gearing levers and their solenoids, and also the Hall-effect sensors and magnets mounted
on the joint axes.
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ming experience, to that of the computer science majors, with extensive software design
experience and exposure to digital hardware, but little basic engineering knowledge. These
diverse backgrounds have helped to set the survey tone of the course and have necessitated
the design of laboratory experiences which do not focus too heavily on either engineering or
software design, but instead give students an appreciation of some of the fundamental
requirements and difficulties involved in computer control of a robot system.

Generally, students perform four projects during the terms. Each involves developing
FORTH programs which control the operation of some machine, and each requires a
thorough written report describing the overall approach to the solution and details of the
implementation. Projects are done by students working in pairs, and two or three weeks are
allotted for each project. In addition to a weekly two-hour lab session, the lab is available to
the students on a daily, twenty-four hour basis.

Although given a brief introduction to the important concepts involved in programming
in FORTH and to the primary features of the language, the students are expected to learn
how to write FORTH programs on their own, with the help of a supplemental text [2]. The
first project, which usually involves some basic I/ O functions and FORTH control structures,
allows the students to become familiar with the programming facilities and with FORTH.

The second project uses a twelve-volt DC motor with an optical shaft encoder attached.
This encoder provides a zero pulse sync line and two output lines (four possible states) which
make 4096 state transitions per revolution. Students write programs to control the motor
and monitor the shaft encoder through the parallel I/O port.

The third project is the most extensive and demanding of the four. In this project
students develop a “teach-mode” control program which maintains a database of trajectories
which are taught to the modified Armatron through the terminal keyboard, and controls
execution of these trajectories from a menu of commands. This project is discussed in detail
below.

The final project involves conversion of the values obtained from the Hall-effect
transducers into corresponding angular values, allowing positioning of the arm to be
accomplished in terms of angles instead of Hall-effect magnitudes.

The Teach-Mode Program
As an illustration of the level of FORTH programming required and of the kinds of
problems involved in the lab projects, the following summary of the features of one student
solution to the teach-mode project is presented.
The requirements for the project are as follows:
— It must be able to determine the location of all joints of the arm.
— It must be able to control the motion of all joints to orient the arm in any desired
position.
— The user should be able to control the arm from the keyboard, and when in a “learn
mode” be able to “teach” the arm a sequence of positions in a trajectory.
— Finally, up to ten separate, one-hundred point trajectories should be maintained and
the program should be able to execute any trajectory on request.

Figure 5 is a block diagram representing the interaction of the different program modules.

At the lowest level, several 1/ O primitives were defined to provide convenient control of
robot motion and easy input of sensor data and user commands. Using predefined 1/O
drivers, several words were defined which initiate and stop motion of the different joints.
Position data for the waist, shoulder, elbow, and wrist-pitch joints is obtained using the
A-TO-D function described above. Wrist-roll data from the optical shaft encoder is brought
in through the PIO. Several standard serial 1O functions receive commands and data from
the keyboard. A full set of user messages was also defined.
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menu-driven terminal
osition supervisor
P functions
I serial 1/0
data-structure {/0Q primitives

manipulation

t ——I A/D PIO

position | | motion hall R
trajectory monitoring control effect solenoids
storage

robot arm

Figure 5. Organization of the teach-mode program. Data-structure primitives provide access
to the current position array and the trajectory database. I/O primitives provide access to
the terminal and give a higher-level view of robot arm control. The position-monitoring and
motion-control subsystems perform most of the work involved in moving from point to
point and sensing the current position of the arm. Supervisor functions provide overall
control of operations such as manual control of the arm and the learning and executing of
trajectories.

The fundamental data structure used by this program is a seven word record containing
the position data for all five axes of motion, the gripper, and a time delay factor which
determines the time interval between moves. Seven variables corresponding to these values
form a “current position group” which is continuously updated with the position of the arm.
An arbitrarily large array area holds the blocks forming the learned trajectory database. Two
variables pointing to the current one-hundred point trajectory area and the current seven
word position block are manipulated by an indexing function to provide an address for data
storage and retrieval. A STORE function copies the position values and time delay factor
from the current position group to the array when trajectory points are being learned.

The core of this program contains the routines which are responsible for monitoring the
position of the robot and controlling its motion. The overall approach used is straight-
forward. While each joint is being positioned for a new trajectory point, a tracking routine
updates that joint’s current position variable. When all joints have been moved to the new
position, the current position values are transferred to the proper block of the trajectory
. array area. Execution of a trajectory is accomplished by establishing pointers to the first
desired position in the trajectory and then stepping through each position until a trailing null
marker is reached. At each position the desired joint position value is examined and
compared with the current position. When necessary, the joint is moved and tracked until
the values match.

As was previously described, the use of the sinusoidal Hali-effect transducers to
establish joint position creates a two-value problem on axes whose range of motion brings a
pole past the sensor. In this case, one magnitude represents two unique positions on either
side of the pole. This problem is easily solved by adding a sign to the sensed magnitude
which corresponds to the slope of the sinusoid at that point. A slope convention was
established: increasing magnitudes obtained when moving clockwise/up indicate a position
slope; decreasing values indicate a negative slope. The convention is reversed for motion in
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the other direction. When motion of a joint is initiated, the direction is stored in a temporary
location. Position tracking of joints is accomplished by several functions which compare the
newest sampled values with those in the current position group, assign the slope with respect
to the direction of motion, and replace the current position group values. Figure 6 gives the
general tracking algorithm, and Figure 7 shows a sample of student code implementing the
tracking algorithm.

The orientation of the wrist-roll axis is established by counting state transitions of the
optical shaft encoder. When initial positions are stored, a value of 16 is assigned to the roll
axis. When this joint is moved, transitions in the clockwise direction (0-1-3-2-0) cause the roll
value to be increased; counter-clockwise transitions cause the roll value to be decreased. The

store direction
repeat
get old position
get new position
determine sign
store new position
if wrist_roll transition
update roll
until motion_stop command (from keyboard)

determine_sign
if new position = abs (old position) then
if (new position -~ abs (old position) 0 then
new position = new position * (1)
if direction = counter-clockwise then
new position = new position * (1)

Figure 6. Tracking algorithm.

:get_w (--n) 1 7 a-to-d ;
: store_dir (n --) dir ! ;
: new_pos { o n -- n’) over abs over swap - dup abs 1
if 0 < if minus endif dir @
if minus endif swap else drop endif drop ;

: wrist_pos ( -- ) roll @ get_r cnvrt dup roll ! swap - dup if dup
0 > over 3 = not and over -3 = or if 1 else -1
endif wrist +! endif drop ;

: end.mtn ( --) off get_key? drop ;
: get_pos (0 n -- b) new_pos swap ! wrist_pos is_key? ;

: track_w ( n -- ) store_dir begin waist dup @ get_w get_pos
until end_mtn ;

Figure 7. A sample of student code implementing the tracking algorithm for the waist joint.
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gripper position (open/closed) is sensed by the relative field strength of a mounted magnet
whose distance from the sensor is variable. This position is unique and is simply recorded in
the current position group. As trajectory points are being learned, the interval time delay
between points may be entered. This is also recorded in the current position group.

Two difficulties are encountered using these position monitoring methods. The first is
that the resolution given by Hall-effect sensors near the poles of the sinusoid is fairly poor.
There is some true position error associated with operation in these areas of motion. The
second problem is the nature of the equipment used. Because the arm is a modified toy, there
is significant slop and jitter in the joint linkages. Quick starts and stops tend to foul up the
slope assignment algorithm. Also, when certain joints are moved, other joints tend to drift.
This is a problem for the roll axis, since its position is lost if any state transitions are missed.
This necessitates constant monitoring of the roll axis.

case 1 case 2
] cwl
| |
| !
B
| c |
] |
cewi i |
| ccwl I
| |
A ] A ]
i cwl |
|
| !
i |
I ]
~-€ - -~ e o
ccw cw ccw cw

Figure 8. The joint is currently at A. Destinations B and C have the same sign and magni-
tude. The motion decision algorithm must know something concerning the portion of the
sinusoid over which the joint is operating to choose the proper direction — counter-
clockwise in case 1 and clockwise in case 2.

The motion control algorithm must perform two basic tasks. Given the destination and
current position, the algorithm must determine the proper direction of motion. Once in
motion, the joint must be monitored until the desired position is reached. Due to the two-
value problem, implementaion of an algorithm for choosing a direction of motion proves to
be somewhat difficult. Different joints operate over different sections of the sinusoid; in
addition, there is significant difference between arms. There is no general way of knowing,
for example, whether a desired point can be reached by going further clockwise or all the
way back counter-clockwise. (See Figure 8.)

A general decision function was implemented, taking as inputs the current position,
desired position, and two limit values representing the clockwise/up and counterclockwise/
down limits of motion. These values are initialized by the user at the start of a “learning”
session by moving the arm through its ranges of motion and indicate to the decision function
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the portion of the sine wave on which the joint is operating. Figure 9 gives the general
motion decision algorithm, and Figure 10 shows a sample of student code implementation.

As mentioned earlier, sloppiness in the linkages and feedthrough in the joint gearing
require that the wrist-pitch and roll axes be monitored for changes in position when other
joints are moved. Because position values for wrist roll and grippers are unique, these
motion control functions are standard looping and comparison structures. A general MOVE
definition calls each of the six joint control functions in turn, working outward from the
waist. After all motion for a trajectory point is completed, the time delay factor establishes a
delay of several seconds until the next move.

At the highest level, six functions (available to the user through a main menu) oversee
operation of the program. The first function performed at a session, LIMITS, initializes the
limit value variables discussed previously. A second definition, POS, displays the current
position values at the terminal. Stored position values may be accessed and displayed by a
DISPLAY function. The major robot control function is KEYPAD. This routine displays a
graphic menu of keypad functions and poll the keyboard for control inputs. These are
executed, and tracking of the arm is performed. From this mode, the current position can be
displayed; also, the current position values can be stored into the trajectory array.

The LEARN function initializes the trajectory and position values of those requested by
the user. Control passes to KEYPAD until the trajectory is finished. LEARN then deposits a
trailing null marker.

¢c_pos —current position

d..pos —desired position

cwl  —clockwise limit
ete

if c_pos < d_pos then
if (c_pos < cwl and c_pos < ccwl) and
(d_pos > cwl and d_pos > ccwl) then
move Ccw
else
move Cw
else
if (c_pos > cwl and c.pos > ccwl) and
(d_pos < cwl and d..pos < ccwl) then
move cw
else
move ccw

Figure 9. Direction decision algorithm.

: move (¢ d cwl ccwl -- ewl cewl dir) over over >1 >r >r >T
over over < if dup i > swap r> i swap >r > and swap dup
> < swap r> < and and else dup i < swap r> i swap >1
< and swap dup r> > swap r>> and and not endif r> 1> rot ;

Figure 10. A sample of student code implementing the decision algorithm.
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Finally, TRAJ oversees the execution of motion. Three options are available: move to a
unique point; execute a complete trajectory; and execute a trajectory starting at a point other
than the beginning. These trajectory functions step through the position blocks, executing
the general motion control routines until a null value is reached.

Future Projects

Currently, the teach-mode program is the major lab project of the course, requiring
three to four weeks of student effort. Typically, program development requires thirty to forty
man-hours, resulting in fifteen or twenty screens of code. Clearly, students receive exposure
to problems encountered in computer control of real-time processes. While the use of toy
arms does limit the realism and potential of these projects, there is enough flexiblity to
develop other, similar projects, possibly at a more sophisticated level. Currently, packaged
functions are being developed which convert the Hall-effect sinusoids into angular values.
This will provide a basis for projects involving direct kinematics solutions using matrices and
inverse kinematics/trajectory planning problems. In addition, our implementation of
FORTH allows the use of interrupts and multi-tasking in more sophisticated control
programs.

Evaluation and Conclusion

Environment

Generally, we find that the system environment we are using works very well. The
PDP 11/34 supports a reasonable development load with good response. The ability to
download FORTH to the LSI-11 workstations is particularly convenient, freeing system
resources and protecting the system from the inevitable user errors. The workstations have
ample I/O capability for most lab work. On the negative side, the system at present lacks the
ability to handle rapid data transfer from the workstations back to the host. Thus, data
generated at the workstation (such as learned trajectories) is lost at the end of a session.

The modified toy arms have also performed well, providing sufficient realism for a
minimal cost. Sufficient numbers are available to operate the lab at full capacity even when
some arms are in need of repair. While they suffer from obvious limitations, these arms free
resources for more advanced projects and research.

FORTH

In the two quarters that we have used FORTH, it has demonstrated its usefulness as an
instructional language for teaching introductory robotics. Because of the requirement for
speed and the intensive machine-world interfacing required, FORTH has proved superior to
the use of most typical high-level languages. In particular, we have experienced significant
improvement over the Pascal implementation used previously. At the same time, FORTH is
much more convenient than assembly language for instructional program development.
Generally, engineering students with a minimal programming background and computer-
engineering students with a more extensive background are both able to gain a command of
FORTH sufficient to solve the lab projects. In particular, the functional approach of
FORTH seems more easily learned in a short time than the more demanding syntax of a
standard high-level language.

However, the advantages of using FORTH do not come without disadvantages. While
fine for application in student projects at this level, the need to use complicated data
structures or algorithms in more sophisticated projects might overwhelm inexperienced
FORTH programmers. The well-known problems of packaging and readability limit the
usefulness of FORTH in large projects or group efforts. As more courses at the university
begin to use FORTH, and as general packaged functions become available to the students,
many of these potential problem areas may be reduced.
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