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Abstract

A Forth-based robotic parts delivery system was developed at Stanford University as a
joint masters project. An electric personnel carrier was modified to follow a tape track from
workstation to workstation, where it would stop for a preprogrammed period of time.
Closed loop feedback systems were implemented to control vehicle guidance and speed, and
an ultrasonic sensor was used for obstacle avoidance. The vehicle recognized thin metal
plates on the floor, enabling it to be taught to wait at a workstation or change the obstacle
detection range.

Introduction

The vehicle described in this paper (pictured in Photograph 1) was designed and
developed by a team of four Mechanical Engineers as our masters project in the Smart
Product Design Curriculum of the Mechanical Engineering Department at Stanford Uni-
versity. The project was presented at the 1984 Rochester Forth Applications Conference in
June, and the 1984 ASME International Computers in Engineering Conference held in Las
Vegas, in August. Technical descriptions of the vehicle in this paper have been taken from
“Design and Development of a Microprocessor-controlled Robotic Vehicle”, which was
published in the proceedings of the ASME conference.[1]

The design team was confronted with the problem of transporting printed circuit boards
from workstation to workstation on a low volume production line, with a minimum of
human interaction. The system would have to operate in a printed circuit board assembly
environment with moderate human traffic, on grounded carpet, tile, and concrete floor
surfaces with 5-foot (minimum) aisles and doorways. The system would also have to be
flexible to allow for changes in the order, number, and location of workstations.

The team’s solution was to transport the printed circuit boards on an electric cart that
would be made capable of self-guidance along a predetermined route by the use of an
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Photograph 1.

embedded microcomputer. Tape was chosen as the route medium because of its low cost and
ease of application and alteration. Using tape as the route medium differs from the
traditional approach utilized by automated guided vehicles — most vehicles follow a signal
emitted from a wire that must be embedded within the floor, and one system uses a
fluorescent chemical guidepath. (See Appendix for partial list of manufacturers.)

To complete the project within the nine-month time frame, a system integration
approach was taken using existing commercially available hardware when possible. The
computer system development strategy involved the use of Jib Ray Forth, STD bus
hardware, and the host/target communication concept, which links the development com-
puter system (host) to the application microcomputer (target). [2]

Theory of Operation

System Overview

The microcomputer controlled cart optically follows a tape track from workstation to
workstation along a closed circuit path by means of a phototransistor array sensor. The
system is designed to stop at each workstation for a preprogrammed period of time to allow
for manual loading and unloading of the printed circuit boards by the workstation
personnel.

An ultrasonic sensor mounted at the front of the vehicle provides long and short range
sensing for obstacle avoidance, enabling the cart to stop if a person or object lies within its
path of motion. Long range (5-foot) sensing is used only in corridors because it would inhibit
cart motion during cornering, since the sensor would see neighboring walls as within 5 feet,
and thus treat them as an obstacle. For this reason, short range (1-foot) sensing is used
during cornering. Two emergency stop buttons and a front-mounted air-inflated bumper will
also disable the cart’s motion if activated.



An Intelligent Forth-Based Robotic Vehicle 39

The user interface consists primarily of an alphanumeric display for messages and two
keypads for data input. The use of in-system alterable, electrically erasable read-only
memory (EEROM) allows the vehicle to be easily reprogrammed for a new workstation
configuration without the need for software changes. A scheme of detecting thin metal plates
using metal sensors permits workstation location and switching between long and short
range obstacle sensing. Figure | shows the system diagram with the microprocessor and
application software at the center of the system interfacing to the six subsystems.
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Figure 1.

Plate Concept

Although the cart uses the tape track laid by the user to navigate, the tape conveys no
further information to the cart. Metal plates (thin 5-inch square pieces of metal tape) located
alongside the tape track serve as markers to the cart. The plates are detected by metal
proximity sensors that are mounted underneath the vehicle. As the cart passes over a metal
plate while following the tape track, it will know that it:

1) has arrived at a workstation

2) should enable long range obstacle sensing

3) should enable short range obstacle sensing.

Although there are three unique tasks, each metal plate looks alike to the cart. The
process of “teaching” the cart allows the user to select which one of the three tasks 1s to be
associated with each plate. During the teaching program the software keeps track of this
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plate/task association and stores this information in the EEROM, along with the distance
between the plates. By starting the cart each day from the same location that the teaching
sequence was started, the cart is able to associate which one of the three tasks to perform at
each plate along the entire track.

System Hardware

Cart

The electric vehicle chosen was a Taylor-Dunn model SS personnel carrier, which is 77
inches long by 29 inches wide, and has a 6 square foot flatbed area with a 500 Ib. capacity.
The cart is a three wheeled, rear wheel driven vehicle powered by a 4.5 hp, 24 volt DC motor
that is controlled by a Pwr-Tron transistor speed controller. The Pwr-Tron enables smooth
speed and acceleration control as well as easy computer interface. Four 6 volt, 245 ampere-
hour batteries, recharged by an on-board charger, power the system. A 60:1 right angle
worm gear reducer, coupled to a 1/6 hp, 12 volt DC motor, replaced the original tiller
steering bar that turned the single front wheel. A pair of 25 amp relays control the steering
motor’s direction of rotation.

The cart can operate in either manual or computer mode. For manual mode operation
(to move the cart outside of the track circuit) a three position momentary paddle switch
controls the relays in order to steer the cart. A direction switch controls the forward and
reverse solenoids that carry current to the drive motor. In manual mode the cart is controlled
by the steering switch, direction switch, accelerator pedal, and foot brake, all but the latter
being disabled in computer mode.

Microcomputer

The microcomputer system uses a STD bus: an 8-bit microprocessor card system using
a standardized pinout, a 56-pin edge connection, and a 4.5 inch by 6.5 inch card size. A 16
position card rack houses the system and a Kepco DC to DC converter, receiving +24 volts
from the cart batteries and delivering regulated +5, +12, and -12 volts to the backplane
powers the system. Using several commercially available STD boards greatly reduced
development time. The microcomputer consists of the following nine cards:

— dy-4 Systems 4.0 MHz Z80 CPU with Serial I;0
— Pro-Log 64K Byte-Wide Memory
- Pro-Log Termination Network
— Micro/sys Counting and Timing Controller
— Enlode Keypad Interface
— Enlode Alphanumeric Display Interface
— Custom Circuit Card #1
Phototransistor Array Interface
Metal Plate Detection
Shaft Encoder Interface
Emergency Stop Detection
Cart Hold Detection
— Custom Circuit Card #2
Pwr-Tron Input Voltage (D/A Conversion)
Steering Feedback (A/D Conversion)
Steering Motor Relay Control
Solenoid/Pwr-Tron Control (Transistor Switch)
— Custom Circuit Card #3
— Ultrasonic Circuit Board
EEROM and Interface
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Figure 2 illustrates the interconnection between the microcomputer and the various peripheral

devices comprising the six subsystems.
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Vehicle Guidance

Subsystems

The cart “sees” the tape path by means of an array of 16 phototransistors, recess
mounted on 0.5 inch spacing, along a bar whose angle to the floor is adjusted for optimum
sensitivity. The bar in turn is mounted to a larger rectangular plate supported by three
runners, thus keeping the phototransistors at a constant distance from the floor surface. The
array system is attached to pivoted bars on the bottom of the cart and pulled along the tape
marked floor by the forward motion of the cart. An incandescent light source mounted on
the array above the phototransistors illuminates both the background surface and the 1.5
inch wide tape track. A black, non-reflective tape track is required if the background surface
is reflective; if the background is non-reflective, then a white, reflective tape track is required.
The software also allows the use of both white and black tape within the track circuit, since
it is likely that the cart will travel on adjoining reflective and non-reflective surfaces.

The phototransistor output is gated through Schmidt triggers producing a pattern of 0’s
and I’s that represents the current lateral position of the array with respect to the track (see
Figure 3). This array signal is read as two bytes through tri-state buffers by GET-ARRAY-
SIGNAL, where ARRAY-PORT! and ARRAY-PORT?2 are hardware dependent constants.

: GET-ARRAY-SIGNAL ARRAY-PORT! P@ ARRAY-PORT2 P@ ;

GET-ARRAY-SIGNAL is the first word called by SIGNAL-PROCESS, which is one of the
highest level guidance control words that coordinates input, decision branching, and
processing.

SIGNAL-PROCESS
GET-ARRAY-SIGNAL
LOOK-FOR-TRANSITIONS

IF INCREMENT-BAD-SIGNALS
ELSE DETERMINE-BACKGROUND
FIND-VALID-TRACK-SIGNAL
IF GENERATE-ERROR-TERMS
ELSE INCREMENT-BAD-SIGNALS
THEN
THEN ;

Once the two bytes are read, then the word LOOK-FOR-TRANSITIONS checks the array
signal to see that it is not all I’s (all reflected light) or 0’s (no reflected light), and leaves a
boolean flag on the stack. If this check is true, i.e. there are no transitions, then the cart has
lost the track and the INCREMENT-BAD-SIGNALS routine is executed, thus incrementing
the “bad signal” counter by one. This counter only accumulates consecutive bad array signals
— once a valid signal is read the counter is reset to zero. If this counter exceeds the user’s
preset limit, then the microcomputer considers the cart to be off the track, stops the cart, and
requests that the user examine this area of the track for problems. This feature adds robust-
ness to the system since if a few inches of track have been removed or are severely soiled, the
cart continues forward in an attempt to obtain a valid signal rather than stopping
immediately.

If the LOOK-FOR-TRANSITIONS check is false, i.e. there are transitions, then the
array signal will be further processed to determine if a valid track signal exists.
DETERMINE-BACKGROUND determines if the background surface is reflective or non-
reflective. FIND-VALID-TRACK-SIGNAL then examines the array signal for a first
transition (left tape edge), a minimum two-bit wide track signal, a second transition (right
tape edge), and finally checks to make sure there are no other transitions. If and only if all
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these conditions are met then the current lateral position signal is considered valid and the
GENERATE-ERROR-TERMS routine is executed. If all these conditions are not met, then
the track signal is not valid and the INCREMENT-BAD-SIGNALS routine is executed.
Therefore the end result of SIGNAL-PROCESS is either generating error signals or
incrementing and checking the bad signal counter.

Thus if a valid lateral position signal is obtained, error signal values are generated by
GENERATE-ERROR-TERMS for the lateral position (based on a setpoint of centering the
array over the track), lateral velocity, and lateral acceleration. These values are then used by
the proportional, derivative, and integral position control algorithm (CALCULATE-DELTA-
SETPOINT) to produce the clockwise or counterclockwise position change in the front
(steering) wheel setpoint. UPDATE-SETPOINT adds this change (variable DELTA-
SETPOINT) to the past setpoint (variable STEERING-SETPOINT) to produce the new
front wheel setpoint. UPDATE-SETPOINT also checks the new front wheel setpoint to
prevent the wheel from turning beyond its physical limits of +/- 100 (adjusted from the
actual steering feedback potentiometer range of 27 to 227 as input by the A/D) by setting the
setpoint to the maximum allowable left or right value if the new setpoint value is out of
bounds.

UPDATE-SETPOINT
DELTA-STEERING @ STEERING-SETPOINT @ + DUP ABS 100 <

IF STEERING-SETPOINT !
ELSE 0 <
IF -100 STEERING-SETPOINT !
ELSE 100 STEERING-SETPOINT !
THEN

THEN ;
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Once the new front wheel setpoint has been calculated and verified, then APPLY-
STEERING-CONTROL obtains the current front wheel position (GET-WHEEL-POSITION)
through the steering feedback potentiometer and an 8-bit A/D converter. WITHIN-
TOLERANCE? checks if the new setpoint and the current wheel position agree within the
allowed tolerance band. If this is true, then no control is applied, otherwise the wheel is
proportionally turned left or right by turning ON the DC steering motor for the calculated
period of time. An opto-isolated circuit controls the relays that activate the DC steering
motor either clockwise or counterclockwise.

APPLY-STEERING-CONTROL
GET-WHEEL-POSITION
WITHIN-TOLERANCE?

IF ( no control applied )

ELSE WHEEL-POSITION @ STEERING-SETPOINT @ >
IF TURN-RIGHT
ELSE TURN-LEFT
THEN

THEN ;

NAVIGATE is the highest level guidance control word that brings the signal processing
and the steering control together. SIGNAL-PROCESS leaves a boolean flag (a true is left by
GENERATE-ERROR-TERMS or a false by INCREMENT-BAD-SIGNALS) on the stack
since applying steering control is dependent on obtaining a valid array signal.

NAVIGATE
SIGNAL-PROCESS
IF CALCULATE-DELTA-SETPOINT
UPDATE-SETPOINT
APPLY-STEERING-CONTROL
THEN ;

Figure 4 illustrates the block diagram of the lateral position control feedback system.
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Speed Control

Closed loop speed control provides smooth cart operation under varying payload,
battery charge level, and operating surfaces. Signals from a Hewlett-Packard optical shaft
encoder to the timer/counter card measure the cart’s speed. A speedometer cable couples the
shaft encoder and the cart’s differential. Schmidt triggers gate the 500 pulses per revolution
output from the shaft encoder to a counter of the timer/counter card. A timer is programmed
to generate a continuous 1/8 second pulse waveform whose rising edge triggers the counter
channel which receives the pulses from the shaft encoder. The falling edge of that waveform
stops the counter, at which time the contents are automatically transferred to a hold register.
The next rising edge clears the counter and the sequence repeats continuously.

The speed control software reads the current speed (pulse count) from the hold register
and generates the proportional error between the current speed and the 1 mph setpoint.
WITHIN-SPEED-BAND? checks if the proportional error is within the accepted tolerance
band and leaves a boolean flag on the stack.

WITHIN-SPEED-BAND?
PROPORTIONAL-ERROR @ ABS
SPEED-TOLERANCE @ < ;

WITHIN-SPEED-BAND? is the first routine called by SPEED-COMMAND, which is the
highest level speed control word.

SPEED-COMMAND
WITHIN-SPEED-BAND?
IF ( no control applied )
ELSE CAL-DERIV-SPEED-ERROR
CALCULATE-DELTA-SPEED
DELTA-SPEED @ PWR-TRON-INPUT @+ DUP 255 >
IF DROP 255 DUP PWR-TRON-INPUT !
ELSE DUP PWR-TRON-INPUT !
THEN SPEED-PORT P!
THEN ;

If the WITHIN-SPEED-BAND? check is true, then no control is applied, otherwise the
derivative speed error term is generated (CAL-DERIV-SPEED-ERROR) and used with the
proportional error term to calculate the change in the control signal CALCULATE-
DELTA-SPEED). SPEED-COMMAND updates the speed setpoint by adding the positive
or negative change (DELTA-SPEED) to the previous setpoint (PWR-TRON-INPUT). This
new setpoint is then checked to see that it does not exceed the limit of the 8 bit D/A (if so
the maximum value of 255 is used). The setpoint is then updated with the newly calculated
or maximum value, and the value is written to the D/ A through the 8 bit port whose value is
specified by the constant SPEED-PORT. The control signal generated by the D/A, ie. a
voltage level between 6.5 and 11.5 volts, is issued to the cart’s Pwr-Tron transistor speed
controller through a Darlington transistor (to boost the output current). Controlling the
voltage signal to the transistor speed controller is analogous to depressing the accelerator
pedal, which in turn rotates a potentiometer whose output voltage is input to the speed
controller. Figure 5 illustrates the block diagram of the speed control feedback system.

User Interface

The user interface consists of indicator LEDs, a lighted hold button, two keypads, and
an alphanumeric display. The LEDs indicate the status of: the teaching program, the
emergency stop or air bumper switches, and the left and right metal plate sensors.
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The cart can be held at a workstation for any period of time by activating the hold
button (maintained switch) during the preprogrammed waiting period, thus interrupting the
displayed time countdown (time remaining before cart leaves workstation). The software will
display a message reminding the workstation personnel that the maintained hold button
must be reset before the cart can continue along the track. The maintained switch is sensed
for closure through a tri-state buffered input port.

The keypads and alphanumeric display constitute the primary I/O with the user. Each is
an independent, integrated system having its own dedicated interface card. The keypad
interface card handles both 16-key keypads (one for data entry and one for function/program
selection), performs key debouncing in hardware, and is mapped as an 8-bit input port. The
software polls the input port for keystroke data only during those sections of cart operation
that require user input (which always occur when the cart is not moving). KEYPAD-SCAN
is the first word used by all keypad scanning routines that are looking for specific keys to be
pressed on either of the two keypads.

KEYPAD-SCAN

KEYPAD-PORT P@ ( fetch status byte)
KEY-INPUT-BYTE ( store status byte)
GET-BITS-6&7 0 = ( check if bits 6 and 7 are low)

IF GET-BITS-4&5 KEYPAD-IDENTIFICATION
GET-BITS-0-3 KEY-DATA !
THEN ;

Once the KEY-INPUT-BYTE is obtained, bits 6 and 7 are checked. If they are both low then
a key was pressed and the word GET-BITS-4&5 obtains the code of the keypad that
generated the data and leaves it on the stack (bits 4 and 5 are set differently depending on
which keypad originated the data). GET-BITS-0-3 then obtains the four data bits and leaves
them on the stack. If bits 6 and 7 were not both low, then no key was pressed. KEYPAD-
SCAN is always used in a polling loop which is repeated until the requested key or keys have
been pressed.

Various keypad scanning routines were developed which accept only requested data,
thus preventing the user from entering invalid data into a program. An example of this is
RESET-SCAN, which is a word that waits until the RESET key is pressed (following cart
disabling due to obstacle avoidance device activation). When the keypad identification check
Is true, i.e. a keystroke was entered on the desired keypad, then the data is checked to see if
the desired key was pressed. When both are true the RESET key has been pressed and the
routine is exited.
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RESET-SCAN
0 EXIT-FLAG !
BEGIN KEYPAD-SCAN
KEYPAD-IDENTIFICATION @ 32 =

IF KEY-DATA @ 7 =
IF 1 EXIT-FLAG !
THEN

THEN

EXIT-FLAG @ UNTIL ;

The 28 character alphanumeric display is used extensively to display messages and
prompt the user for input. The interface card is mapped as two sequential 8-bit output ports:
one for the character position in the display and the other for the ASCII character code.
Each static message, i.e. those without changing values, is stored separately in the micro-
computer’s memory in ASCII form as 28 character strings using .” (dot-quote).

MESSAGE-1 ./ HELLO...I AM THE HI-TEK CART” ;

To display a message the display software must first obtain the address of the message
to be sent. Once stored, the base message address (address of first character) can easily be
obtained by adding 3 to the parameter field address generated by ’ (tick) (this method may be
Forth version dependent). SEND-MESSAGE-1 is used to display the message by passing the
base message address to DISPLAY-LINE to do the actual writing to the display.

SEND-MESSAGE-1
*  MESSAGE-1 3 + ( leave base message address on stack)
DISPLAY-LINE ;

Since each message must be written one character at a time, DISPLAY-LINE executes
a loop whose limit is equal to 28. DISPLAY-LINE first writes the position code (loop index
value) to the position port (SET-POSITION), then fetches the ASCII character byte from
memory (GET-CHARACTER), and finally writes it to the character code port (SEND-
CHARACTER).

For messages that are not 28 characters in length, the loop limit is a variable that is set
equal to the message length at display time by the PARTIAL-DISPLAY routine. This
routine also enables variable placement of the partial message within the 28 character display
field by setting a variable for the display position, rather than using the loop index.

Obstacle Avoidance

The cart has three safety mechanisms: rear and mid-mounted emergency stop buttons, a
front-mounted air-inflated bumper, and a front-mounted ultrasonic sensor. The two emer-
gency stop buttons (normally open switches) and the air bumper (air-actuated normally open
switch) are connected in parallel to an edge triggered latched circuit that is polled by the
obstacle avoidance software. If any of the three switches is closed a flag is set and the circuit
is reset.

A modified Polaroid Ultrasonic Ranging System (transducer and ultrasonic circuit) is
used with the timer/counter card to detect the presence of a person or object in the path of
the cart. The transducer serves as both the high frequency transmitter and receiver. A continuous
sequence of transmit/ receive cycles is accomplished by supplying the ultrasonic circuit power
section with a 200 millisecond timer generated square wave. The rising edge of the square
wave initiates the transmit signal which consists of eight cycles at 60 KHz, eight cycles at 57
KHz, sixteen cycles at 53 KHz, and twenty-four cycles at 50 KHz [3]. The beginning of the
transmit sequence triggers a counter which continues until the first echo signal is received, at
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which time the measured time is automatically transferred to a hold register on the
timer/counter card. The measured echo time is proportional to the distance between
transducer and object.

POLAROID-FLAG? is the highest level ultrasonic sensor word that leaves a boolean
flag on the stack reflecting the range of the detected object and the stopping threshold.

POLAROID-FLAG?
READ-POLAROID-RANGE
VALIDATE-RANGE

IF RANGE-FILTER

FILTERED-RANGE @ CURRENT-THRESHOLD @ <
ELSE 0
THEN ;

Once the latest echo time (CURRENT-RANGE) has been read from the hold register
by READ-POLAROID-RANGE, the value is then checked to see if it is within the
operational limits of the sensor by VALIDATE-RANGE. If this is true then the current
range is input to a weighted average filter. RANGE-FILTER takes 1/4 the n-2 range value
(RANGE-n-2), 1/2 the n-1 range value (RANGE-n-1), and 1/4 the current value (CURRENT-
RANGE) to produce the FILTERED-RANGE. (It also stores the n-1 value into n-2 and the
current range into n-1 for the next time RANGE-FILTER is executed.)

RANGE-FILTER

RANGE-n-2 @ 4 / ( 1/4 n-2 value)
RANGE-n-1 @ DUP ( copy n-1 value)
RANGE-n-2 ! ( update n-2 value)
2/ + ( add 1/2 n-1 value)
CURRENT-RANGE @ DUP ( copy current value)
RANGE-n-1 ! ( update n-1 value)

2/ + ( add 1/4 current value)
FILTERED-RANGE ! ;

The filtered range is then checked to see if it is less than the current stopping threshold
value (either the long or short range value). If this is true then the obstacle detected is within
the stopping threshold, and a true is left on the stack. If the filtered range is greater than the
stopping threshold, then a false is left on the stack.

EMERGENCY-STOP-FLAG? polls the combined emergency stop button and air
bumper switch latched circuit port (EMERGENCY-STOP-PORT) and masks off the
unwanted data lines (4 AND). This word leaves a boolean flag on the stack reflecting if any
of the emergency stop devices are activated.

EMERGENCY-STOP-FLAG?
EMERGENCY-STOP-PORT P@ 4 AND ;

The results of the switch closure flag and the ultrasonic sensor flag that have been left
on the stack are logically OR’ed by the highest level obstacle avoidance word, STOP-
CHECK?. If any obstace avoidance device has been activated the cart will stop, display the
reset message, and will remain inactive until the RESET key is pressed, at which time the
software (STOP-CHECK?) will display a message that the cart is about to resume motion.
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STOP-CHECK
EMERGENCY-STOP? POLAROID-FLAG? OR
IF STOP-CART
SCAN-FOR-RESET
RESTART-INITIALIZATION
ACTIVATE-DRIVE-MOTOR
THEN ;

STOP-CART stops the cart by opening the forward solenoid and the isolator (main
motor circuit breaker) solenoid, and shutting off power to the transistor speed controller.
These devices are controlled by supplying them with either +24 volts (ON) or 0 volts (OFF)
through a latched 8-bit output port, by an Opto 22 opto-isolated transistor switch.
ACTIVATE-DRIVE-MOTOR turns back ON the forward and isolator solenoids, and the
transistor speed controller. However, the cart will not resume motion until a control signal is
issued to the controller by the SPEED-CONTROL routine.

Plate Detection

As earlier discussed, proximity sensors mounted beneath the cart detect the thin metal
plates as the cart passes over them. These Micro Switch sensors operate on the Eddy Current
principle and are interfaced directly to an edge triggered latched circuit that is polled by the
plate detection software. The two sensors are mounted directly across from each other
underneath the vehicle at a height of approximately 1 inch above the floor. They are flexibly
mounted to deflect if they collide with an object inadvertently left on the floor, that would
not be detected by the ultrasonic sensor.

In order to avoid false detection, due to metal objects on or in the floor such as door
jams (rather than actual metal plates), two steps were taken. The first uses a system of
alternating the plates on either side of the track, and the second involves measuring the
distance between the plates with the shaft encoder. (Using metal plates and the shaft encoder
eliminates cumulative error problems associated with only using a shaft encoder, since the
encoder counter is set to zero when each plate is found.) By using two metal sensors, the first
plate is located on the right-hand side of the tape track, the next plate on the left-hand side,
and so on for as many plates as are required in the track circuit (up to 99).

READ-METAL-SENSOR polls the latched metal sensor circuit port (METAL-
SENSOR-PORT) for the sensor status byte and masks off the unwanted data lines (3 AND).

READ-METAL-SENSOR METAL-SENSOR-PORT P@ 3 AND ;

This word is the first routine called by METAL-SEQUENCE, which is the highest level
metal sensor definition that determines if a plate has been found.
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METAL-SEQUENCE READ-METAL-SENSOR DUP 0 =
IF DROP ( metal plate not detected )
ELSE CURRENT-SIDE @ =

IF TEACH-FLAG @ 0 =
IF GET-DISTANCE
WITHIN-TOLERANCE?

IF RESET-ENCODER-COUNTER
PERFORM-PLATE-TASK
SWITCH-SIDES
INCREMENT-PLATE-COUNTER

THEN RESET-METAL-SENSOR

ELSE EXECUTE-TEACH-SEQUENCE
THEN
ELSE RESET-METAL-SENSOR
THEN

THEN ;

Once the sensor status has been read by READ-METAL-SENSOR, it is compared to zero.
If the result of this check is true then neither the left or right sensor has been activated and
the word is exited. If a sensor has been activated (zero check was false) then the status is
compared with the CURRENT-SIDE variable, whose value is I if the next plate is on the
right, or 2 if it is on the left. If the sensor status does not agree with the value of CURRENT-
SIDE then either the activated sensor is not the correct side, or both sensors are ON. In
either case the metal sensor circuit is reset by RESET-METAL-SENSOR (when execution
branches to the corresponding ELSE statement) and the word is exited. If the sensor status
does agree with CURRENT-SIDE then the correct sensor is on, i.e. the detected plate is on
the expected side, and execution proceeds to the 3rd IF statement.

The 3rd IF statement is checking to see if the variable TEACH-FLAG? is set to zero. If
this is true then the RUN program (user selected program used to put the cart into automatic
operation in which it repeats the track layout continuously) was selected and execution
proceeds to GET-DISTANCE. If the TEACH-FLAG? was not equal to zero then the
TEACH program (user selected program used to teach the cart the track/plate layout) was
selected and the EXECUTE-TEACH-SEQUENCE is executed. (This sequence first stops the
cart and asks the user if a valid plate was found, and if so, the user is prompted to program
the task at that plate. This is continued until all the plates have been programmed.)

Thus if the TEACH-FLAG? was equal to zero, then execution proceeds to the GET-
DISTANCE routine which obtains the distance from the last plate as recorded by the shaft
encoder. This distance is then compared with the distance between the plates that was
recorded during teaching. If these values agree within the allowed tolerance band (WITHIN-
TOLERANCE?) then a valid plate has been found, and execution proceeds to the 4th
(innermost) IF statement. The encoder counter is then set to zero by RESET-ENCODER-
COUNTER, PERFORM-PLATE-TASK looks up in memory which task (workstation, long
range sensing, or short range sensing) to execute and does so, SWITCH-SIDES updates the
CURRENT-SIDE variable, and finally the plate counter is incremented by INCREMENT-
PLATE-COUNTER. However, if the distance values do not agree within the allowed
tolerance band as checked by WITHIN-TOLERANCE?, then a valid metal plate was not
found (False detection). The latched circuit is then reset whether or not a valid plate was
found since in either case a metal sensor was activated.

Programability
The ability to reprogram the cart for a new track and plate layout is made possible by
the use of a SEEQ Technology EEROM — a 5 volt non-volatile memory with in-system
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write and erase capability. The number of plates, task at each plate, distance between plates,
number of workstations, and time at each workstation are written into the EEROM during
the teaching sequence. The EEROM also contains one dozen system constants for the speed,
guidance, plate detection, and obstacle avoidance algorithms. These user “alterable constants”
allow for fine tuning of the system on location. At the end of each day when the cart is
powered down for recharging, all of this data remains intact. When teaching the cart a new
track/plate layout, the software must first erase the old track/plate data (by writing an FF
hex to each byte) before the new data can be written into the EEROM.

The EEROM requires additional circuitry (as compared to conventional memory) to
hold the data, address, and control lines for 10 milliseconds during the erase and write
operations. This is accomplished by generating a busy signal to the processor. Since the cart
is not moving while the user is being prompted for data input, having the processor hold the
data, address, and control lines rather than using a latched circuit does not penalize system
performance.

ERASE-WORD and SEEQ! are definitions used to store a word (versus a single byte)
of data in the EEROM. ERASE-WORD erases the word in the EEROM whose address is
on the top of the stack by separately writing an FF hex (255 decimal) to the two consecutive
bytes that comprise the word.

ERASE-WORD
DUP ( copy address)
255 SWAP ( place data byte under address)
C! ( erase low address)
255 SWAP ( place data byte under address)
1+ ( produce high address)
C! ( erase high address) ;

SEEQ! stores the word of data (second entry on stack) to the address in the EEROM
that is on the top of the stack. SEEQ! first calls ERASE-WORD and then writes the data
word one byte at a time into the EEROM. This is accomplished by reading the high byte of
the data word which resides at the address of the stack pointer, and writing it to the low
address of the word. The low byte is then read from the address of the stack pointer plus
one, and written to the high address of the word.

SEEQ!

DUP ( copy address)

ERASE-WORD

WORD-ADDRESS ! ( store address)

SP@ ( fetch address of high data byte)

C@ ( fetch high byte)

WORD-ADDRESS @ ( fetch low address of word)

C! ( store high byte at low address)

SP@ I+ ( produce address of low byte)

C@ ( fetch low byte)

WORD-ADDRESS @ 1+ ( produce high address of word)

Ct ( store low byte at high address)

DROP ( drop data word) ;
Software

System Programs
The 16K byte application software consists of hardware drivers, control and signal
processing algorithms, user messages, hardware diagnostics, and the program logic. The user
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has three program choices after the power-up sequence.

Upon power-up the processor begins execution at the lowest address (0000H) of the
Forth kernel. Forth first executes COLD which sets all the system variables and then
executes ABORT. ABORT then clears the parameter and return stacks, prints the sign-on
message, and executes QUIT. At the beginning of QUIT (before the infinite loop that calls
the Forth interpreter repeatedly) the constant DRIVER is executed, which returns the
address of a NOOP (no-operation) at a point within QUIT where the address of a driver
definition can be inserted. In order for the target application to start automatically upon
power up, the address of the NOOP has been replaced by the code field address of the driver
definition (CART-DRIVER). Thus upon power up CART-DRIVER is executed rather than
passing control over to the Forth interpreter by entering the infinite loop within QUIT. [4]

CART-DRIVER
START-UP-INITIALIZATION
GREETINGS-MESSAGE
TERMINAL
IF CR .” WELCOME TO THE LAND OF INTERACTIVE
DIAGNOSTICS ”
( exit driver definition and get back to the interpreter in order to
perform diagnostics)
ELSE ( execute) MAIN
THEN ;

CART-DRIVER first executes the application’s variable and hardware initialization
routine (START-UP-INITIALIZATION) and then displays the introductory messages
(GREETINGS-MESSAGE). After the messages are displayed (which takes approximately
30 seconds) the terminal input port is then checked to see if a key has been hit on a terminal
(not one of the two keypads) connected to the target’s serial channel. If ?TERMINAL is
true, then the driver definition relinquishes control to the Forth interpreter (exits the driver
definition and enters the infinite loop of QUIT), enabling the user to perform interactive
hardware diagnostics. If ?7TERMINAL is false, then MAIN is executed, which prompts the
user to choose one of the three system programs: Teach, Run, or Reprogram.

Teach. This program allows the user to teach the cart which of the three tasks
(workstation, long range sensing, or short range sensing) to perform at each metal plate
along the tape track. Once the track and plates have been laid, the user drives the cart (in
manual mode) to the location that will be the daily starting point on the circuit. With the
user on board (in computer mode), the cart travels once around the track stopping at each
plate. The user is prompted to enter the task at that plate. If the task is a workstation, then
the user is prompted to enter the time at the workstation. Each time data is entered, the user
is prompted to confirm the entry. During this process the software is storing the task at each
plate, the time at each workstation, and the distance between plates in the EEROM. When
there are no more plates to be programmed the user responds affirmatively to the, “Is this
the last plate?” prompt. Once the teaching sequence is finished the program proceeds to the
main loop where it waits for the user to select one of the three programs.

Run. This program is selected each day to put the cart into automatic operation in
which it repeats the track layout continuously. When a valid plate is detected, the program
looks up the task in memory. If the task is a workstation, then the cart stops and waits the
preprogrammed period of time. (If zero minutes have been programmed, then the cart does
not stop.) As previously explained, the cart can be held indefinitely at a workstation by
activating the hold button. If the task is to change the obstacle sensing range, then the
program merely stores the long or short range value into the current obstacle range threshold
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variable. This program is an infinite loop which can only be exited by powering down the
computer.

Reprogram. This program only allows the user to increase or decrease the time that the
cart will wait at each workstation (preprogrammed stop time), as well as eliminate a
workstation stop by programming a 0-minute stop time. As in the Teach program, the user is
prompted to confirm each data entry. During this program the cart remains completely
stationary. Once the reprogramming sequence is finished the program proceeds to the main
loop where it waits for the user to select one of the three programs.

The heart of the software is the MASTER-CONTROL-PROGRAM routine which is
used in both the Teach and Run programs. This is the continuous main loop that links the
obstacle avoidance, speed control, guidance control, and plate detection sequences.

MASTER-CONTROL-PROGRAM
BLANK-DISPLAY
ACTIVATE-DRIVE-MOTOR

BEGIN
STOP-CHECK
SPEED-CONTROL
NAVIGATE
METAL-SEQUENCE
0 UNTIL ;

Figure 6 shows a simplified flowchart for the Master Control Program as executed
within the Run program (the plate detection and obstacle avoidance sequences are slightly
different when executed for the Teach program).

Diagnostics

As previously mentioned, interactive hardware diagnostics can be run by attaching a
terminal to the target’s serial channel and pressing any key on the terminal within thirty
seconds of turning the cart’s computer ON. This feature permits the user to execute
diagnostics that test the phototransistor array, steering control, ultrasonic sensor, metal
sensors, emergency stop switches, and other hardware. The serial maintenance link is also
the only means by which to change the user alterable constants that reside in the EEROM.

Address

0000H
FORTH Kernel
8K bytes

2000H EPROM
Application
Program
16K bytes

6000H
Stack and
Variable Area RAM
2K bytes *

6800H
Plate Data and +
User Alterable EEROM
Constants

6FFFH 2K bytes

Figure 6.
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Development Environment

Use of host/target communication linked the power and resources of a development
system (host) to the application microcomputer (target). The two systems are connected
through a serial interface and linked by the Jib Ray Forth host/target communication
software. During development the software modules were coded, stored on disk, edited,
printed, simulated, and test compiled using an Intel Development System running Jib Ray
Forth. The stored source programs on disk were downloaded from the development system
via the serial link to the target Forth computer, where they were compiled by the target
computer into RAM memory.

At this stage the target computer’s memory consisted of the Forth kernel (8K EPROM)
and RAM memory for the application program and stack/variable area. The program could
now be tested running on the target computer using the actual hardware. After several
iterations of modifying code on the development system, downloading it to the target
computer, and testing with the cart, a final version was obtained. Once this version was
downloaded to the target, the compiled RAM image was uploaded to the development
system so that EPROMs could be burned [1]. The final stand-alone target memory
configuration can be seen in figure 7.

Summary

The revolution in microprocessor technology has enabled the design of stand-alone
intelligent systems. The development of the vehicle described was a challenging task that
combined engineering skills from the mechanical, electrical, and computer science disciplines.
The key to the design team’s success in completing a functioning prototype was twofold: the
system integration approach using existing commercially available hardware when possible,
and the three point development strategy using the Forth language, STD bus hardware, and
the host/target communication link.
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