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Abstract

An overview of the Kitt Peak National Observatory (KPNO) real-time environment is
presented. The eleven optical telescopes at Kitt Peak employ a variety of experimental
instruments, including Fourier Transform Spectrometers and large array digital cameras,
that impose a diverse set of real-time requirements. Presented next will be a historical
perspective of FORTH and KPNO over the last decade outlining the evolution of the
embryonic version of FORTH on an 8K mainframe (CDC), mini (Digital VAX-11 and
PDP-11), and micro (Digital LSI-11) machines. The real-time attributes of FORTH in
general and KPNO multi-tasking FORTH-11 in particular are discussed. Some details of the
implementation of FORTH-11 are presented to reveal the power of this real-time pro-
gramming environment. Finally, the KPNO CCD camera system will be used to illustrate a
complex real-time application of multi-tasking FORTH-11.

Overview

KPNO is a part of the National Optical Astronomical Observatories (NOAO). NOAO
also includes Sacramento Peak Solar Observatory in New Mexico and Cerro Tololo Inter-
american Observatory in Chile (CTIO). KPNO is located on Kitt Peak, a 7000 ft. mountain
in southwest Arizona, about 55 miles from Tucson, Arizona. The first major telescope was
dedicated in 1959 with the completion of the McMath solar telescope, still the largest solar
telescope in the world. Today the mountain supports four observatories utilizing 18 large
telescopes including a 36 ft. radio telescope, the Mayall 4-meter telescope, and five other
telescopes having primary mirrors greater than four feet in diameter. KPNO provides an
advanced research environment where astronomers from all over the world utilize the
research techniques of photometry, spectroscopy, and imagery to define the frontiers of
observational astronomy.

Computers have always been an integral part of the observatory. Today over 20 mini-
computers and a dozen micro-computers are used for telescope and instrument control and
data acquisition. Almost every telescope system contains a computer for controlling its
environment: the dome, the telescope, and instrumentation. These computers are often
dedicated to the complex problems of locating and tracking the optical source. For example,
at the Mayall telescope coude focus the image plane is the result of five reflections. The
telescope control program must transform the given celestial coordinates of a source into
position on the sky while accounting for errors due to refraction and telescope flexure. The
program must then position the telescope and dome such that the image falls on a fixed
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position two floors below in the coude room. After the image is acquired, the position must
be maintained and controlled for the analysis instrumentation. Complex motor and encoder
assemblies impose high data rates and constitute a servo system that is closed by the control
computer. The telescope control program at the Mayall telescope is able to position the
telescope to within several arc seconds anywhere on the sky.

A variety of instruments ranging from room sized grating and Fourier spectrographs to
tiny Helium cooled photometric detectors impose a diverse range of speed and space
requirements on the data acquisition and control computers. A single observation may
consist of a million point Fourier spectrogram or a million pixel digital image acquired in a
matter of minutes. These applications use interrupt routines on the order of a hundred
micro-seconds in duration to record a single data point or initiate a DMA transfer of ten
kilobytes. The most severe requirements for the near future are imposed by multi-anode
array detectors with their ability to resolve single photon events on a million point grid with
time resolution of less than a micro-second.

The Evolution of KPNO FORTH

The FORTH language was developed in the early seventies at the National Radio
Astronomical Observatory (NRAO) and KPNO. The initial development resulted in a
standalone FORTH operating system and programming language on an 8K byte Varian
minicomputer in 1970.

FORTH language use and development at KPNO began during 1972 when the
standalone FORTH environment was used for instrument development [1]. The first major
application of FORTH on Kitt Peak was a photometry program used as part of a project
that generated a high resolution spectrographic atlas of the Sun in 1975. This application
used a simple and elegant foreground/background scheme that allowed dynamic operator
control of a continuous data acquisition process. Since that time almost all the telescope
control and data acquisition computers on Kitt Peak have been programmed in FORTH. In
1977 the language development was paced by the development of the Interactive Picture
Processing System (IPPS). The IPPS lab utilized a minicomputer to interface image
processing devices to a Control Data Corporation 6400 mainframe. The control system on
the CDC machine for the lab applications was written in FORTH running under the
SCOPE operating system. FORTH in that instance was used primarily as a command
language that allowed linking FORTRAN routines and FORTH routines to create a
powerful and flexible image processing system.

During the late seventies the widespread use of FORTH at KPNO and the advancement
of computer hardware led to the next phase of FORTH development at KPNO. Beginning
in 1979 a synthesis based on several versions of FORTH from both the observatory and
external sources yielded the current KPNO FORTH model. That model has been used to
build implementations running under RSX-11M, RT-11, VAX/VMS, Version 7 UNIX,
VAX UNIX, and standalone real-time FORTH-11. The use and development of FORTH at
KPNO continues; all the real-time applications are performed using FORTH and a signifi-
cant amount of data reduction and analysis as well.

Attributes of FORTH for a Real-Time Environment

FORTH provides an interactive system that allows quick resolution of the often
uncertain details of a complex hardware and software environment. Typically FORTH
functions are constructed in a hierarchical and modular fashion that allows the functions to
be executed easily in a discrete and singular manner. This separability of functions aids in the



Kitt Peak Multi-Tasking FORTH-11 39

isolation of software or hardware difficuities. In addition, the minimal transformation of
source code into compiled code and the accessibility of the total environment source code
simplifies the task of locating problems in a complex application.

The complex real-time environment is composed of numerous devices that are often
unreliable and may interact in a complicated fashion. The interactive, hierarchical, and
modular attributes of FORTH assist greatly in the development and maintenance of a
complex software/hardware system. Most FORTH systems provide a macro assembler for
directly executable code definitions. The assembler routines may also be required for
interfacing hardware. Embedding a coded routine in the critical path of a complex program
is a method that allows a high level solution without sacrificing efficiency.

Interpreted FORTH code that is constructed in the typical hierarchical fashion provides
maximum functionality while using very little memory. The redundancy of code is minimized
automatically. The virtual I/O mechanisms for terminal and disk also aid in rapid
prototyping.

Specific attributes of multi-tasking FORTH-11 for a real-time environment (discussed
below) include an event driven scheduling algorithm, prioritized tasks, shared memory
process 1/0, and a hierarchical file system utilizing contiguous disk files. In addition, the
task context switch is very fast and the uninterruptible code sequences are few in number
and of minimal length.

Model for Multi-Tasking FORTH-11

The real-time model for FORTH-11 was constrained primarily by the nature of the
PDP-11 architecture. The PDP-11 architecture provides sixteen bits of direct memory
addressability and options of memory management allowing twenty-two bits of physical
memory space and separate instruction and data spaces.

The multi-tasking model consists of two or more tasks where each task is an identical
interactive virtual FORTH computer. Specifically, each task emulates a 16-bit PDP-11
computer that is limited to 64K bytes and appears to be operating standalone FORTH. A
virtual FORTH computer may be provided with direct I/ O capability and thus interface a
peripheral device. Each task executes routines that are part of the FORTH primitive
dictionary (the interpreter, for example) and routines that are defined specifically for that
task (the application code). The primitive dictionary routines are contained within a section
of memory that is shared by all tasks. The shared memory segment is re-entrant and read-
only. The data structures required for the common dictionary are contained in the tasks’s
specific memory and are executable only by the particular task.

Each task performs a unique and independent function; for example, interfacing an IO
device, providing a user interface, or performing numeric calculations. Tasks are programmed
individually and, after the communication interfaces and protocols are satisfied, linked
together into the multi-tasking system. The independence of tasks allows modular program-
ming at a particularly high level. Communication between the tasks is through well defined
protocols and the multiple virtual computers can be regarded as a virtual network (Figure 1).
The communication protocol and the independence of tasks also allows a particular task to
be removed from the virtual network so as to be installed in a separate processor in the
physical network.
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Figure 1.

Within the virtual network all access to other tasks or common resources (CR) are
regulated by the Common Resource Interface (CRI).* The CRI consists of assembled service
routines for software interrupts and process scheduling. The software interrupts are generated
by processor traps and are invoked with srap instructions. The allocation of the CPU to a
virtual computer (scheduling) is checked whenever an activation event occurs. When an
event occurs that activates a task that is higher priority than the currently scheduled task,
rescheduling will occur. Activation events are primarily related to device interrupts but can
also correspond to software synchronization, as in intertask communication. In this model
the common resources are the CPU, disk, terminal, and non re-entrant common routines.

The CPU is always allocated to the highest priority task that is “ready” (activated).

Every FORTH-11 task is logically identical and consists of three or four segments that
begin at constant boundaries and, with the exception of the Instruction/ Data (I/D) segment,
are of fixed sizes (Figure 3 **). The segments consist of the specific D, common L I/ D, and
1/ 0.

Memory allocation for a task is normally performed at the time the task is created and
occurs in quanta of 8K byte pages. A page is an artifact of the PDP-11 memory management
scheme and represents a memory segment of variable size (32-8192 bytes) with certain
attributes. Eight pages represent the maximum available memory for the first three segments
(when the 1/O page is not needed).

The first two segments, the common instruction (common I) segment and the task
specific data segment (specific D), are required for all tasks and literally define a virtual
FORTH computer. They contain the read-only primitive FORTH dictionary (common I)
and associated data structures (specific D) required for that dictionary.*** Virtual pages 0-2
are always allocated for these segments (Figure 4).

The I/D segment contains the task-specific code and data, namely the code that
uniquely defines a task. The space available ranges from 8K bytes minimum to 40K bytes
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maximum. When the memory management option of separate instruction and data spaces is
utilized, an additional data only segment of up to 64K bytes may be used.

The Input/Output (I/0O) segment is required only for tasks that perform direct device
input or output. If this is not needed the indicated space is available for the I/ D segment.

Page 0
The elements in page O that are special to FORTH-11 are the spooling buffer, the
system overlays, and the specific data structures.

Task logical structure

segment function
I task specific data area
11 common dictionary area

11 task specific memory area
v memory mapped I/ O area

Figure 2.

Task page structure**
segment page# function
1 0 specific D
11 1 common |
II 2 common |
11 3 I/D
381 4 [1/D]
1 5 [I/D]
1 6 [1/ D}
v 7 [I/OorI/D]

Figure 3.

The spooling buffer is typically used as a disk IO buffer for the virtual terminal. For
example, the standard output of a task can be redirected to a file for communiction to
another task or spooled to a printer driver. The interrupt and trap vectors occupy the
beginning of page 0 in the kernel task only.

The block buffers usually number two but they are simply linked and the number can be
extended dynamically to include as many as space allows.

*When writable memory is shared between multiple tasks, a locking mechanism outside the CRI
must be provided.
**Functions within brackets are optional.
***References [2-4] are the formal definition of KPNO FORTH and FORTH-11, including glossaries.
Reference [5] provides an introduction to KPNO FORTH.
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The system overlay area is a memory segment that is multiplexed for precompiled
routines. A significant number of tools and utilities are available in this area which forms a
virtual extension of the common I segment. For example, a complete assembler for the
PDP-11 instruction set is one overlay. Currently another 8K bytes of common routines are
multiplexed into this 2K byte overlay.

The task specific data structures are the variable storage area for common I and system
overlay algorithms. All the shared code is read-only and re-entrant.

Page 0 Page 1-2
return stack assembler
parameter stack utilities
spooling buffer file system
system overlay area overlay driver
FORTH block buffers vocabulary routines
task specific data structures compiler conditionals
[interrupt and trap vectors] formatted I/ O routines

task communication interface

high level structures

error routines

string operators

integer, long integer, mixed precision
disk routines

stack operators

compiler primitives and macros
interpreter

Figure 4.

Pages 1-2

FORTH-11 contains numerous extensions in the common dictionary (pages 1-2) and
system overlay area. Some features, such as redirectable input/output (virtual terminal,
redirectable error routine, and switchable stack and redefinition checking, are fundamental
additions that are commensurate with the current state of system design.

The important FORTH-11 extensions are the following:

Overlay driver.

File system routines.

Redirectable standard input/output.

Redirectable error routine.

Dynamically switchable stack checking.

Dynamically switchable redefinition checking.

Binary loader.

Intertask communication routines.

Automatic interrupt routine (“ready” event).

Unexpected interrupt routine (all unassigned vectors initialized).
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Pages 3-7

The remaining available pages in a task are used for the task application code and data,
unless the task requires direct device I/ O. A task that performs direct 1;O must have page 7
mapped into the physical I/O page where all memory mapped 1/O is performed.

A variation on the model of all tasks having separate I/D segments is the case where
two or more tasks share one or more I/D pages. The memory characteristics available to the
separate tasks may be read-only or read-write and an intertask protocol must be utilized to
sychronize accesses to such shared memory. For tightly coupled tasks such an arrangement
allows the fastest exchange of data.

Creation and Operation

Tasks may be created dynamically but in practice the task environment is configured
unique to the application. The priority of tasks is determined by the ordering of a simple
linked list of structures that are referred to as rask rables. The task table for a particular task
contains all the task specific information required by the CRI; namely, the complete stare
of the task as required by the scheduling, common device interrupt, and trap service
routines. In the KPNO real-time environment the multi-tasking structure is rigorously
defined by the hardware capabilities and the observing protocols. The priority order of the
tasks is fixed and equivalent to the creation order.

Throughout the FORTH-11 system, critical uninterruptible code has been limited. This
attribute along with an event driven and interruptible scheduling routine and contiguous
data files meets the demands of a real-time environment. In addition, the architecture of a
task allows a simple and fast context switch and independent task modules. Each task is an
independent entity that is interfaced to other tasks by a well defined protocol. The nature of
the interface and attributes of memory management prevent a catastrophic task failure from
directly affecting any other task. Tasks may be loaded with binary images to initially start a
task, recover a crashed task, or to overlay a working task.

Communication and synchronization

Since each task is a virtual FORTH computer that executes commands input from its
virtual terminal, a very simple communication mechanism is provided by virtual terminal
I/0O. For example, one task can request an action from another task by sending the
destination task an ASCII command string through its virtual terminal (i.e., typing on the
virtual terminal). Such a link can be a uni-directional command link or a bi-directional pipe.
When the pipe is established the tasks can communicate in a full duplex mode. The virtual
terminal link is very flexible and lends itself to dynamic alterations of the virtual or physical
network. In cases where the virtual terminal link is too slow or laborious, several other
communication mechanisms are provided such as shared memory or disk files, or memory
packet communication. The more useful methods for task communication and synchroni-
zation follow.

Input or output via the virtual terminal.

(Redirection of standard IO, command or parameter strings.)
Bi-directional memory pipe.

(Parameter or small blocks of data, packets.)
Sychronized shared memory.

(Synchronization flags or large data blocks.)
Software events for activating a waiting task.
Extended memory block transfers. (unmapped memory)
Command or data files from disk.
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The CCD Camera Application

The KPNO CCD camera system is a mobile instrument that uses a charge coupled
device (CCD) microchip for the detection of images. The system is capable of acquiring data
using a CCD detector while simultaneously displaying, processing, and recording prior
images. An astronomer using the system is able to fully reduce the acquired data and extract
astronomical results in real-time. The system can be used with any CCD chip format
currently available. There are six such systems currently in use; five at Kitt Peak and one at
the Cerro Tololo Interamerican Observatory (CTIO).

An LSI 11/23 microcomputer is the host of a distributed network consisting of local
camera and display processors and a remote telescope computer. The basic hardware
configuration of the system is shown in Figure 5. The LSI 11/23 peripherals consist of
graphic terminal, disk, tape, and plotting printer. High speed interfaces for the camera
processor, display processor, disk, and tape, allow the real-time multi-tasking operating
system to fully utilize the hardware while providing a responsive interactive user interface
and background reduction processing.

The important FORTH-11 extensions are the following:

Overlay driver.

File system routines.

Redirectable standard input/output.

Redirectable error routine.

Dynamically switchable stack checking.

Dynamically switchable redefinition checking.

Binary loader.

Intertask communication routines.

Automatic interrupt routine (“ready” event).

Unexpected interrupt routine (all unassigned vectors initialized).

CCD
camera Telescope
processor computer
terminal cCD
1D graphics computer 2D display
display handpaddle processor
tape
disk printer

Figure 5.
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The LSI 11/23 used for controlling the CCD system contains 256K bytes of RAM
memory, hardware memory management, and micro-coded floating point instruction set.
The mass storage device is an 80M byte Winchester technology disk that is used for both
program and data storage. Serial interfaces are used for terminal 1/ O and the telescope link
whereas DMA interfaces are used for the camera controller, 2D display processor, disk, and
tape.

The CCD program consists of five tasks with each corresponding closely to one of the
hardware elements listed above.

1. Camera control/telescope interface

2. User interface (terminal, 1D display)
3. Display interface (2D display)

4. Data logging (tape/printer)

5. Data reduction (cpu/disk)

The software network is portrayed in Figure 6.

camera/
telescope

tape/ printer
logging

Figure 6.

In the CCD application the CPU is always allocated to the CCD control task first. This
is to insure the uninterrupted time critical transfer of the camera data. Specifically, when a
CCD integration is finished the camera controller interrupts the LSI 11/23 which must then
initiate a DMA data transfer. At the completion of a transfer the camera/telescope task is
made “ready” and will be scheduled so that the newly transferred data may be copied to the
disk database. The time critical transfer of data into memory is controlled by an assembler
interrupt service routine, whereas the disk transfer routines are high level FORTH routines.

Communication between tasks is facilitated using a variety of mechanisms. The most
frequent method is for two tasks to hold a private conversation by typing on each other’s
virtual terminal. In this method character strings are passed back and forth that represent
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commands and parameters using redirection of standard input and output. Any commands
that a user can type to a FORTH machine can be programmed to be sent from one FORTH
task to another. In the CCD application there are numerous interactive routines that are
executed in different tasks but which are setup through a conversation link between the user
terminal and the executing task’s virtual terminal. For the routines that do not need inter-
active attention, the complete command string with parameters may be sent as input to the
destination task’s virtual terminal; a method analogous to parcel post. The command may in
fact be queued so that it will be executed by the busy task when it arrives at the top of the
queue.

Each task manipulates digital images that are usually too large to be stored in physical
memory. The image data is stored in the files on disk and is managed by database
management routines referred to as the Picture Disk Manager (PDM). The PDM allows
operations on virtual pictures at the levels of sub arrays, rows, columns, or single pixels.
Dynamic format of two dimensional data is also provided.

A list of the capabilities of each task follows.

Kernel task: CRI (common resource interface)
Trap and interrupt service routines
Task tables
Scheduler
Disk and terminal drivers
Camera task: Camera control/ Telescope interface
Local area network interface.
Dynamic camera control
Format, on-chip summing, pause-resume, abort-end
Real-time response
Database access
User task: Operator interface
Network coordinator
Interactive graphics interface (one or two dimensions)
Operator observing interface
Database status
Data “quick-look” or interactive reductions and analysis
Display task:
Interface for the two dimensional graphics system
Database access
Tape task: Data logging
Drivers for tape and printer
Tape, disk database [/O
Printer spooler
Reduction task:
Data reduction and analysis

Some of the capabilities of the reduction task that are available in real-time follow.

Miscellanecus preparation for specific applications:
Extended precision picture summing and averaging.
Interlacing multiframe detectors.

Creation of special bias or flat field images.

Removal of detector flaws. (bad pixels)

Removal of spurious events. (cosmic rays)

DC offset subraction and overscan trimming. (bias and trim)
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Compensation for nonuniform quantum efficiency. (flat field)
Removal of monochromatic background features. (fringe removal)

The KPNO CCD Camera Systems have been in routine use since August 1981. The
system has been a notable success in astronomy due to the functionality of the hardware,
software, and overall ability to provide a complete tool for the astronomer at the experi-
mental site in real-time. More detail on the implementation is given in reference [6].
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