Conference Abstracts

The following abstracts are from presentations made at the 1984 FORML Conference,
November 23-25, 1984; Proceedings published by the Forth Interest Group.

NONCE Defining Words
Wil Baden
The problem of “self-defining words™ occurs again and again in Forth but is often not recognized
for what it is. It is a paradox of Standard Forth that you can define a word <namex>> which you can
use to define a word <\name>, and never use <namex> again, but you cannot define <name>
directly.

Development of a Tightly Coupled Forth to Operating System Environment
Peter K. Blaser
TELELOGIC INC.
Cambridge, MA 02139
Lawrence P. Forsley
University of Rochester
Laboratory for Laser Energetics
Rochester, NY 14623-1299

Most Forth systems either ignore or replace the operating system which invoked them. If the
operating system is well written and/or offers many desirable features, then replacing or ignoring it
may be a mistake. In addition, the interactive nature of Forth and its extensibility tend to enhance a
good operating system and may well make a poor operating system tolerable.

This talk will describe the continuing evolution of a Forth written under contract to Digital
Equipment Corporation for the VAX architecture under the VMS operating system. Some goals of this
project have been to develop an interactive interface to VAX/VMS system services and Record
Management Services (RMS), [1] implement VAX/VMS Help for Forth, replace the VAX/VMS
default Command Language Interpreter (DCL) with Forth, and develop a run-time loader in Forth.

Our implementation began with the Kitt Peak version of Forth [2], which we significantly
modified to: reduce the kernel size, use hardware error detection schemes rather than costly software
error detection, and allow the user an interactive interface to VAX/VMS system services including
RMS.

With the exception of its 32 bit architecture, this is nominally a Forth-83 standard system. Future
work will include separated headers from code, a vocabulary structure similar to “ONLY”, a run-time
loader, a method to produce VAX/VMS images from Forth code, novel code threading techniques [3],
and multi-tasking.

We invite other universities to participate in this project with us. System copies will soon be made
available for media cost and the Institute for Applied Forth Research, Inc. will coordinate work in
many areas including software tool development and programmer productivity.

References:
[1] David Forster, “Operating System Services in Forth for VAX/VMS” Proceedings of the 1984
Rochester Forth Conference. pp. 108-114.

The Journal of Forth Application and Research Volume 2, Number 3, 1984
89



90 The Journal of Forth Application and Research Volume 2 Number 3

[2] Richard Stevens, “Forth 11 Reference Manual”, Kitt Peak National Observatory, November 1982,
[3] William Sebok, “A VAX Implementation of the Forth-79 Standard”, presented at the 1984
Rochester Forth Conference, and submitted to the Journal of Forth Application and Research.

An Improvement Proposal for DO ...+LOOP
John Bowling
Starlight FORTH Systems
15247 N. 35th St.
Phoenix, AZ 85032
DO...+LOOP has an inherent speed disadvantage and a programming problem that can be
overcome for most fixed increment +LOOP functions. The IDO...ILOOP proposal allows the
incremental value to be specified when IDO is executed, and keeps the increment on the return stack.
A word with a loop can now have a different increment every time it is executed, without fancy stack
adjustments.

Object Oriented Programming
Ronald D. Braithwaite
Rising Star Industries
P.O. Box 3063
Idyllwild, CA 92349
Structured programming in the ’70s is giving way to object oriented programming in the 80s.
Following an object oriented approach involves more than mouthing slogans, but involves issues such
as re-entrancy and the minimal use of impure data structures. Difficulties in maintaining data objects
are discussed, with the speed/complexity tradeoffs examined. Techniques for avoiding “smashing” a
data object are presented and object oriented programming in a multi-tasking environment is covered.

Disk I/0 Under Operating Systems
Ronald D. Braithwaite
Language Group Leader
P.0O. Box 3063
Idyllwild, CA 92349
An area of FORTH desperately needing standarization in some form is that of using FORTH
under an operating system. Faced with the necessity of porting a series of major applications (about
15,000 screens of source and another 5,000 shadow screens) to several operating systems, the Rising
Star Industries Language Group developed a standard physical disk interface. This method uses a
dynamic memory allocator in order to allow multiple files to be open, each with a different block.
size, a modified LRU mechanism that allows for locked blocks, and extensions that allow for byte
stream disk 1/0, as well as the existing FORTH standard mass storage words.

The Development of a Graduate Course on Microprocessors
in Product Design for Mechanical Engineers
Charles E. Buckley
Stanford University
Palo Alto VA Hospital

The Smart Product Design Laboratory in the Design Division of the Mechanical Engineering
Department at Stanford University and its associated curriculum were organized seven years ago. At
that time, this facility represented a unique resource for introducing mechanical engineers to a topic of
which they had heretofore been expected to remain ignorant — the use of microprocessors in the design
of electromechanical products.

Since that time, the level of sophistication in laboratory capabilities and curriculum content has
grown steadily. One manifestation of the facility’s developing maturity has been a shift towards the use
of the Forth programming language for practically all development work done there.

In this paper, the results which this shift has brought about are described. Following a brief



1984 FORML Conference Abstracts 91

introductory discussion of the facility and curriculum, a focus will be made on two particular issues.
The first of these concerns changes which have been made to the curriculum to accommodate and/or
take advantage of Forth. The second deals with the changes which have been experienced in the scope
of projects which may be reasonably undertaken by students during the course of an academic year.

A Decompiler Design
Bob Buege
RTL Programming Aids
10844 Deerwood SE
Lowell, MI 49331
Although FORTH was originally developed for control applications, its dependence on screens
makes it difficult to use without a disk drive. By using a high quality decompiler, it is possible to
regenerate source code from object code and edit any high level word directly from RAM. If this
capability is added to a token threaded language which also allows deletion of unused words with
garbage collection, the need for screens is eliminated, allowing the language to be totally independent
of a disk drive. The decompiler described in this paper has been used as the basis for such a system for
over 2 year and the resulting system has been found to be much easier to use than conventional screen
based systems.

Status Threaded Code
Bob Buege
RTL Programming Aids
10844 Deerwood SE
Lowell, MI 49331
RTL is a Relocatable Threaded Language which I developed to overcome some of the weaknesses
of FORTH. Because of the requirements which I demanded from RTL, T was forced to invent a new
class of threaded languages which is more flexible than languages based on either direct threaded code
or indirect threaded code. The purpose of this paper is to describe this new type of threaded code
which I call status threaded code and show how it was used to advantage in the creation of RTL.

The In-word Parameter Words
Sam Suan Chen
Institute of Nuclear Energy Research
P.O. Box 3-3
Lung Tan, Taiwan 325
Republic of China
Another implementation of in-word parameter structure over Huang’s scheme (FORTH DIMEN-
SIONS NO. 3, 1983) is presented to assure a simpler form and the correct functioning in colon
definition as well as in interpretive mode.

Another Look at DTC
Dr. Loring Craymer
Division of Biology
California Institute of Technology

Pasadena, CA 91125
A straightforward form of direct threaded code has been implemented on a Z80-based micro-
computer. Instead of containing pointers to machine code, the compilation fields of all non-CODE
words take the form CALL <routine>: W is passed on the hardware stack rather than through a
dedicated register. This costs slightly in terms of space, but average execution time decreases by
18-20%. NEXT becomes a 7 byte routine, so that an in-line NEXT costs only four bytes per CODE
word, for a total of about 350 bytes for the Laxen-Perry F83 model; this cost is somewhat offset by the
two bytes per word saved by DTC in comparison to ITC. Having NEXT in-line results in a 9% further
improvement in execution speed. The DE register pair was dedicated to hold the top of the parameter



92 The Journal of Forth Application and Research Volume 2 Number 3

stack: execution speed improves by a few per cent. The alternate register pairs were dedicated to hold
the current loop index’ and limit’ values. The net result of these changes is a nearly 35% faster
implementation at a cost of only a 3% increase in memory usage.

This form of direct threading should be applicable to all conventional microprocessors. A model
for implementing faster 32-bit FORTH systems on 16-bit machines will also be discussed.

Extensions to Forth in the DOS Environment
Thomas B. Dowling
Miller Microcomputer Services
61 Lake Shore Road
Natick, MA 01760
Extensions to the Forth interpreter can make improved use of the file system available in DOS.
The Forth interpreter has an additional rule added to try interpreting a word as a file name if it is not
in the dictionary and is not a number. The file, if it exists, is then loaded. This can be used to load
libraries or utilities. By adding some conventions to the file source code, nothing happens for an
already-loaded library, and an already-loaded utility is executed without loading.
Experience using these modifications to MMSFORTH has shown their value. Some points on
using a file system for the control of source code in the development of a large project with many
programmers will also be discussed.

NEON — Extending Forth in New Directions
Charles B. Duff
Kriya Systems, Inc.
505 N. Lakeshore, Suite 5510
Chicago, IL 60611
NEON is a threaded language that arose out of a need for a powerful development system on the
Macintosh. NEON is an object-oriented language that has inherited characteristics from other
extensible languages, including Forth, Smalltalk, Logo and Lisp. This paper uses NEON as a forum
for discussing some areas in which Forth might be improved, and suggests models for certain
extensions. Areas covered include: Named parameters, local variables, defining words, vectoring,
multiple-code field data types, data structures, and forward referencing. An early version of NEON was
described in the paper, “Forth Meets Smalltalk”, presented at the 1984 Rochester Forth Applications
Conference.

A Critical Evaluation of Threaded Interpretive Systems
Harvey Glass
Coliege of Engineering
University of S. Florida
Tampa, FL 33620

While languages based upon threaded interpretive systems have been used for a variety of
applications, these systems have been generally ignored by serious students of programming languages.
We propose to critically examine — to gain insight, and to investigate the suitability of these systems
for implementing a programming environment — specifically an environment to support programming
in a functional style.

We hypothesize that threaded interpretive systems may have merit as the basis for more ambitious
language implementations that have yet been attempted — and that such languages may offer a
reasonable compromise between the flexibility of more interpretive systems and the efficiency of native
code compilers.

We describe extensions to a threaded language which provides the kernel of a functional style
language. We propose to examine the promise of such a language and to compare it to the language
LISP. The goal is to gain insight into the real and apparent capabilities of threaded languages and to
evaluate the potential of such systems for support of functional programming environments.



1984 FORML Conference Abstracts 93

...FORTH, FIFTH, And BEYOND
Andreas Goppold
2000 Hamburg 26
West Germany

An essay into the time-frame network of instrumental language.

This is not really one coherent essay. Rather it is a collection of several threads of thought. On
these threads there are what I call beads of ideas that are loosely stringed together. In between are a
few knots, centers where many thoughts cluster to a complex similar to a normal essay. Before I start
putting out my web of ideas, I want to give some sort of outline, or abstract: I am talking about
FORTH as a subject but it is not only FORTH. What I want to do is to connect the development of
one particular instrumental (or here: computer-) language which we call FORTH to the fabric of
human cultural development.

The Paradigm of Interactive Programming
Andreas Goppold
2000 Hamburg 26
West Germany

Computing is not yet a truly academic science. That is, the decision about what is considered a
factual truth as opposed to conceptual heresy is not yet vested in a social body whose language
structure in essence pre-forms and pre-determines the kinds of thoughts that can be thought of at all.
(See Wittgentstein: Tractatus Logico-Philosophicus.)

What Thomas Kuhn calls a paradigm of science is in my view this thought structure which forms a
meta structure with respect to the theories that are formed by a science. With meta structures, FORTH
programmers should be familiar, and even though I am using the term in a somewhat more general
sense, I think I will hit a familiar vein.

Douglas Hofstadter has written a book: “Goedel, Escher, Bach”, his main theme is Self-Reference.
This concept is Hofstadter’s name to something applied onto a version of itself. The computer industry
is an industry applied to itself. Only through computers in CAD/CAM were microprocessors possible.
Modern Computer-assembly lines like that for the Maclntosh can be considered as automated
automata factories. This way the computer industry is a prime example of a self referent system. Self
reference is closely rleated to the halting theorem of the TURING MACHINE which says that nothing
can be said scientifically about the outcome of such a process. Computing, far from becoming a subject
of science, seems to swallow up science. Expert systems are the symptom for this. The accounts of
scientists who gave their knowledge to the system, and their feeling of depression when the system
re-presented their own knowledge to them in much more complete and refined form speaks for some
really deep impending changes in much that has been taken for the core of science and which may
become as defunct as the weaver sitting at his loom.

A Forth Slide Rule
Nathaniel Grossman
Department of Mathematics
UCLA
Los Angeles, CA 90024
Many users of floating point arithmetic will not have need for a fully-developed, comprehensive

floating point package, yet they may find applications for a “slide rule”. Such a smaller computational
package would — like a slide rule — carry out low precision floating point arithmetic (including
addition and subtraction) and include a broad selection of the common higher mathematical functions.
As with the slide rule, functional domains would be limited, requiring user foresight. A Forth slide rule
implementation will be presented, with a concise four-function arithmetic implementation by Martin
Tracy as basis and with all the higher functions derived from the unified CORDIC algorithm.



94 The Journal of Forth Application and Research Volume 2 Number 3

A Simple Metacompiler
Guy T. Grotke and Guy M. Kelly
San Diego, CA
By accepting a set of reasonable limitations, it is possible to construct an interactive, incremental
metacompiler which is simple to understand and simple to use.

Freedom in Programming Languages

John Hall

Oakland, CA
The freedom to invent, experiment, design, and to code, that are so much a part of Forth, are
missing in other computer languages today. In these languages, artistic ability is stifled and professional
excellence is too narrowly channeled, leading only to inhibited, mundane and gray products. Like the
freedoms in our personal lives, these freedoms must be zealously guarded and their preservation

defended from authoritarian tendencies.

FORTH Readability
Tom Hand
Department of Computer Science
Florida Institute of Technology
Melbourne, Florida

This paper is concerned with two issues. First, the utilization of pseudocode can aid both as a
design tool and as a documentation tool. Second, the style in which FORTH code is presented can
simplify understanding.

The 32-Bit Gambit
John F. Healy

The most natural and obvious way to extend FORTH to a 32-bit virtual machine is to treat
stack items as 32-bit entities and to rewrite the entire system accordingly. New microprocessors
currently being introduced, such as the Motorola 68020, would make this a simple task from the
implementor’s point of view. While such implementations do not offer direct compatibility between
16-bit and 32-bit systems, they have the virtue of preserving the existing FORTH-83 Standard in
almost every detail except for data and address width specifications, thus leaving the programmers
of 32-bit systems in a familiar environment. In addition, this way of extending FORTH would lend
itself to the complex, math-intensive laboratory and scientific process control applications for which
the new 32-bit microprocessors are most adept.

Toward Standardized Modem Words
John S. James
CommuniTree Group
P.O. Box 486
Santa Cruz, CA 95031
A unified approach to personal-computer modem support allows developers to write most
applications in a modem-independent way, despite the great variety of modems which now exist or
are likely to be developed.
This paper presents a glossary of the current working draft of a general modem word set
suitable for unattended operation, and includes an example of implementation. It discusses some of
the issues and problems of general-purpose modem support.



1984 FORML Conference Abstracts 95

Modular Forth
George Kaplan
DesignWare Inc.
183 Berry Street

San Francisco, CA 94107

Most Forth systems compile applications to fixed addresses in the dictionary. Applications can
have modular designs, but the modules are “linked” by compiling them together. Applications are
generally limited to the size of available memory.

This paper discusses a method for dividing an application into separately compiled, relocatable
modules. All words within a module are hidden except those explicitly declared as external. At run-
time, an application’s modules are loaded as they are needed. A set of words to control compiling
and linking of modules is proposed.

A FORTH Development Environment
H. H. Koller
Group for Measurement Techniques and Laboratory Automation
Central Research Units
F. Hoffmann-La Roche & Co. Ltd.
Ch-4002 Basel/Switzerland
For the program development for small standalone systems with programs usually in proms a
FORTH system was developed. The hardware consists of a 8085 microcomputer system on single
Eurocards based on the Siemens-SMP-Bus with two floppy drives. A simple 8085 Emulator
connects the target system to the development system.
FORTH was first implemented using the FIG listing for the 8080 microprocessor.
The following significant modifications to the original code were made:
(1) Change to “subroutine threaded code”, which runs faster; allows a mix of assembly and
highlevel-code in the same word; allows easy use of interrupts.
(2) Implementation of interactive, incremental target compilation for headerless, romable code.
(3) Possibility to select code and data segments at addresses specified by the user.
(4) Inclusion of simple, fast realtime multitasking.
The resulting FORTH is mainly compatible with 83 Standard. Deviations include the
definition of defining words using the constructs:
"DOES>....;}"
"BUILDS> name . .. ;"
(Ragsdale: FD Vol. I11/5 Jan/Feb 1981)
and " :[ ” for the definition of immediate words.

Who’s How Dumb in Telecommunications
Philip La Quey
In this paper 1 present a way of controlling telecommunications using a technique referred to as
key capturing. Key capturing can be a very powerful technique especially in telecommunication
networks. The source code for several useful words, such as a dumb terminal program, is included.

Local Variables
Robert E. La Quey

Explicit use of stack manipulation operators ( DUP, SWAP, ROT, OVER etc. ) often makes
FORTH difficult both to read and to write, thus wasting a precious resource, the programmer’s time.
A technique for compiling the stack picture into local variables is demonstrated. Using the technique a
FORTH-like language can be defined which uses reverse polish algebra and the stack but not explicit
stack manipulation. The tradeoffs involved are discussed as are implications for the FORTH virtual
machine.



96 The Journal of Forth Application and Research Volume 2 Number 3

Reverse Polish Translation
Robert La Quey
A translator that generates explicit stack operations ( DUP, SWAP, ROT, etc. ) from reverse
polish algebraic equations is presented.

Arrays and Stack Variables
George S. Levy
5737 Menorca Drive
San Diego, CA 92124
A set of new data structures is proposed which improves FORTH readability by eliminating
memory reference words (such as @ and !) and stack reference words (such as SWAP, DUP, and
ROT). These structures all obey the same syntactic rules for fetching or storing data and are of two
types. The first are memory based such as VARs, ARRAYs, and CARRAYs and the second are stack
based such as SVARs and SARRAYs. The latter allow the naming of stack locations and must have
their stack position “set” by a sequencing statement similar to the conventional stack picture use in
documentation (i.e., input stack — output stack).

High Level and Code Level FORTH Multitasker
George S. Levy
5737 Menorca Drive
San Diego, CA 92124
A high level multitasker has been developed that uses the inner interpreter to go around the
round-robin multitasking loop. It is simple, transportable, provides a model which a code level
multitasker may easily follow, and is significantly faster than other high level multitaskers. It is
designed to work in a memory management environment in which all “jobs™ are not visible by all tasks.
Task commands can be issued by any task and sent to any other task. The concept of resource has been
generalized to include not only memory area, I O ports, and disk, but also tasks themselves.

Doubling the Speed of Indefinite Loops
Michael McNeil
1271 Lost Acre Drive
Felton, CA 95018
A new indefinite-loop control structure — known as START ENTER UNTIL — is proposed. The
new structure is logically equivalent to BEGIN WHILE REPFEAT, but in the majority of looping
problems its run-time looping mechanism will execute up to twice as fast. This improvement
is achievable not only in high-level Forth control structures, but also in the Forth assembler’s
equivalent control structures.



1984 FORML Conference Abstracts 97

A Language for Digital Design
Chuck Moore
410 Star Hill Road
Woodside, California
FORTH is a programming language with extraordinary versatility. I was reminded of this while
designing the FORTH microprocessor. It has instruction decode based on random logic and I needed a
way to document and verify this design.

0 ( Digital logic simulator)

1:8 (n) DUP 32768 AND IF .” +" THEN 32767 AND .
2:.(n~n) 32768 XOR ;

3:and ( nn-n) OVER 32767 AND OVER 32767 AND MAX
4 ROT 32768 AND ROT 32768 AND AND+ ;

S:or (nn-n) —~ SWAP _ and_ ;

6

7  ( Technology)

8 : 2AND_ ( nn-n) and.. 9 + ;

9 :30R (nnn-n) oror 30 + ;

10 : 2XOR ( nn-n) OVER _ OVERand >R _ and R> or 35 + :
11

12 ( Logic equations)

13 0 CONSTANT A 10 CONSTANT B 10 - CONSTANTC
14 : ENB. (-n) A B 2XOR ; ( 45)

15 : XY ( -n) ENB. C 2AND_ A B 30R ; ( +84)

This block of FORTH code is the preposterously simple solution. At the top is a digital simulator
that can combine signals and determine worst-case timing. In the middle is a description of the logic
elements (technology) to be used. At the bottom an example of two output signals determined from
three inputs.

A Consequent-Reasoning Inference Engine for Microcomputers
Jack Park
Box 326
Brownsville, California 94919

Application of operational artificial intelligence techniques such as knowledge-based expert
systems to the desk-top microcomputer marketplace requires consideration of two limiting design
factors: available memory, and system speed. System speed is governed by clock frequency of the host
microprocessor, bus width (typically 8 or 16 bits) , and level of program abstraction. For any given
microprocessor system, level of program abstraction becomes the governing criteria in system speed.
Availability of high-speed working memory is the principal limiting factor, once a microcomputer has
been selected to host a program. This paper describes a consequent-reasoning inference engine and rule
compiler written to explore the issues of limited memory and program abstraction using an Apple 11
computer with 48k of working memory. Two design criteria were involved: virtual memory was not to
be required for run-time operation of an expert program, and semantic simplicity for the rule set was
deemed useful in eventual consumer acceptance. The program described explores static memory
allocation as a technique for application of working expert systems to desk-top microcomputers.

Outline of a Forth Oriented Real-Time
Expert System for Sleep Staging:
a FORTES Polysomnographer.
Dana Redington
Sleep Research Center
Stanford University School of Medicine

Knowledge Engineering — a rapidly growing segment of Artificial Intelligence — is transforming
the way computers interact with the world. Machines are mimicking highly trained specialists in



98 The Journal of Forth Application and Research Volume 2 Number 3

various fields, hence the designation Experr Systems. The greatest proliferation of machine intelligence
will be seen in the development of microprocessor based knowledge systems or personal expert
consultants and operators. This paper focuses on personal expert operators; it briefly introduces
microprocessor based expert systems and describes how these systems can be made to think and behave
in real-time; language environments that promote knowledge engineering are also discussed. A
cornerstone problem in the field of Sleep Research helps illustrate the construction of a microprocessor
based real-time expert system using Forth.

Yet Another CASE
John Rible
Miller Microcomputer Services
61 Lake Shore Road
Natick, MA 01760-2099
MMSFORTH, having been developed independently of Forth, Inc. and FIG Forths, contains
unique implementations of some Forth words. This paper describes MMSFORTH’s character CASE
statement, which has been used by thousands of programmers since 1979. It is compared to the
versions of CASE described in Forth Dimensions’ CASE contest. Extensions of the CASE statement
are explored.

32-Bit FORTH On IBM Mainframes
John Rojewski
Transaction Services — Systems
Western Regional Operations Center
American Express Company
Phoenix, AZ 85027

The purpose of this paper is to share the philosophy used in designing a 32-bit FORTH
implementation for an IBM 370/30xx large-scale system. This implementation provides source-level
compatibility with most 16-bit systems, and provides the additional expandability available by using
32-bit stacks and Dictionary elements.

Topics include modifications required to run FORTH under the control of other Operating
System(s) (VM/SP or ACP/TPF) and File System (CMS), along with other utilities developed for
testing and problem determination. Terminology is FORTH, IBM, and Operating System dependent,
and mixed thoroughly.

Toward a Standard Computer
Dennis Ruffer
ALLEN GROUP
Testproducts Division
2101 N. Pitcher St.
Kalamazoo, MI 49007
Standards in the computer industry are an elusive dream of every programmer. To not have to
worry about what type of computer, terminal, printer, plotter, or disk you are talking to would be truly
amazing. To be able to transfer a document or file to any computer, terminal, etc. anywhere in the
world would be simply unbelievable. The International Standards Organization is trying to make this a
reality. They are proposing a 7 Layer Model, that I will try to describe in this paper. It creates a new
operating environment in which all computers can find compatibility. The problem is, the Model is an
entire operating system, and like all standards, manufacturers must agree to support it. Here is
perhaps, the challenge, and why I am presenting this paper.



1984 FORML Conference Abstracts 99

Error Trapping and Local Variables — One Year Later
Klaus Schleisiek
POB 202 264
2000 Hamburg 20
West Germany

A year ago I started to “misuse” the return stack for information other than return addresses or
loop parameters. As it turned out, the return stack is the proper place to store information which has a
limited lifetime corresponding to a certain execution level.

Storage and retrieval of this kind of information is implemented by building “frames” on the
return stack which are linked to each other and do have a minimal common format such that the
system will be reset to a known state on ABORT.

This kind of mechanism is the backbone of languages of the PasGol ( PAScal alGOL ) type and
their notion of the scope of names and local data types. But Forth goes beyond these languages from
the early days of computing — namely it goes beyond the paradigm of the sufficiency of one stack, the
latest and hopefully last example of which is called NS 320X X.

References
[dc0] Colburn, D. “User Specified Error Recovery” FORML ’83
[ksO] Schleisiek, K. “Error trapping” FORML '83

ROCK and ROLL Programming:
An Innovative Approach to Local Variables
George W. Shaw
Shaw Laboratories, Limited
P.O. Box 3471
Hayward, California 94540-3471

To date, the published Forth implementations of local variables have met with limited success.
The implementations have been “expensive” or have had problems related to either memory allocation
or stack congestion. An “inexpensive” approach which dynamically allocates the memory, removes the
local variable values from the stack and supports local names would be ideal. This paper solves the first
two problems. The third problem is very system-specific and at least one adequate simple solution has
already been found (“Adding MODULEs to FORTH”, D. Vewey Val Schorre, 1980 FORML
Conference Proceedings, p. 71).

Algebraic Parsing Techniques in FORTH
Terri Sutton
Rising Star Industries
P.O. Box 616
Silverado, CA 92676-0616
Presented with the need for an algebraic tokenizer and detokenizer, and faced with both size and
speed constaints, research was done into classical computer science literature. Numerous algorithms
were discovered. One was selected and implemented in FORTH, with significant additions. This
method for parsing algebraic equations is presented, with examples of both left-to-right and right-to-
left algorithmic state machines.



100 The Journal of Forth Application and Research Volume 2 Number 3

Zen Floating Point
Martin Tracy
Micro Motion

Los Angeles, CA

This minimal floating-point package was written to meet three design criteria:

I. It must be small.

2. It must be in harmony with Forth.

3. It must be fun.

It is indeed small — three screens of source code compiling to much less than 1K of object code.
And, thanks to the magic of a good editor, you will find a (somewhat less readable) one-screen version
on screen six. All four floating-point arithmetic primitives as well as input/output conversion are
included.

A Buffer Allocation System for Forth
William Volk and Ron Braithwaite
The need for contiguous variable length buffers is established. Buffer space is allocated from a
pool, and buffers are maintained using a doubly linked list. Methods for maintaining re-entrancy are
discussed. Both memory and disk based systems are described.

A Portable Graphics Wordset in Forth
William Volk
Portability in graphics is defined. A minimal overhead (space/speed) system is presented, tradeoffs
discussed, and implementation considered. The benefits of Forth as a graphics language and some of its
impact on graphics programming are described. Examples include: windowing, turtle-graphics, 3D
perspective, and computer aided design.

Named Local Variables in Forth
William Volk

Recursion, re-entrancy, and readability provide examples where named local variables are useful.
Various methods for providing this are presented, with the size/speed tradeoffs discussed. A method
for using existing variables through the technique of shallow binding is presented. An implementation
is described that uses existing data structures. Future speed/space enhancements will be shown, as will
the use of multiple CFA’s to improve performance. Some sample programs will illustrate where use of
Locals is appropriate.

Valdraw, A Drafting Program
William Volk and Rick Sanger

A *“user-friendly” drafting program is presented. Hands-on demonstration and examples of output
will be shown. Coding techniques for graphics programming, in Forth, are discussed.

Meta-compilation of High Level Forth Code
Harry Roy Wilker
Sentient Software, Inc.

A technique will be discussed that can be used to meta-compile high level application code on top
of existing off the shelf Forth kernals in an interactive environment. A host system is used which
controls the compilation environment of the target machine, while allowing interactive development on
the target machine. It has proven especially useful in those situations where large scale applications
must be written for machines with limited resources.



1984 FORML Conference Abstracts 101

BCD Floating Point Stack + 20 Bit Addresses = 20 Bit Forth
R. Lee Woodriff

The RPN calculator style floating point environment within this FORTH implementation will be
discussed along with the parsing routine VAL which turns a string representation of an algebraic
formula into a floating point stack entry. Applications of this word to general forth programming
problems will be presented. The set of necessary FORTH words for floating point stack manipulations
will also be reviewed, with comments regarding the HP implementation. Specialized bit operations for
a 20 bit FORTH environment are of particular interest as address space of modern Processors
increases.

The 83 Standard VS HP71B Forth Environment
R. Lee Woodriff
This ROM based forth language follows the 83 standard to a large extent. A sorted system
dictionary accessed by word length as a hashing is used to speed word search. Most 83 standard words
refer to 20 bit cells in this implementation. A very nice set of nyble handling words is included for ease
of BCD floating point manipulation.

The Future of Forth: Is This the Shape of Things to Come?
R. Lee Woodriff

Compromises for portability are minimized when FORTH is the system language choice for very
small systems. A case will be made using the HP71B example that FORTH is an ideal language for
portable systems. Program length and speed comparisons will be presented.

This implementation of the FORTH idea will be used to ponder future directions forth should
probably take especially in terms of user accessibility and functionality without compromise on power,
speed, and compactness of compiled code.

The HP 71B Forth/Assembler ROM: Hardware Environment
R. Lee Woodriff
Menlo College
Menlo Park, CA
Fundamental architecture and description of the device as a forth system will be presented. 10
handling and file/buffer words will be covered briefly, particular attention will be given to new
FORTH ideas which are potential candidates for inclusion in any new forth standard.

The Macintosh and Forth
Thomas J. Zimmer

Is there life for Forth programmers after Macintosh? I believe there is, although it will never be
quite the same, and maybe that is just as well.

When 1 first received my MAC, I could visualize great wonders in Forth occurring on its screen,
flashy windows, mouse controlled menus, you name it and I knew Forth could do it. Well here it is 8
months later, and I do have a crude version of Forth running on MAC, and I may even be able to see
the light at the end of the tunnel, but this is one of the longest races I have been in, in a long time. You
see MAC isn’t like other computers, other computers have ROM monitors providing Character 1/0,
MAC has a ROM monitor providing over 500 system calls, only one of which prints a single character
on the screen, and it forgets to do a CR at the edge of the screen. There is no linefeed of carriage return
function, no simple scrolling, even character intput requires an EVENT array, and EVENT sorting to
find the key pressed.

Now it may sound like I am complaining, but that’s not really the case, you see I don’t mind the
inconveniences of MAC, because I get power, performance and a user interface equaled by NONE.



