Forth Meets Smalltalk
Charles B. Duff and Norman D. Iverson

Kriya Systems, Inc.
505 N. Lakeshore #5510
Chicago, IL 60611

Abstract

Forth has certain inadequacies that limit its use as a general-purpose production
language, particularly for building large applications. The object-oriented approach of
Smalltalk-80 is used as a model for extending the Forth compiler to create a hybrid
language. The resulting system permits definition of classes and objects in the manner of
Smalltalk-80, and can be fully intermixed with standard Forth.

Programming Environments

When evaluating a language for use in the production of commercial applications, two
kinds of efficiency are of paramount concern: that of the produced code, and that of the
programmer. The first point is most important in real-time and extremely compute-bound
applications, while the second is relevant to any software vendor attempting to operate a
viable business. While Forth has advantages over many other languages in both of these
areas, it is the opinion of the authors that more emphasis has been placed on the efficiency
of the language than that of the programmer in Forth’s evolution thus far. As a developer
of applications exclusively in Forth, it has been our experience that certain additions and
extensions to the language environment can reduce the amount of programmer time spent
in coding and debugging without adding excessive overhead.

This paper will describe Neon™, a language that we have developed for the Macintosh
computer. Neon incorporates an indirect-threaded Forth kernal, but greatly extends it to
provide more functionality for the programmer. We have focused our efforts on three areas:

Data Structures — such important language constructs as Strings, Arrays and Lists are not
inherent in the standard Forth vocabularies. Many implementations of such data structures
have been suggested in the Forth literature, but as long as they remain unstandardized, a
Tower of Babel situation prevails that impedes transportability and programmer efficiency.
CREATE DOES> is inadequate as a general facility for defining new constructs because it
allows only one behavior per datum. In this paper we will describe a general, powerful
facility for the construction of data structures that encourages reuse and standardization, but
does not preclude extension.

Protection of local data — we have seen much maintenance time spent overcoming unfore-
seen side effects due to the fact that Forth offers minimal protection against global access to
a datum. Such protection, while it eliminates certain tricks and shortcuts, supports a more
secure development process, particularly when multiple programmers are involved.

Organization and Readability — while good naming can make Forth highly readable, far too

The Journal of Forth Application and Research Volume 2, Number 3, 1984
7

8 The Journal of Forth Application and Research Volume 2 Number 3

often many factors combine to make Forth programs difficult to comprehend, even by the
programmer who wrote them. The worst offender in this area is the proliferation of stack
operations that occurs in certain types of Forth words.

Guiding the Development Process

While it is undesirable for a language to be overbearing and too protective, it is
beneficial to encourage programmers to use common techniques. More code can be shared,
ease of maintenance improves, and many other benefits accrue from standardized approaches
to programming. The most effective way to bring this about is to provide a construct that is
so powerful and elegant, it makes little sense to solve a problem in a different way. In Forth,
the most profitable area in which to exercise this kind of guidance would seem to be that of
data structure definition. We will concentrate our discussion on that topic, and begin by
proposing a set of design goals for an improved data structure process in Forth.

Guidelines for Building “Ideal” Extensible Data Structures

1. Realism — The language used in the computer domain should closely map the
problem domain. As an example, Forth’s stack manipulation words, such as ROT, SWAP
and DUP have nothing to do with the nature of the problem being solved; they are artificial
formalisms that owe their existence only to the relatively sparse nature of the Forth com-
piler. While this provides an efficient method for manipulation of parameters, it often
severely compromises readability. [GLAS83] points out that constructs such as named
arguments, that improve Forth’s readability also facilitate the process of writing Forth code.
Such techniques as procedural arguments can result in simpler, more easily understood code
[LUOR4]. Local variables (see [PER82], [BOWS82]) are an important facility that impact
realism as well as the issue of localization, discussed below.

On a larger scale, certain basic characteristics of a language greatly affect its capacity for
realism. Procedural languages, such as C and Pascal, define symbolic templates for data and
then allow the programmer to create a sequence of procedures or “recipes” that manipulate
the data in various ways to produce a desired result. Both the sequential nature of these
descriptions and the rather separate treatment of code and data take them a step away from
the problem being solved, rather like telling someone else how to solve a problem. On the
other hand, languages such as Simula and Smalltalk have arisen that allow the programmer
to build models of phenomena. This approach is more concrete, easier to comprehend, and
closer to the language of the problem [GOL83], [COX84], [WEG84]. These languages tend
to bundle data with the access methods uniquely applicable to the data, in a common
structure called an object.

Forth can exhibit characteristics of either approach because it is not a rigidly defined
and static language. Glass points out that Forth exhibits many traits of a functional
language, and can serve as a basis for a more usable and elaborate functional programming
environment while preserving the efficiencies of the threaded architecture [GLAS84]. Our
experience in using Forth as the basis for an object-oriented language supports this
conclusion.

2. Transparency — Names for operations on data structures should be generic, and
insensitive to the actual implementation of the data. [LEA83] provides an indication of the
difficulty of achieving this in Forth; for instance, the words QPUT, QBPUT, QWPUT and
QSPUT all accomplish stores to queues of differing data types. Ideally, the word PUT would
suffice for all of the implementations.

3. Localization — Unless code and data is localized to the portion of a program in
which it is relevant, negative side effects and interactions are likely to occur as a result of
programmer mistakes that could be detected at compile time [MYE78]. It should be possible

Forth Meets Smalltalk 9

to restrict the scope of names to a small subset of the application (such as a single
procedure), and to apply this technique in an arbitrary hierarchy.

Vocabularies provide a partial, but flawed, capacity for localization in Forth. While
they restrict the scope of names, their behavior is difficult to reconstruct from a long source
listing because of the implicit nature of vocabulary linkage. Vocabularies are full-blown
examples of modal behavior, changing the behavior of standard language elements without
making the expected differences explicit. Solutions such as ONLY make vocabularies usable,
but they remain impractical for the degree of localization analogous to Procedures in Pascal.
Applying them at this level could easily demand 50 or 100 vocabularies in a large
application, which would certainly present an interesting management problem for the unfor-
tunate soul attempting to understand the source.

4. Independence — Ideally, two modules should minimize the amount and complexity
of the data exchanged between them. Also, their logic should not rely upon implementation
details of other modules. A good design emphasizes clear, simple data interfaces between
modules. [MYE78] contains an excellent discussion of data coupling between modules.

5. Encapsulation — This is a more specific application of the last point. The implemen-
tations of access methods relevant to a given data structure should be hidden from the rest of
the system, and logically bundled with the data structure itself. They should be available as
generic operations, in the manner of [2] above. [COX84] discusses the message/object pro-
gramming style of Smalltalk-80 as a paradigm for other languages to achieve encapsulation
of access methods.

6. Aggregation — Just as we can build higher-level Forth words out of more primitive
subordinates, we should be able to construct composite data structures out of existing ones.
Traditional methods of defining data structures in Forth do not permit easy nesting or
aggregation.

7. Inheritance — Often, a new data structure shares many characteristics with one previ-
ously defined. We should be able to inherit the data and access methods of a previous data
structure without a great deal of effort. This has benefits in programming time as well as
code bulk.

8. Efficiency — Clearly, it is important to preserve as much efficiency in code space and
execution time as is practical. Ideally, a dynamic decision could be made by the programmer
to trade time for space, or vice-versa. This flexibility is currently exhibited by Forth.

The Search for a Solution

After surveying the existing literature for approaches that would meet these require-
ments, we failed to find any that could satisfy all of them. [FOR81] demonstrates an effective
method of achieving generic operators that was not designed to solve the general class of
problems that we are concerned with. The work on multiple code-field structures (see
[ROS82], [DOWS83], [SCHA83]) is very efficient, and attractive in terms of transparency,
realism and encapsulation, but has disadvantages with respect to the other points. In particu-
lar, it explicitly uses some of the intimate details of a word’s compiled structure, which
violates the principle of independence. In addition, no facility for nesting structures is
provided by this approach alone. Nevertheless, we feel that multiple-codefield structures
offer many advantages over Forth’s existing defining word compilers, and should be
considered as an eventual replacement for CREATE DOES>. We made much use of these
techniques in building the framework for the system that we will describe.

A Cross-Cultural Marriage

The object-oriented approach of Smalltalk-80 (see [COX84], [GOLS83], [KRA83],
[BYTB81]) has benefits in all of the areas except efficiency, which is one of Forth’s paramount

10 The Journal of Forth Application and Research Volume 2 Number 3

virtues. We felt that a marriage between the two languages could be very attractive if it could
preserve efficiency in both time and space. Thus, we undertook to build an object-oriented
environment on top of the Forth nucleus, preserving as much as possible the existing Forth
interpreters and compiler. Our intent was to allow the object-oriented and conventional
methods of writing Forth code to freely coexist, so that each could be exploited for the tasks
to which it was suited.

The Smalltalk-80 language was developed at Xerox PARC, descending from the work
of Alan Kay and the Dynabook project (see [KAY77], [GOL83]). It was originally conceived
as a simulation language that would allow anyone to simulate real-world phenomena
without being an experienced programmer. Smalltalk has grown into a highly sophisticated
interactive environment, well-suited for education and research. It is built around a small,
well-defined set of concepts that are consistently applied throughout the system. These
include:

Objects — everything in Smalltalk is an object, which is an entity that associates a unique
data area with a set of access methods for that data. An object has enough intelligence about
its private data to manipulate the data in response to high-level messages from other objects.
These messages assume no knowledge of the internal representation of the data or its
manipulation techniques. This situation is analogous to someone asking an accountant to
prepare their tax return—they need make only the high-level request “prepare my return”,
and provide some raw information about their finances. The accountant later delivers a
finished product, without involving the requestor in the mechanical details of the process.
Different accountants might have different internal methods, but this is transparent to the
requestor (the message remains the same).

Classes — every object is an instance of (and is created by) a class. A class describes the data
format and methods for all of the objects which it instantiates. Classes are hierarchically
linked in a superclass/subclass relationship. A subclass inherits all of the data and methods
of its superclass, and adds or overrides some specific to itself. In the above example, the
word Accountant could describe the class of the individual (the object), who is an instance of
that class. Class Accountant might describe in general terms the operations performed by
any accountant, while subclasses of Accountant (such as Computerized Tax Accountant)
would add the details of specific accounting methods. All subclasses of Accountant would
share through inheritance the general methods defined in Accountant (such as how to use a
general ledger).

Methods — a class contains a description of all of the different operations that it can
perform. Each is referred to with a public name, called a selector (such as “Prepare Taxes”).
When a method is invoked, the caller knows nothing about the internal implementation of
that method. Two techniques are available for invoking methods. Early binding looks up the
method for a given selector in a given class at compile time, and compiles the actual
execution address of the method. This is very efficient, but requires that the class of an object
be known at compile time, which is sometimes an unsuitable restriction. Late binding defers
the lookup of the method until runtime. This results in complete independence of later
modules from those compiled earlier, since the only form of linkage is selector name.
Smalltalk-80 provides only the latter form of binding, sacrificing efficiency for generality.

Messages — Objects communicate via messages, which consist of untyped parameters and
selectors that separate the parameters and identify the method desired. Messages minimize
the level of coupling between objects, since they cannot depend upon implementation details.
In distinction, each Forth word requires a unique name, because the dictionary is basically
global. Several Forth words that perform a similar operation on different data types must
have different names.

Forth Meets Smalltalk 11

Named Instance Variables — These make up the private data of an object. These variables
are themselves objects, which allows arbitrary nesting of structures. Each has a name, which
is only available to the methods of the class and its subclasses. Objects not in the subclass
chain of the class containing a named instance variable cannot access that variable directly.

Indexed Instance Variables — some objects contain a variable-length indexed area that can
be both privately and publicly accessed. This is done by sending the object a message with an
index and a selector denoting indexed access.

The scope of this paper does not permit a more complete exposition of the principles
behind Smalltalk-80; for that see [GOL83].

Tradeoffs

A difficulty with Smalltalk is that it is poorly suited as a production language due to the
runtime overhead of its bytecode interpreter, method lookup due to late binding, and
extensive dynamic memory management (see [KRA83], esp. chapter 18). In general, Smalltalk
is optimized for a highly interactive environment, rather than a turnkey application under
which time and space are critical. Also, Smalltalk tends to hide the hardware from the
programmer, making it inappropriate for many of the problems currently being solved by
Forth. Smalltalk cannot consider any arbitrary data area as an object (such as an Operating
System buffer); all objects must be created as instances of actual classes.

In our efforts to build a class/object environment over Forth, we decided to make
certain tradeoffs for the sake of efficiency. Our system uses early binding as its default mode,
which means that the class of an object must be known at compile time. This permits us to
streamline the invocation of a method down to the bare essentials and avoid an expensive
runtime method lookup. If the programmer encounters a situation in which late binding is
preferred, code can be compiled to perform the method lookup at runtime. Secondly, we
elected to retain Forth’s static memory allocation technique, and build objects into the
dictionary as words. This is fast and well-suited for production code. Our implementation
associates code with each object that returns its address, which will allow us to transparently
build objects in a dynamic memory pool if one is provided and managed by the system. This
is the case on the Macintosh.

Thirdly, in Smalltalk, classes are objects themselves; we chose to forego elegance and
build classes as special case words that have compile time and run time behavior. Any of
these decisions could change provided that we find a way to minimize the cost in time and
space.

Object-oriented Programming in Forth

When operating under the message/object paradigm, the task of programming becomes
a very different process. Instead of coding sequences of operations upon data, the program-
mer creates classes, instances of the classes (objects), and sequences of message exchanges
between the objects. The design process becomes one of identifying the objects in a system as
aggregates of data and operations, rather than separately identifying data structures and
procedures that use them (see [COX84] for more detail). The designer is naturally led to
think in terms of building models or simulations rather than procedural solutions.

Classes may be instantiated in two ways: when used outside of a compiling definition, a
class creates an object much as a defining word creates a “child”. This is simply a Forth
header (Name/Link fields), with a pointer to the owning class in place of its cfa field, and the
data area for the class’s named and indexed instance variables allocated immediately
following the class pointer. The class contains a short sequence of assembly code at the
location referenced by its objects, which allows objects to be executed as Forth words. When

12 The Journal of Forth Application and Research Volume 2 Number 3

used in this manner, an object returns the base address of its data. This prevents a
dependency from existing between the Forth compiler and the object compiler, such as tick
having to know where an object’s data begins.

When the name of a class is used within the definition of another class (class
compilation state), it does not fully instantiate itself as an object. Rather, it creates an
instance variable dictionary entry in the class being compiled, so that when that class is
instantiated, the other class will be instantiated as an instance variable within the newly
created object. This nesting can be carried to any degree, which is an extremely powerful
method for building data structures.

Within classes, inheritability is provided by constructing dictionaries very much like the
Forth dictionary for instance variables and methods. Each class has its own Ivar and
methods dictionaries, which are linked to those of its superclass (see Figure 1). Thus, when
an instance variable or method is referenced within a method, the name is searched for
through the superclass chain of the compiling class. This provides the strictly hierarchical
inheritance capability of Smalitalk-80 and Simula.

SuperClass Meta
4 4
Object
SubClass Int wArray Array

/ wlList xArray

Methods Link
Ivar Link

Figure 1. Methods and Instance Variable Links to Superclass.

Methods are referenced by using a selector before the name of an object or instance
variable while compiling. All parameters to a method are assumed to be on the parameter
stack at runtime. A selector is constructed with the defining word SELECTOR, and is
immediate, so that its DOES> behavior actually occurs in compilation state. Selectors
incorporate the entire interface between objects and the user, and are the means by which
object and instance variable references are constructed in the dictionary. As previously
mentioned, selectors will automatically perform early binding, unless preceded by the word
DEFER:, which causes method lookup to be deferred until run time.

An Example

We will show some examples of the syntax in our class/object extensions, and then
discuss our approach in implementing the various structures and their compilers. Figures 2-6
contain source for a series of classes that implement a simple word-game aid which assigns
numerical values to letters and words.

Figure 2 shows the general form of a class definition. The word :CLASS is an alias for :
and initiates compilation of a new class for className. The word <SUPER is used to
indicate what superclass this class is to be derived from. If no particular class is to be

Forth Meets Smalltalk 13

:CLASS className (begins compilation of and names a new class.)
< SUPER superClass (identifies the superclass for this class)
n <INDEXED (sets this class’s indexed element width)
(** Instance Variable Definitions **)
10 Array Values (creates an Ivar named VALUES)
(** Define methods for this class **)
:M SSSS: (Start compilation of method for selector SSSS)
<forth code> { Method code)
M (End compilation of this method)

{ Repeat for other methods)

;CLASS (end definition of this class)

Figure 2. Template for Class Construction.

inherited, class Object is used as the superclass. This provides certain general methods that
are useful for any class. <SUPER builds the header for the new class, consisting of a normal
Forth header plus some additional information (see Figure 7). This header is filled with
header information from the superclass, thereby providing inheritance of its various attri-
butes. The word <INDEXED accepts a value from the stack that determines the new class’s
indexed element width. This is automatically inherited from the superclass, but can be over-
ridden if desired. If the indexed element width is 0, the class contains only named instance
variables and has no indexed area.

A special class of Object Vectors can be created by using the < Vectored switch in the
class definition. Object vectors are objects whose data elements are other objects. They can
be defined as scalars, arrays, lists, or whatever else is desired, and operate by passing through
deferred methods to the objects owned in their data areas. A complex structure such as an
electronic mailbox could be implemented as an object list or array, passing through methods
such as Print: to its owned elements. A composite picture could be built as an array of
graphics objects, each with the capacity to draw itself in an appropriate manner.

Next follow the named instance variables that will define the private data for this class’s
objects. These instance variables are themselves created from existing classes, providing
nested data structure definition; for example, class POINT contains two instance variables,
X and Y, of class INT (integer variables). The methods within POINT can operate on either
of the instance variables with all of the methods available to class INT. External objects are
denied access to POINT’s Ivars except via methods that POINT explicitly defines to access
them (localization).

Following the Instance Variable definitions are the methods for the class. Each method
is delimited by :M and ;M, and associates a body of Forth code with the selector immedi-
ately following :M. One of the design constraints in our system was the ability to freely
intermix Forth code with object references. After the methods for the class are defined, the
word ;CLASS terminates this class definition.

Figure 3 shows the implementation of an integer variable class. This class has one
instance variable, Data. The word BYTES is not itself a class, but a utility word to simply
allocate private memory. It is used in the most primitive classes because other classes are not

14 The Journal of Forth Application and Research Volume 2 Number 3

(Define a class of 16-bit variable objects)
:CLASS Int <Super Object (Object is the root of all superclass chains)

2 BYTES Data (Create a single Ivar that allocates 2 bytes of data)
(Define methods)

(—val)
:M GET: *Base W@ ;M (Define fetch method — *Base returns base addr of obj)

(val —)
:M PUT: “Base W! ;M (Define store method)
(val —)
M+ “~Base W+! M (Add n to contents of object)

(This method provides a right-to-left assignment, as in: XX =: MyInt)
M= {addr—1}
Get: Self addr W! ;M (Shows named input stack and use of Self)

;CLASS (End definition of INT)

Figure 3. Definition of a Class of Integer Variable Objects.

yet available with which to build instance variables. In this case, BYTES is used to allocate
the two bytes that comprise an Int’s data.

Int’s methods follow, beginning with GET:, which returns the contents of the Int’s
private data. The word *BASE leaves a pointer to the instantiated object’s data area; Forth
words can then be used to accomplish primitive operations on that data, such as fetches and
stores. The =: method demonstrates the use of the named parameter stack, defining a single
parameter, addr. The phrase Get: Self shows how a previously defined method can be used
to access the object’s own data. Self used as a message receiver always causes method lookup
to begin within the currently defining class, and operates on the instantiated object’s private
data. Super can be used to initiate method lookup in the superclass rather than the defining
class, to avoid resolving to a redefined method. Self and Super are implemented as pseudo-
instance variables in class Meta, which is an artificially constructed class with Object as its
sole subclass. When a new class definition is begun, the class pointers for Self and Super are
pointed to the class being defined and its superclass, respectively, making them appear as
instance variables for those classes.

Figure 4 details the construction of a class of 16-bit arrays, wArray. This class has no
named instance variables; all of its data is allocated as indexed, variable-length, public data.
The phrase 2 <INDEXED sets the element width to 2, and the amount of data allocated will
be determined at instantiation of the class. The methods AT: and TO: are defined for all
indexed classes as the fetch and store primitives.

In Figure 5, the class wList is constructed as a subclass of wArray, inheriting wArray’s
methods and indexed attributes. This example shows the creation of an instance variable,
Size, of class Int. Names for instance variables need only be unique within the superclass
chain, and can have the same names as Forth words without fear of collision.

Figure 6 shows wList instantiated to create an object, Values, that is 26 elements long.
Various invocations of wList methods show runtime behavior of the class.

Forth Meets Smalltalk 15

(Define a class of 16-bit array objects)
:CLASS wArray < Super Object

2<INDEXED (This class has 16-bit indexed data)
(wArray has no named Instance Variables)

(AT: and TO: are fetch and store selectors for indexed access)
(GET: and PUT: could be used, but this serves as a reminder that obj is indexed)

(ind ——val)

‘M AT: “Elem W@ ;M (“Elem returns address of element #n)
(valind —)

‘M TO: *Elem W! ;M
(valind —)

‘M +TO: “Elem W+! ;M

(Initialize all elements with a value)
:M FILL: { val -~} Limit: Self 0 (Limit: is provided by Class Object)
DO vall To: Self LOOP ;M

;CLASS

Figure 4. Definition of a Class of Integer Array Objects.

(Define a subclass of wArray to solve word games)
(It will be an array holding number values for capital letters A-Z)
:CLASS wList <<Super wArray

Int Size (Ivar named Size — holds size of words to process)

(char —val)
:M GET: 65— At: Self ;M (leave value for char)

(Read next word in input stream, print its total value)
‘M SHOW: Bl Word 0 Get: Size 0 (Shows a fetch of private Ivar)
DO Here I+ I + C@ (Get next char in word)
Get: Self + LOOP (Accumulate values on stack)
.”The Value Is: 7. ;M (Print total value)

(val —))

:M SIZE: Put: Size ;M (Set the value of private Ivar Size)
(redefine the FILL: method, which is inherited from superclass wArray)
(valQ vall val2 ... valn —)

:M FILL: Limit: Self 0

DO Limit: Self I - 1+ To: Self
LOOP ;M (Fill array with values from stack)

;CLASS

Figure 5. Definition of a Subclass of wArray

16 The Journal of Forth Application and Research Volume 2 Number 3

(Instantiate wList) OK
26 wList Values (creates a wList object named Values. 26 elements long) OK
(Load Values with a value for each character) OK
23784180452684378562159673 Fill: Values OK
5 Size: Values (Tells Values to process words 5 characters long) OK
Show: Values TRAMP

Value Is: 24 OK
Show: Values FRONT

Value Is: 15 OK

Figure 6. Instantiation and Runtime Behavior of a wList.

Chronology of Class| Object Usage

We have identified 5 chronological phases in the construction of classes and objects and
their use:

Sequence 0 — This is prehistoric from the user’s point of view, and involves the definition of
the specialized compiler extensions to Forth that make Class/ Object structures possible.

Example: ::CLASS;

Sequence 1 — (Definition Phase) Execution of :Class ... ;Class to define new classes that can
inherit data and methods from other classes.

Example: :CLASS Int <Super Object ..

Sequence 2 — (Instantiation Phase) Execution of the defined classes to cause instantiation
(object creation). Every defined class contains the cfa of an object builder (called (BUILD))
that executes when the class is executed. This code is capable of producing either an object
or an instance variable dictionary entry, depending on whether a class is being currently
compiled. In the case of public objects, they exist as normal words in the Forth dictionary
with the exception that the cfa field contains a pointer to the object’s class (see Figure 7).
Because of this, objects cannot be executed directly, but must be preceded by a selector.

Example: Int Size

Sequence 3 — (Invocation Phase) Compilation of messages involving the created objects
and selectors denoting their methods into either Forth words or other methods. Messages
can also be executed directly from the Forth interpreter. The <DOES code for Selectors
contains all of the logic for compiling messages in a variety of states.

Example: :.Size Get: Size.;

Sequence 4 — (Run Phase) When executed, the compiled message causes the methods stack
to be set up with the object’s base address and length and any named stack parameters, and
then the code for the correct method to be executed.

Example .Size 10 OK

Forth Meets Smalltalk 17

CLASS STRUCTURE

Name/Link
Doclass CFA
“CLASS e *Methods dict PFA
(BUILD)
*Ivar dict
Datalen l Idx Width
*Superclass

Ivar dict entries

Y

OBJECT STRUCTURE ——
Methods dict

Lyd
Name/Link
class ptr CFA
Named Instance
Variables PFA

Indexed Instance
Variables

Figure 7. Data Organization in Classes and Objects.

Figure 7 describes the internal formats of objects and classes in the Forth dictionary.
The cfa of a class points to the DoClass code, which causes the (BUILD) cfa to be executed
and an object of Ivar thereby created. The Instance Variable and Methods Dictionaries are
variable-length linked lists constructed in a similar manner to the Forth dictionary. Their
entry formats are described in Figure 8.

Invocation Modes
A method is invoked by a statement of the form:

Selector: ObjectName

The selector pulls the objectname from the input stream, looks itself up in the object’s
superclass chain, and compiles an invocation for the method that was found. Methods can
be invoked in a number of ways. Most of them can occur either in compile state or run state;
SELECTOR is state-smart, making the difference transparent to the user. Object references
can be divided into the following categories:

Type : :M Run Example Comments

Public X X X Get: MyObject Non-Ivar objects only

Private — X — Get: Mylvar Ivars only

Class X X X Get: wArray Requires addr on stack
Deferred X X DEFER Get: Requires object addr on stack

18 The Journal of Forth Application and Research Volume 2 Number 3

Instance Variable Dictionary Format

To previous Ivar
Name

Link
*~Class of Ivar
Offset #elements

Offset from beginning of Data # of Indexed Elements
Defined in this Class

Methods Dictionary Format

to previous method

SellD
Link
0Cfa Object Reference CFA
ICfa Ivar Reference CFA

of Named Parms

Code for method

M)

Figure 8. Methods and Instance Variable Dictionary Formats.

The public reference is compiled whenever a publicly defined (non-Ivar) object is used.
It can occur within colon definitions, methods, or in rum state. Private references are
compiled for Instance Variable references only. They can only occur within methods. Class
references are very powerful in that they allow any stacked memory address to be handled as
an object, regardless of whether it was created as an object. Since the class of the object is
specified in the reference, the selector knows where to look for the method, and doesn’t have
to find the class through the object. This type of reference requires that the address to be
operated upon be on the stack at runtime. Class references were an important part of our
design, because they allow us to use class methods on operating system data structures. On
our original target system, the Macintosh, the sheer quantity of OS support made this
consideration paramount.

Deferred references assume that the address of a true object will be on the stack at
runtime, which is when final resolution of the method will occur within the object’s
superclass chain. This is also quite powerful, since it allows the calling code to be completely
insensitive to the class of the object (assuming, of course, that the class has a method with
the proper selector). For instance, a number of graphics objects could be kept in a list for
display, and at runtime, the same selector would cause each to execute its own appropriate
display method. The drawback of this method is the runtime overhead required to look up

Forth Meets Smalltalk : 19

the method. We have minimized this overhead by using a fixed-length, hashed internal
representation for selectors.

: Display Size: DisplayList 0
DO I At: DisplayList DEFER: Draw: LOOP;

If it was known that each object in the list would be a rectangle, then the more efficient
static-bound class reference could be used. This requires only that each element of displayList
have 8 bytes of data that are organized as a rectangle’s Points; it removes the requirement
that each element actually be a Rect object (has a pointer to class Rect in its CFA):

: Display Size: DisplayList 0
DO 1 At: DisplayList Draw: Rect LOOP;

The Methods Stack

We found that, in order to easily implement nested data structures and nested object
references, a third stack would be of great help. Since we implemented it, the methods stack
has proven so useful that we’re not sure how we did without it before. As a fringe benefit, it
expedited our addition of named input parameters to Forth, a feature that greatly improves
readability. This facility allows the programmer to assign local, temporary names to up to 6
cells on the parameter stack, and then reference their values from within a method or Forth
word:

‘M SEARCH: { address len argument \ bool ~~~post OR f}
False —> bool len 0
DO address I + C@ argument =
IF1 True —> bool Leave THEN
LOOP bool ;

In the above example, address, len and argument are named parameters that leave their
values when referenced within the word or method. Bool is a local variable, existing only
within the scope of the Search: method. Nothing is left on the stack unless the programmer
explicitly puts something there, such as I. The top stack cell can be assigned to a local
variable or input parameter with the —> operator. This example has eliminated all stack
manipulation operations from the code, leaving a relatively direct translation of the algo-
rithm. Compare this with the word salad that occurs in a standard Forth implementation:

: SEARCH (addr len arg --- pos t OR f)
SWAP >R false rot rot R> 0
DO over I + C@ over =
IF Rot drop I true 2 swap leave
THEN
LOOP 2 drop ;

An incisive validation of our point occurred in the review process for this paper. Our
original coding of the second routine was wrong, because we forgot that addr and arg were
left on the stack. The reviewer noted this, but his proposed solution was also wrong! The fact
that all of us are experienced Forth programmers points out that stack management errors
are a permanent affliction, regardless of experience. Readability and therefore maintainability
can be greatly improved through use of named parameters and local variables, because the
programmer need not go through the exercise of recreating the stack layout each time the
code is read. In our implementation, examples such as the one above have benchmarked
faster than the equivalent Forth code, due to the fact that several stack words were
eliminated.

20 The Journal of Forth Application and Research Volume 2 Number 3

Runtime Actions at Invocation

The other chief use to which the methods stack is put is in addressing object references
at runtime. When a method is executed, it receives the base address of its object’s data on the
top of the methods stack. The second element is always the length of the object’s named
instance variable area, which is equal to the offset of its indexed area from the PFA of the
object (see Figure 7). This allows any object to address both its named and its indexed area
within a single method very efficiently.

When a method is compiled, it is given two code fields that are designed to handle
public and private references. The compilation logic in SELECTOR is responsible for
deciding which CFA will be compiled into the dictionary for a given reference. Figure 9
shows how the invocation of a method is compiled for each type of object reference.

(Methods stack at method invocation:) (Object Structure:)

top:

base address Name/Link

+4 Data length s‘ “Class CFA

+8 fnamed args { Named Ivars PFA

+12

named args
Indexed ivars

Caller’s base
Caller's dlen

C Compiled formats for Method invocations:)

1. Public: 2. Private
Get: MyObj Get: Mylvar

Ocfa of Get: tcfa of Get:
IP—» Addr. MyObj 1P—»{ Offset | Dien

Dlen ! \

Offset of Mylvar from its owning object’s base

3. Class { 3.4 assume object addr 4. Deferred
Get: Rect on stack at runtime) DEFER Get:

Pushm (Defer)

lcfa of Get: Adds 0 to base [P —]

««—address
iP 0 Dlen
Popm

Selector 1D of GET:

Pop base address from methods stack .
Code to perform runtime lookup

Push object base address to Methods stack of Get: in object’s superclass chain.
(Simulate a public invocation)

Figure 9. How the various invocations are compiled.

Forth Meets Smalltalk 21

The OCFA code always assumes that the base address of the object and its named data
length are located at (IP) when the method is entered (this assumes a post-incrementing IP).
O0CFA simply has to push the data length and the base address to the methods stack before
executing a normal colon nest. The ICFA code is designed for relative references, in which
an offset is at (IP) rather than an absolute address. This allows classes to be easily nested,
since each need only record its instance variables as offsets within its data area. ICFA adds
the offset at (IP) to the previous address on the methods stack, which was put there by a
OCFA in a public reference to the object, and stacks the data length and the new base
address. In the case of a CLASS reference, the object’s base address is on the parameter
stack at runtime, and cannot be compiled in. PUSHM is compiled in first to move the base
address to the mstack, and then the 1CFA and an offset of 0 causes the base address to
appear on the top of the mstack when the method is executed. POPM cleans up the extra
base address pushed by the initial PUSHM. This rather elaborate arrangement saves having
to provide a third cfa for each method to handle occasional class references; that approach
could be taken if it were desirable to trade space for speed, or if class references were to be a
high-frequency item in an application.

Indexed Methods

Within a method, the current object’s base address is always available on the top of the
mstack, and can be placed on the parameter stack by COPYM or its alias “BASE. Indexed
objects have a variable-length indexed area appended to the name Ivar area (see Figure 7).
Indexed classes require a value on the stack for the number of indexed elements at instanti-
ation time, as in:

10 Array Temperatures

which creates an array 10 elements long, each of which is 4 bytes wide. The element width is
set when the class is compiled by passing an argument to the word <INDEXED. When the
object is created, its indexed area-is preceded by a 4-byte header that contains the width of
each element and the number of elements allocated. This header can be located in an indexed
class by adding the top two elements on the methods stack, which are the base address and
the length of the named Ivar area. The word ~IXData leaves this address on the parameter
stack. Another word, “ELEM, is available to compute an element’s address given its index.
Because “ELEM uses the header, it can be used for any element width, and can optionally
do range checking on the index. It could be tailored for a particular element width in a
time-critical application.

Conclusions

We have used this system to build several applications, and experienced what we felt to
be a significant productivity increase in those projects. The system that we have described
succeeds in meeting the criteria outlined at the beginning, which leads us to believe that those
criteria support a more effective programming process. Some of the effects that we observed
are:

Because of the availability of generic operators and increased structuring of source, we
have found it much easier to read another programmer’s code and immediately understand
its function. For instance, a GET: is always a GET:, whether the subject is a rectangle or an
integer.

There is less inclination to extend the language in bizarre ways (although that capability
remains), because powerful objects can be built using existing pieces. As classes are added,
the number of methods that can be reused increases dramatically, and further reduces the
necessity of reinventing the wheel. This effect is self-supportive, because programmers are led

22 The Journal of Forth Application and Research Volume 2 Number 3

to make more of an investment in the future when they experience the benefits of reuse so
dramatically. [WEGS4] provides an excellent discussion of reusability in building large
systems.

While Forth untouched greatly encourages modular design, this system pushes the
designer further into isolating the active agents or “players” in a problem, and building the
application as a model of the real-world system (if there is one). Object-oriented systems are
well-suited to creating authentic simulations of real-world behavior, due to the consolidation
of data with the access methods relevant to it. Applications that we have built reflect this,
and tend to read like a schematic drawing of the system. This close mapping of the problem
and computer domains has many benefits for the designer as well as the maintenance
programmer.

We found that the syntax of this language tends to fall into distinct non-RPN phrases,
which tend to be easier to unravel than the strict RPN of unadulterated Forth. For instance,
the sequence

Get: X Get: Y Put: NewPoint
as opposed to
X @ NewPoint ! Y @ NewPoint 2+ !

has much more meaning to the non-acolyte, and we have found that it makes quick scans
easier for even the experienced Forth programmer, Previous work with QUAN and VALUE
has demonstrated the benefits of this prefix notation for readability [SCH83], [DOWS3].
Neon includes two predefined multiple-codefield structures, VALUE and VECT, that do the
work of Forth’s variables and execution variables in a more efficient manner.

The named parameter stack with local variables has a profound effect on the ease of
construction and subsequent readability of any code that must manipulate several stack cells,
particularly in loops. Most stack manipulation words can be eliminated, with the exception
of an occasional DUP.) 4

Judicious use of deferred binding results in code that is more easily maintained, because
other objects are completely isolated from an object’s implementation of its methods. Earlier
methods can be modified without concern for updating later code that might depend upon
specific behavior (see [COX84]).

We have casually observed that the high degree of reuse afforded by inheritance of
methods seems to result in smaller source and object than that produced with conventional
Forth. This effect is directly related to the complexity of the application, as reuse increases in
large applications.

Using these extensions definitely adds a degree of runtime overhead, depending greatly
upon how extensively features like deferred binding are used. In some applications, this
could conceivably be a problem, but the option of using assembly code for time-critical
sections remains. To help quantify the issue, we ran some benchmarks comparing object
execution time to standard Forth and Neon’s extended Forth (Figs. 10-11).

The first benchmark compares a simple 4-byte variable object, VAR, to a Forth
VARIABLE and a Neon VALUE {(multiple-cfa variable — see [SCH83]). A fetch operation
was performed 10,000 times on each type of structure. It can be seen that the VAR loses
about 50% in runtime to the other two. This is attributable to the fact that VAR’s GET:
method is not coded directly in assembler, but must nest to a code word. Also, a nested
method call is more expensive than a nested Forth call due to the extra work of setting up
the methods stack. VALUE runs at least 109 faster than its VARIABLE equivalent because
only one cfa must be executed versus two.

The next example compares execution of the FEratosthenes’ Sieve algorithm using
standard Forth, Neon using named stack parameters, and two implementations using

Forth Meets Smalltalk 23

objects. The first object implementation uses the AT: and TO: methods for array access, just
as a developer would in prototyping an application. The second implementation removes the
nest required by the reference to the AT: and TO: methods in the superclass, and uses the
AT1 and TO1! primitves directly. These primitives are optimized for 1-byte array access, and
can easily be substituted by the developer as an optimization step. The data indicate an
overhead of 25% for the non-optimized class, while the optimized class performed the sieve
about 10% faster than its Forth equivalent. Clearly, array access is the primary factor in this
example.

Figure 10. Source for NEON benchmarks.

\ Benchmarks for NEON - CBD 11/02/84

\ Standard Byte Sieve of Eratosthenes : 3.86 Secs
8190 Constant Size
0 Variable Flags Size Allot

: Do-Prime Flags Size 1 Fill 0 Size 0
DO Flags I+ C@
IFIDup+3+Dupl+
BEGIN Dup Size <
WHILE 0 Over Flags + C! Over +
REPEAT 2drop 1+
THEN
LOOP ..” Primes " ¢r ;

\ using local variables : 3.99 secs
:do-prime .n {\ lo hi —- }
flags size 1 fill
0 size 0
DO flags I+ c@
IFI12*3+Dup —>loI+—>hi
BEGIN hi size <
WHILE 0 hi flags + ¢! lo ++> hi
REPEAT 1+
THEN
LOOP ..” Primes " CR ;

selector prime:
selector bench:

\ Class example using inherited methods : 5.09 secs
\ First define superclass byte array

:CLASS barray > Super Object 1 > Indexed

:M FILL: {val —-} idxbase limit val fill ;M
‘M AT: att ;M
M TO:tol ;M

;CLASS

24 The Journal of Forth Application and Research Volume 2 Number 3

Figure 10 continued.

:CLASS Sieve > Super Barray

:M PRIME: {\ lohi —- }

1 fill: self

0 size 0

DO I at: Self

IF12¥*3+Dup —>1loI+—>hi

BEGIN hi Size >
WHILE 0 hi to: Self lo++> hi
REPEAT 1+

THEN

LOOP . .” Primes ” CR ;M

;CLASS

\ Class example using optimized primitives : 3.55 secs
:CLASS FSieve > Super Object
:M PRIME: {\ lohi -- }
1 fill: self
0 size 0
DO Istl
IF12*3+Dup —>1loI+—>hi
BEGIN hi Size >
WHILE 0 hi tol lo++>> hi
REPEAT 1+
THEN
LOOP . .” Primes ” CR ;M

;CLASS

Figure 11. Benchmark Results.

Eratosthenes’ Sieve

Routine Seconds Factor
Standard Forth 3.86 1.00
Named parameters 3.99 1.03
Standard class 5.09 1.31
Optimized class 3.55 0.92

Fetch * 10,000

Value 0.91 0.88
Variable @ 1.03 1.00
Get: Var 1.50 1.45

Var Defer: Get: 12.80 12.42

Forth Meets Smalltalk 25

These benchmarks are included to show the raw overhead of method nesting versus very
lean Forth code. In complex problems with more sophisticated data structures, Forth
solutions would be harder to optimize, and therefore an object-based implementation will
compare more favorably in these cases. Methods code is as easy to optimize as is Forth, as
demonstrated by the array example. One further step would be to allow direct implementa-
tion of methods in assembly code, a feature that we are likely to provide in a future version.

In our experience, the advantages relating to production time have far outweighed any
drawbacks in performance, and this will no doubt be the case for many developers. Writing
traditional Forth code requires substantial effort to ensure the integrity of the parameter
stack, the proper application of operators to data structures, and definition of new data
structures via defining words. Often, the source code bears little resemblance to the nature of
the problem to be solved, and much time can be spent unraveling layers of artificial constructs
instead of understanding the problem more fully.

Our experience has been that the use of the class/object paradigm and named parameter
stack can greatly reduce the implementation effort required in a project. Once the initial
analysis of a problem has been clearly stated, much of the work towards implementation has
already been done. The construction of classes that embody the solution proceeds directly
from a clear understanding of the problem. And because the foundation of this system is in
Forth, the way is open for further refinement and tuning as more direct experience is gained.

Acknowledgements

We would like to thank the guest editor and the referees for their very useful suggestions
with respect to this paper and the work that it describes.

References

[LEA83] R. Leary and D. McClimans, “Message Passing with Queues”, Journal of Forth
Application & Research Vol. 1 No. 2, 1983.

[SCH83] K. Schliesiek, “Multiple Code Field Data Types and Prefix Operators”, Journal
of Forth Application & Research Vol. 1 No. 2, 1983.

[ROS82] E. Rosen, “High Speed, Low Memory Consumption Structures”, FORML, 1982.

[DOWS83] T. Dowling, “The QUAN Concept Expanded”, Rochester Forth Applications
Conference, 1983.

[MYE78] G. Meyers, Composite Structured Design, Van Nostrand Reinhold, 1978.

[COX84] Cox, “Message/Object Programming”, TEEE Software Vol. 1 No. 1, Jan. 1984.

[GOL83] A. Goldberg, Smalltalk-80: The Language and its Implementation, Addison-
Wesley, 1983,

[KRA83] G. Krasner, Small-80: Bits of History, Words of Advice, Addison-Wesley, 1983.

[BYT81] Byte Magazine, Smalltalk Issue, August, 1981.

[KAY77] Alan Kay, “Microelectronics and the Personal Computer”, Scientific American,
Sept. 1977.

[WEGR4] P. Wegner, “Capital-Intensive Software Technology”, JEEE Software, Vol. 1
No. 3, July, 1984,

[FOR81] L. Forsley and G. Cholmondeley, “A Forth-Based Relational Data Language”,
Rochester Forth Standards Conference, 1981.

[GLASB83] H. Glass, “Towards a More Writable Forth Syntax”, Rochester Forth Applica-
tion Conference, 1983.

[LUO84] K. Luoto, “Procedural Arguments”, Forth Dimensions, Vol. 6 No.2

[PER82] M. Perkel, “Turning the Stack Into Local Variables”, Forth Dimensions, Vol. 5,
No. 6.

26 The Journal of Forth Application and Research Volume 2 Number 3

[BOWS82] S. Bowhill, “Fast Local Variables for Forth”, FORML Proceedings, 1980.
[GLAS84] H. Glass, “A Threaded Interpretive System as the Kernal of a Functional Pro-
gramming Environment”, unpublished paper.

Mr. Duff received a B.A. from the University of Chicago. He has done graduate work
in information engineering at the University of lllinois. Currently he is software manager at
Kriya Systems, Inc. developing micro-computer products in Forth. He has also written a
book for McGraw-Hill about the Apple MacIntosh. He is engaged in research regarding the
extension of Forth to create new languages that are more suited for such tasks as simulation
and artificial intelligence.

Mr. Iverson studied math at the University of Hllinois. Currently he is senior software
engineer at Kriya Systems, Inc. In addition to his interest in Forth, he has a background in
statistical analysis and financial systems.

Manuscript received June 1984.

