Number Crunching with 8087 FQUANs:
The Mie Equations

Ferren Maclntyre

Center for Atmospheric-Chemistry Studies
Graduate School of Oceanography
University of Rhode Island
Narragansett, RI 02882-1197

Abstract

By long-standing tradition, FORTH uses scaled-integer arithmetic in preference to
floating-point operations, both because of its origin in the integer-rich world of process
control and because of the inefficiencies of floating-point operations. However, scaling
requires advance information on magnitudes, which is not always easily available in scientific
calculations. In addition, the appearance of the 8087 numerical co-processor has removed
the stigma of inefficiency, and we have reached the point anticipated by Charles Moore, at
which it becomes preferable to use floating-point operations.

Taking the IBM PC BIOS software single-precision routines as baseline for the heavily
numerical Mie equations, the 8087 is 115 times faster. Precision increased from one
significant figure with BIOS (round-off error dominates in the recursive claculations) to
agreement with published 6-figure values with the 8087.

Because stack operations are fast on the 8087, while 8-byte stores and fetches are
relatively slow, it pays to keep operands on the 80-bit-wide, 8-word-deep 8087 stack. It is, for
instance, possible to replace two complex numbers with their sum and difference, without
leaving the stack.

The net result is a Mie-equation algorithm which produces a result in 15 minutes,
compared to the 24-hour turnaround for a l-second CRAY-1 background run.

Background

The immediate problem which led to the algorithm to be discussed was the observation
of brightly colored small air bubbles in water, (in Duncan Blanchard’s laboratory at SUNY
Albany) (Struthwolf 1983, MacIntyre et al. 1985). Here, a beam of high-intensity light was
scattered by the bubbles, and according to the description, both spectral and non-spectral
colors were seen, often quite bright, but changing slowly with time (as the bubbles dissolved).
Occasionally, alternation of red and green colors as a function of scattering angle was
observed. Since exactly the same phenomena are found in interference colors from thin
films, it seemed probable that the colors should be predictable by Mie light-scattering theory.
This in turn might have the added advantage of providing the diameter of the bubbles, which
is difficult to measure by other techniques.

Unfortunately, there were no financial resources for tackling the Mie equations ([1] and
[2] below) on a suitable mainframe computer. These equations, which are a solution to

The Journal of Forth Application and Research Volume 2, Number 3, 1984
51

52 The Journal of Forth Application and Research Volume 2 Number 3

Maxwell’s electromagnetic equations for two materials of differing complex dielectric
coefficient, are widely recognized as time consuming, and serious optical physicists preferen-
tially work on super-computers such as the CRAY-1.

The time consumption follows from the need for four nested loops. The innermost loop
computes the terms of the “infinite” series which are the solution to the scattering equations
for a given wavelength, diameter, and scattering angle. The second loop sums these terms
into the series. But one is almost always interested in a range of diameters, wavelengths, and
angles, and while diameter and wavelength can be combined into the Mie parameter

X = wavelength/circumference

this set of parameters still creates two additional loops. Time increases rapidly as the Mie
parameter increases, since the “infinite” series get longer. In addition, the number of
oscillations in the answer increases as X increases, so that more points must be computed to
draw a smooth intensity curve.

The older literature of light scattering is replete with inadequate solutions to the Mie
equations. Frequently, too few calculations were made, so that details of the rapidly
oscillating intensity are missed. (For values of x as low as 3.6, some of the minima of van de
Hulst’s (1957) graphs are too shallow by 3 orders of magnitude.) And there are more recent
instances in which published results are totally incorrect over some portion of the range of
interest, usually because an otherwise well behaved algorithm has hit a region of instability
from which it later recovers.

As a result, considerable ingenuity has been applied to the problem of optimizing Mie
algorithms. The most recent algorithm is Wiscombe’s (1979, 1980) FORTRAN code for the
CRAY-1 at the National Center for Atmospheric Research (NCAR, Boulder, CO), which is
carefully structured to minimize computation time, in both vectorized “MIEV1” and non-
vectorized “MIEV(” versions.

One hesitates to tackle programs of such sophistication on “home” computers like the
IBM PC. Furthermore, in 1983, FORTH was still primarily an integer-arithmetic language.
Despite many successes with high-precision calculations in which variables remained within
relatively small ranges—which makes scaling feasible—FORTH was not felt to be appropriate
for number crunching in problems with exponential ranges. Yet the PC is bigger, faster, and
smarter than the IBM 704, on which I first ran the Mie equations, so it seemed a worthwhile
challenge to try the Mie equations on the PC, and the price was right.

The Structure of the Mie Equations

Details of the Mie equations may be found in van de Hulst (1957), but they will be
sketched here to indicate the problems involved. Since bubbles are spherical, it should be no
surprise to find that Ricatti-Bessel functions appear in the solutions, given by

Sa(x) = Xjn(X)
Ca(x) = —xna(x)

where ja(x) and na(x) are the spherical Bessel functions of order n+1/2. The symbols come
from the fact that Se(x) = sin x and Co(x) = cos X. (In the listing, these are called PSX and
CH]I, following van de Hulst.)

The actual functions used in the Mie results are combinations of Sy and Cx and their
derivatives with respect to x, S’ and C'. The refractive index (dielectric coefficient) used here
is in fact the ratio of the actual indices,

m=m/ma

Number Crunching with 8087 FQUANSs: The Mie Equations 53

and is less than unity when, as here, the index of the sphere, m; = 1, is smaller than that of
the surroundings, mz = 4/3. (Actually, m; is a weak function of the wavelength of light, and
was calculated as needed.) Taking advantage of a simplification given by van de Hulst (1957)
for real m, (i.e., no absorption—a valid approximation for visible wavelengths over the path
lengths of the original experiment) we can write:

-tan an = [Sa(mx)Sa(x) - m Sp(mx)S'n(x)]/[S'n(mx)Ca(x) - m Sa(mx)Cn(x)]
-tan Ba = [m S'a(mx)Sa(x) - Sa(mx)S(x)]/[m Sn(mx)Ca(x) - Sn(mx)Cn(x)]

These are actually computed recursively by the method of Dave (1969) as shown in Figure 2.,
(175:6) (Block:Line). Then

ap = tan an/(tan an — 1)
bn = tan By/(tan By - 1),

where 1is (-1)%.
The angular dependence of the scattered light is given by derivatives of Lengendre poly-
nomials Py™,

mrn(cosf) = dPn(cosf)/dcosh

Ta(cos@) = —sind dPy!(cost)/dcosh,

which are again computed recursively by Wiscombe’s algorithm (Block 177).

The complete solution for spherical symmetry is then a pair of “infinite” sums (176,
177:12-14)

&=§JQMDM@HH{%M+MH} [1]

S2= 2 [(20+1)/n(n+)] Lbama + anre} [2]

where S; and S refer to polarizations with electric vector perpendicular and parallel to the
plane of scattering, respectively.

Note that although m itself is real, a, and by, and therefore S; and Sj, are complex
numbers. The polarized scattered intensities—whose calculation is the whole point of the
exercise—are then real numbers given by

I =St (O)]2
I =[Sz (6)]2

Wiscombe (1979) devoted much care to minimizing the number of arithmetic operations
in the innermost loop which computes the sums, arriving at 7 multiplications and 4
additions. This structure transferred into FORTH more or less intact, although, because
scattering at constant diameter and constant angle were both required, two versions of the
inner loop were written, one somewhat more efficient than the other.

The key to successful calculation, however, lies in knowing when to terminate the
infinite series for S; and S,. If one stops too soon, the answers are inaccurate, but if one

54 The Journal of Forth Application and Research Volume 2 Number 3

continues too long, the approach of the denominators in a, and b, toward zero leads to
numerical instability no matter what the word length. Wiscombe’s most useful contribution
was a simple equation giving the required number of terms N, which for our purposes may
be written:

N=4.05x!3 +x + 2,

Although Wiscombe emphasized that he had tested this only for m>1, it appears to
work equally well for m near 0.75.

Feeling a need for more check data than the literature provides, I attempted to put a
FORTRAN MIEVO0 into the campus mainframe. Alas, not all FORTRANs are alike, and
after two weeks I abandoned this approach, and returned to FORTH. It is not necessarily
inefficient to translate a FORTRAN program into FORTH, although I find that it requires
several iterations to produce stylistically acceptable—rather than merely workable—FORTH
code when starting from a FORTRAN-like precursor.

Implementing the Mie Equations in MMSFORTH

When [started on this problem, the 8087 was not yet available. The first calculations
used the ordinary single-precision (32-bit) floating-point data types, 2CONSTANT and
2VARIABLE, and simply called the existing software floating-point-arithmetic routines in
IBM BASIC ROM. The limited precision proved inadequate to cope with the growth of
round-off error during recursions, and the approach was generally slow, inaccurate, and
unsatisfactory.

One option, firmly in the FORTH tradition, was to use scaled-integer arithmetic.
However, scaling becomes impractical unless the magnitude of the calculated numbers can
be predicted with some assurance. Consider the recursion in Fig. 1 at 173:7, which has

Aa=1/y - 1/(@/y + An1)
In the simplest case we can reduce this to
A=a-1l/a,

and suppose A and a of comparable magnitude, with a<{1 having k digits to the right of the
decimal point. To preserve them, we scale the entire equation by 10X, obtaining

A.10% = a.10k - 10%/a.

But now we must multiply the top and bottom of the fraction by 10 to make the a in the
denominator an integer also, giving

A.10% = a.10¥ - 10%/a. 10k
Choosing 2k to approach machine capacity still only gives us k digits in A. It is for this
reason that FORTH includes the mixed-precision operator */, which maintains a double-
precision intermediate. However, experiments with */ lead to results like the following: For

a = (.2468 and A = -3.8051, the closest approach is

247 1000 10000 2468 =/ - = -3806

Number Crunching with 8087 FQUANSs: The Mie Equations 55

Figure 1. At (173:7) (Block:Line) is the central equation for recursively calculating key
coefficients in the Mie equations. It is this equation which offers the first difficulties in
conversion to scaled integers, as explained in the text.

Nonstandard words abound in the 8087 environment. Operators preceded by “F” and
“CP” do the expected thing, but to floating-point and complex numbers on the 8087 stack
respectively. >87 moves an integer from the normal stack to the 8087 stack as a floating-
point number. 1/X gets the reciprocal of the top of the 8087 stack. The structure xxx I IS
(A) stores xxx into the I-th location of FQUAN array (A).

Block 173 [173 :0]
(840815 FM Mie Intensity 6/15 Logarithmic derivative)

0
1
2 (: A? I' . FDUP F. 2 COLS ;)

3 (Compute [A] {Y} by downward recursion from A {N’'}=0 where

4 N’ is taken to be 5/3 Nmax, {because 1.5 Nmax gives the same

5 result}, and n [A] is Lentz’s A-sub-n, psi’/psi)

6 (This is the equation that won’t go in scaled integer)

7 W22 >87 Y F/ FDUP FROT F+ 1/X F- (Wiscombe 22)
8

9 : ADN ZERO (= A{N1) N I+ N5#*3/(53NtoN

10 DO I W22 (A?) -1 +LOOP FDUP N IS [A] (CR)

11 (AIN} ->) 2n

12 DO I W22 (A?) FDUP I 1- IS [A] -1 +LOOP FDROP ;

13 -2

14

15

Unhappily, writing 2468 10000 ..., in an attempt to obtain one more digit, leads not to

-38051, but to 10404. One must monitor such calculations carefully to avoid overflow, and
adjust scaling as required. This seems scarcely practical when successive terms in a recursion
may change by several orders of magnitude.

A second option would have been quadruple-precision 4CONSTANT and 4VARIABLE
(64-bit) data types and an extended-precision version of */. But this would have been
considerably slower, and runs were already taking all day. As it happened, the 8087 became
available about this time, so this option was not pursued. Instead, I prevailed upon Tom
Dowling of Miller Microcomputer Services to write a driver for the 8087.

The hardware and software arrived simultaneously and with the usual beta-test-site
documentation (“Throw switch 2. Load block 20”). Two days later the program had been
converted to work with the 8087, and at this time I ran my one internal benchmark: A set of
parameters which had taken 9:30 hours now ran in 5:07 minutes, for a 115-fold speed
increase. In BASIC, this calculation would have required approximately a week. Equally
useful was the increase in precision, from one significant figure to 6 or more (since published
test values were reported only to 6 figures).

This result confirms the current folk wisdom: the 8087 is the cheapest computer power
on the market.

56 The Journal of Forth Application and Research Volume 2 Number 3

RPN vs. Algebraic Notation

Figure 2 shows the RPN version of the inner loop which sums S+ = (S1+52)/2 and
S- = (S1-S2)/2. After several years of practice with HP calculators and FORTH, I am fairly
adept at translating algebraic notation into RPN. I find that this is not a reversible skill, and
that each time I try to unravel block 175, to reconstruct the algebra, I obtain a different
answer, even though I left what I thought was an abundance of notes about the contents of
the stack at various points. Perhaps when RPN is initially taught in the classroom, some
attention should be paid to developing skills in both directions.

Proponents of RPN might enjoy recreating the algebraic equations underlying blocks
174, 175, and 177.

Figure 2. Three blocks from the core of the Mie-equation program illustrating (1) the sort of
notes which seem to be required to keep RPN and algebraic equations related in any
meaningful way (174:1-4,6,8-10,13,14; 175:1-4,8; 177:1,3-9,11,14); and (2) the structure of the
inner loop in which the machine spends most of its time (SSV, 177:2).

FINIT initializes the 8087 stack, ~F- is a single 8087 instruction which does {(a b ->
b-a), F+- does (a b => a-b at+b), and FC* does (¢ a bi => ac bci). MAG™2 does (a bi
->a?+b?).

Block 174 [174 :0]

0 (16\08\83 FM Mie Intensity 7/15)
I (Dave JV, 1969, IBM J. Res. Dev. 13,302-313; in TNI40 as eq 16

2 except that CHI is the real-valued part of ZETA. The imaginary

3 part of an and bn comes from the transformation given by

4 vdH p 135 for real refractive index.)

5

6 : DAVE2-3 (Ajor*m I -> an or bn) (Wiscombe 16)
7 >87 X F/ F+ FDUP PSX F* PSX-1 F-

8 (Aj*m + n/z psi - psi-l FSWAP CHI Fx* CHI-I F- F/
9 (*{2n+1}/n{n+1} now) FDUP NN F=

10 (-tan{alpha|beta} for real m) % 0 FROT ONE CP/;

11

12

13 (On Ist pass, PSX is psi-1, PSX-1 is psi~0. a&b then puts
14 psi-0 into PSX-2 for n=2 pass.)
15

Block 175 [175 :0]

0 (29\06\84 FM Mie Intensity 8/15 van de Hulst 1957 p 135)
I (an and bn are the complex-valued Mie coefficients.

2 an = {-tan alpha}/{~tan alpha + i } * {2n+1}/2n{n+[}

3 bn = {-tan beta }/{-tan beta + i } * {2n+1}/2n{n+1}

4 atb = an + bn, a~-b = an - bn)

5 : a&b FINIT

6 1 [A] m F/ I’ DAVE2-3 (an)

7 T [A] m F* I' DAVE2-3 (an bn) CP+- T IS atb I' IS a-b
8 (Shift Ricatti-Bessel functions for next recursion)

9 PSX-1 IS PSX-2 PSX IS PSX-1

10 CHI-1 IS CHI-2 CHI IS CHI-! FINIT ;

11

12

13

14

15

Number Crunching with 8087 FQUANS: The Mie Equations 57

Block 177 [177 :0]

0 (02\08\83 FM Mie Intensity 10/15 Wiscombe p 1507 Sec. I)

I (LCS=0: Scattering functions S+ and S- for varying theta)

2:8Sv ZEROP ZEROS

3 N I+ I DO (Legendre polynomial recursion) (Stack:)

4 PIn FDUP MU F=* FDUP (pnss)

5 PI- F- (pnst)

6 I 1+ >87 Fx* (pns {n+l} t)

7 FOVER FOVER -F- FROT FROT (pn tau s {n+i} t)
8 I>87 F/ F+ IS PI+ (pn tau)

9 F+- (pn-tau pn+tau)
10

11 (Sum scattering functions {pi+tau} {an+bn} and {pi-tau} {an-bn})

12 (I ptt) I atb FCx S+ CP+ IS S+

13 (I p-t)1 a-b FCx S~ CP+ IS S-

14 (Shift Legendre polynomial) Pln 1S PI-

15 PI+ IS Pln LOOP ; -

FQUANS and Special Operators

The QUAN, (Rosen 1982, Dowling 1983) is a data type with three code-fields specifying
its fetch routine, its store routine, and its location. Called by name, and stored by IS (as in
17 IS AQUAN), it eliminates the " and @ that accompany CONSTANT and VARIABLE,
and—more important—the necessity of remembering how one has defined data. The 32-bit
FQUAN and 64-bit DFQUAN are similar floating-point data types, the latter approaching
the 80-bit precision of the 8087 itself. Slight extensions give us the CPQUAN, for storing
complex numbers, and array-defining parent words such as FQARRAY, DFQARRAY,
CPQARRAY and their two-dimensional counterparts.

Since two arrays of 40 x 80 x 8 bytes or 25Kb each (1k=1000, 1K=1024) may be
wanted in these calculations, it is essential to put the data (minus headers and code-fields)
into memory above FFFF. For such purposes, Dowling wrote a set of long-address
array-defining words LFQARRAY, LDFQARRAY, LCPQARRAY, L2FQARRAY,
L2DFQARRAY, and L2CPQARRAY, which, at the cost of a 23% increase in overhead on
fetches and stores, allow one to use upper memory for data storage. Most of the features are
proprietary in their optimized form, and available on the MMSFORTH Utilities disc.

Two complex numbers on the 8087 stack use 4 of the 8 available stack registers. A
recurring need in the program was to have available the results of operations on complex
numbers, rather than the numbers themselves, and some attention was paid to creating
operators which would achieve such goals without the need for time-consuming storage of
intermediate results. As an example, one resulting word, CP+-, which returns the sum and
difference of two complex numbers on the 8087 stack, is

(abicdi->a-c{b-d}ia+tc {b+d}i)

CODE CP+- ST(1) FLD ST ST(4) FSUBR ST(1) FLD ST ST(4) FSUBR
ST(4) FXCH ST(2) FADDP ST(4) FXCH ST(¢4) FADDP
NEXT

58 The Journal of Forth Application and Research Volume 2 Number 3

Figure 3. Intensity of unpolarized light scattered at 30 degrees, as a function of wavelength
and bubble diameter. Drawings by screendump of MMSFORTH’s TGRAPH, extended a

bit for the occasion. Above, with spectrally flat illumination; below, with a 3200 K
blackbody, approximating a slide-projector bulb.

Scattered
\L{ Intensity
vs,
~ Havelength/nm
C W06 (1) 700
and
Diametep/um
“ ff'ﬁi\\"— 1]
) B T e en, Sl Y
AN e %" 30,00 de
"w.; \7‘\&1&&*“ TR %16 to 138

!
Sineeocwn folariz'n

'* ::-_ =
“' £ g S S o]
’ A

N AN ~'*‘5?‘3i‘:‘-£§3*: ‘&2}
'A\?’Wf .‘?‘t::-‘:"’:m o Il%un; CIS—E

f v—
1
e ot M

*Zﬁ : 0T o
e Ly Peak 4.789
il Ly -Brse 4.0
iz 00
7-Shift -360

2888\

Scatteped
i‘/ Intensity

vs.
- Havelength/nn
780

T3 (1
Diameten/um

and
4,00(0.25)24.8

T 10,60 deg
t_;;}@ X: 16 to 198
SeTeE T 1wy 200K
%ﬁ [Polariz'n B

< f\:}b&mﬂﬂ ba: 3048

g Peak 4,919
g -Base 4.8
dz .
7-Shift -36@
28\89\84

Number Crunching with 8087 FQUANs: The Mie Equations 59

It was particularly gratifying to be able to produce such words using FORTH’s trial-and-error
capability, since despite several inquiries to Intel I had been unable to obtain anything more
helpful than a bare list of 8087 mnemonics, with no accompanying description of their
operation or operands!

Results

Typical of the data generated in such a run is Fig. 3, which shows the scattered intensity
at 25 degrees for all visible wavelengths and a range of diameters from 4 to 24 micrometers.

The eye/brain, of course, integrates the intensities it receives from all wavelengths and
reports a single color to the user. Converting the spectra of Fig. 3 into perceived colors is a
problem in the “psychophysics™ of color, the method being that each spectrum (say, along a
given diameter in Fig. 3) is multiplied wavelength by wavelength by three physiological
response functions of the mythical “standard observer”, to yield three perceived intensities,
red X, green Y, and blue Z. To show these three coordinates conveniently in two dimensions,
they are normalized by dividing by their sum,

x=X/(X+Y+2Z)
y=Y/(X+Y+2Z)
2=Z/(X+Y+2).

The z coordinate is now redundant because x+y+z = 1, but x and y (essentially red and
green, except that unity on these axes represents a color of greater spectral purity than the
eye can perceive) can now be plotted. In this process the total intensity is lost (the intensity
point [X,Y,Z] has been projected downward onto the x,y plane), but the color now lies
within the bounds of the “chromaticity diagram” of Fig. 4 (see, e.g., Wyszecki and Styles
1967). The most accessible color picture of a chromaticity diagram is the cover of “Kodak
Filters” (Anonymous 1978), $4 at most camera stores.

The color of the illuminant is perceived as achromatic by the eye over a broad range of
actual colors: Fig. 4 is drawn for a 3200°K blackbody illuminant (i.., a slide-projector bulb),
which is normally perceived as white in use, although it is in fact much redder than, say,
noon skylight. The curve surrounding this intersection is the locus of perceived color as one
watches a bubble whose diameter is growing from 4 to 24 micrometers, at a scattering angle
of 25 degrees.

Colors near the achromatic point are bright but washed out and nearly white; colors at
the circumscribing locus are spectrally pure but of low intensity. Colors midway along the
radials are less spectrally pure, but brighter, and many of the colors scattered by bubbles lie
near the point of maximum brilliance. In fact, colors refracted and diffracted by bubbles are
intrinsically much brighter than rainbows reflected and dispersed from drops. It is this fact
which makes it possible to “see” a 2-um bubble, which is well below the resolution of the eye
to see as a circular object.

The bubble changes color very rapidly for small diameters and small scattering angles.
Sufficiently small bubbles are white, but by 4 um have become a vivid orange. Further
growth produces nonspectral magentas (which means only that they are relatively deficient in
yellow and green wavelengths), then blues and greens back to yellow and orange again by the
time the bubble has grown to 10 um. Further growth to 18 um swings the locus through all
colors once again. However, growth beyond 18 um produces the characteristic red-green
oscillation noted in the original data (Struthwolf 1983). Growth beyond that covered here
continues this oscillation with decreasing amplitude and a reapproach to the white point. In
general, the colors of bubbles correspond to the colors of films an order of magnitude
thinner than the bubble diameter. A particularly useful colored-pencil sketch of the reason
for these color sequences is given by Boys (1911).

60 The Journal of Forth Application and Research Volume 2 Number 3

Figure 4. On the chromaticity diagram, all visible colors lie inside the curving spectral locus.
The central point is white. The x and y coordinates of colors can be computed from their
spectral distribution. Plots by MMSFORTH’s FortHPlot driving the HP 7470A plotter.
Above, the basic diagram showing the dashed window expanded below. Below, peregrinations
of the chromaticity locus as bubble diameter changes.

(545 \Lhary 4. 00(0. 25) 24. 00um
V\ L%\ P

m ®// 30. Odeg |

Green

200
S~

Blue _5171
460/Viol./~574 Maogenta ;

Conclusions

The end result of this effort is a light-scattering program which (on the basis of some
limited benchmarking) competes favorably with MIEVO run on the CRAY-1. The CRAY-1
is about 1000 times faster (test runs which the CRAY-1 does in 1 second require about 15
minutes on the PC), but, as a reviewer pointed out, the CRAY costs 2000 times as much,
giving the PC a 2-to-1 performance/ price advantage when large memory is not an issue. But
watching my peers use the CRAY by remote access reveals that the turnaround time for

Number Crunching with 8087 FQUANs: The Mie Equations 61

l-second background jobs is 24 hours, in which time I can produce a goodly number of
15-minute runs on the IBM PC!

1 wrote the Mie equations from the textbooks, not from MIEV0, so they do somewhat
different things, and it is difficult to compare program sizes. However, 1 find that when I
translate adequately documented FORTRAN into adequately documented FORTH, the
number of lines does not change.

An additional advantage of working close to home is the ability to design and optimize
output graphics easily. I know of few occupations less productive than trying to use a
graphics program in batch mode. In addition to the “fishnet” of Figure 3 and chromaticity
locus of Figure 4, a most useful tool for detecting errors was a quick-and-dirty character-
mapped contour plot which displayed results as fast as it could fill the screen.

From the optical point of view, it appears that simple, colloquial, descriptions of color
seen at three scattering angles, say 25, 35, and 45 degrees, will enable one to determine the
diameter of a small bubble to an accuracy of 0.5 um over the range 2-25 um.

From the programmer’s point of view, it appears that FORTH can hold its own as a
number-crunching language when teamed with the 8087. I have no reservations about
recommending this particular combination (MMSFORTH and the 8087) for serious scientific
programming at minimum cost.

Acknowledgements

This work was inadvertently supported by NSF grant OCE 81-17849. I thank Tom
Dowling of Miller Microcomputer Services for writing fast 8087 code, and Jim Gerow for
explaining what Dowling intended it to do. Philip Marston of the University of Washington
(Pullman) and Warren Wiscombe shared helpful experiences with the Mie equations.

References

Anonymous, 1978. “Kodak Filters for Scientific and Technical Uses.” Kodak Pub. No B-3.
(Rochester, NY).

Dave, J.V., 1969. Scattering of electromagnetic radiation by a large absorbing sphere. IBM
J. Res. Dev. 13:302-313.

Dowling, T., 1983. The QUAN concept expanded. 1983 Rochester Forth Applications Conf.
pp. 89-92.

Maclntyre, F., M. Struthwolf and D.C. Blanchard, 1984. Color effects in the scattering of
light by small air bubbles in water. J. Opt. Soc. Amer. (submitted).

Rosen, E., 1982. QUAN and VECT —High-speed, low-memory-consumption structures.
Proc. Fourth FORML Conyf.

Struthwolf, M., 1983. Behavior of air bubbles <<400 um diameter in and at the surface of
seawater and distilled water. Master’s thesis, State University of New York at Albany.

Van de Hulst, H.C., 1957. Light Scattering by Small Particles. (Wiley-Interscience, NY).

Wiscombe, W.J., 1979. Mie scattering calculations: Advances in technique and fast, vector-
speed computer codes. NCAR/TN-140+STR.

Wiscombe, W.J., 1980. Improved Mie scattering algorithms. Appl. Optics 19:1505-1509.

Wyszecki, G. and W.S. Stiles, 1967. Color Science. (Wiley-Interscience, NY).

Dr. Maclintyre is a high school drop-out with a PhD in Physical Chemistry from
MIT. He is currently a Research Professor in the Graduate School of Oceanography, at
the University of Rhode Island. He is interested in the top micron of the ocean and its
subset: bubbles and aerosol.

Manuscript received October 1984.

62

The Journal of Forth Application and Research Volume 2 Number 3

