A Forth Profile Management System
John Michaloski

Center for Mechanical Engineering
National Engineering Laboratory
National Bureau of Standards
Washington, D.C. 20234

Abstract

A Profile Management (PM) system for source code control has been developed which
partitions source blocks. Profiles refer to sections of code which can be loaded by name, and
whose status can be accessed through PM. Profiles can be sub-divided, and a query language
allows the user to create conventional load blocks from them. All profile information is
embedded as commenting structures. The package occupies approximately 3K of memory
with 35 source blocks, and has been effectively used to manage an application with over 4
megabytes of source code.

Introduction

Profile Management (PM) is a powerful extension to the Forth programming environ-
ment that attempts to bridge the gap between file convenience and the realities of block
management. Typically, Forth source code is mapped directly onto disk blocks and it is the
responsibility of the user to manage the relationship among disk blocks off-line. Attempts
have been made to develop a Forth file system to handle source code and offer a level of
abstraction to insulate the user from the realities of the system implementation, 2]
Commands such as loading, backing up, and copying files provide the user housekeeping
chores that at a low level are file dependent.

Unfortunately, many programming environments require something different than an
alphabetized directory of the files resident off-line on disk. As a member of a small
programming team generating a large amount of system software for a real-time robot
control system, a simple list of a thousand program names is not helpful. Plus, the
incremental and building block style of Forth encourages the quantity of code to grow
beyond reasonable comprehensibility. The author’s source code alone easily consumes 2
megabytes of disk space and proved difficult to manage. Much thrashing occurs within a
Forth block management system which mixes the tasks of maintaining a working copy while
modifying and enhancing the code for a system upgrade. At a certain point, the desire to
streamline and factor Forth code becomes overpowering. This dilemma led to a rethinking of
the mechanism to handle source code.

Much of the problem can be attributed to the building block programming style of
Forth. Shared low level components among high level users requires some system of
communication. Several problems result from this shared resource approach. First how do
we load these low level routines? Loading all the low level routines is not only time
consuming, but unfeasible with some dictionaries limited to 64K of memory. Second, which
high level routine is responsibile for loading the shared low level component? At any point in

The Journal of Forth Application and Research Volume 2, Number 3, 1984
63

64 The Journal of Forth Application and Research Volume 2 Number 3

time, the current status of the Forth’s system configuration is not readily available.
Normally, most Forth systems individually handle these problems off-line using some
explicity convention among programs and programmers.

PM attempts to handle the problems of off-line source code management, as well as the
problem of the overall load status of the machine. The basis of this new approach is the
“profile”, i.e. a partition of source code on the disk. Each profile identifies a section of code
that can be used throughout the loading process, plus allowing several commands to interact
in the debugging phase. Further, each profile can be subdivided into smaller partitions that
act as an individual profile or as a part of the parent profile. Finally, because the profiles are
embedded as a commenting structure, the profile management system is only a stepwise
upgrade from a Forth block management system.

Fundamental Programming Concepts

A convenient upgrade from the current Forth source block management system played
a critical role in the design of PM. Without this feature, users would be reluctant to install
and use the code. The key design insight was the embedding of PM within the commenting
structure of the source code. Then, profiles could be produced from symbolic pattern
matching done in a separate pass. The backbone of this commenting pattern is the character
delimited, end-of-line comment. PM uses the character delimiter “07” as the signal of a start
of a comment. Whenever a per cent sign is executed, the interpreter input stream pointer
>IN is reset at the beginning of the next line. Every percent comment assumes that an entire
line is sixty four characters of length. The following Forth definition performs the till end of
line comment. Note that the word % is immediate, so that % is effective within the
interpreter as well as the compiler.

% (--)
>IN @ 64+ 64 MINUS AND >IN ! ;
IMMEDIATE 0% comment till end of line

Using % as the delimiting symbol, we extend this commenting convention to apply to
the PM keywords %NAME and %NAME-END. In their dormant state, these keywords
merely act as comments so that maintaining the profile management system requires little
overhead. This flexibility enables PM to be used both on-line with keywords used for status
updates, as well as off-line, to create load module images that use the keywords as comments
when loading. Further, upgrading to a profile system can Lz a gradual process since PM and
regular block loading procedures can exist together.

%NAME ['] % EXECUTE ; IMMEDIATE 9% Dormant Name
%NAME-END ['] % EXECUTE ; IMMEDIATE % Dormant Name-end

Once the PM package is loaded, these keywords perform a different function. ZNAME
corresponds to the opening of a profile and the %9NAME-END that sequentially follows this
9%NAME in the disk blocks closes the profile. A more thorough description will be presented
later, but the fundamental point is that when %NAME is executed, the word following it in
the input stream is entered into the dictionary, and the interpreter is set ahead to the block
and line following the paired %NAME-END. This requires the use of a loading word that
loads a series of contiguous blocks to be modified to account for the sudden jump ahead in
blocks.

THRU (fromto--) 0% New version of THRU, whereby
1+ SWAP 9% BLK is checked to determine
DO I LOAD % if it has been modified during

R> DROP BLK @ >R 9 the load. For instance,
LOOP ; % by incrementing ahead.

A Forth Profile Management System 65

Extending this insight into contiguous block loads, the following definitions were added
to enhance the load process, -v and vSKIP. vSKIP is a word that skips or ignores the next
block, (i.e. don’t interpret). This is useful for disk blocks that contain numeric, non-ASCII
data as a part of some virtual memory capability. The word -v acts as a continuation signal.
When executed, -v immediately resets the input stream to the first character in the next
block. Thus, continuation works within the contiguous block load while interpreting as well
as compiling. This is especially useful for lengthy source code compilations that may need to
cross block boundaries.

vSKIP 1024 >IN ! % Used with new version of THRU
1 BLK +! ; IMMEDIATE % Don’t interpret next block
-v % Used with new version of THRU
0 >IN! % Continue with next block by

I BLK +! ; IMMEDIATE % resetting >IN immediately
% compiling or interpreting.

Profile Management Technique

Profiled names are added to the dictionary via a pairwise addition of %NAME and
%NAME-END chunks of code. The action of the word %NAME is as follows: the word
following %NAME in the input stream is added to the dictionary and liked into the named
profiles list. Parameters saved with each profile are the source block of the name entry, the
character position within the block of the line following the name entry, and the name,
which is marked “N”, not entered. Then, %NAME contiguously scans ahead in the disk
blocks until the atching HNAME-END entry is found. At this point, the biock and character
position of the matching %NAME-END entry are saved in the named profiles parameter list.
Finally, the interpreter is reset to the line following the position of the %GNAME-END. The
overall data structure of a names entry list within the dictionary is illustrated below. The
level entry in the data structure will be discussed later when the issue of embedded named
profiles is presented. HERE represents a field for the starting dictionary address of each
profile entry. This feature is useful for dynamic interaction with the FORTH dictionary.

%UNIQUE-ID | gt | tast |
Link Start End Status Level HERE
first [second | blk | pos | bk | pos [N [1 | x |
second | mext] bk | pos [bk [pos [N [i | v]
ne{(t
st [0 [bk | pos [bk [pos [N] 3 | -

Figure 1. Profile Data Structure

Building a Profile List

Additions of named profiles can be done functionally within an extended THRU or
symbolically via the PM command NAMES. The difference between the two methods of
profile creation is significant. The extended THRU interprets and compiles words outside

66 The Journal of Forth Application and Research Volume 2 Number 3

limits of the %NAME and %NAME-END matching pairs. The NAMES command takes as
input a beginning block and an ending block. Scanning this range of blocks, %ANAME and
%NAME-END matching pairs are symbolically extracted to create profiles. All other code
with the NAMES command is ignored. Both methods of the profile generation ignore the
contents between the %GNAME and %NAME-END pair. The following example illustrates
the similarities and differences.

Start of contiguous blocks of code
BLOCK = 10

s defl ...
NAME sampleA ’“rest of line commented out”

cdef2 ...
:def3 ...

%NAME-END sampleA ” rest of line commented out”
: defd ...

BLOCK = 20
End of contiguous blocks of code

COMMAND OPTIONS :

)] 10 20 THRU
2) 10 20 NAMES

Figure 2. THRU vs NAMES Profile Creation

When the extended THRU option is used, the profile entry “sampleA” is added as well
as the colon definitions “def1” and “def4” to the dictionary. However, when the NAMES
option is used, the profile entry “sampleA” is the only addition to the dictionary. Note that
in both cases “def2” and “def3” were not added to the dictionary. These definitions are a part
of the named profile and are loaded by invoking the word “sampleA.”

To load the contents of this profile, simply invoke the name “sampleA.” Every profile
performs the following sequence. First, the input stream status is saved. Second, the
interpreter is set to the line following the profiles name. This enables fractions of blocks to be
loaded. For this reason, the word “def1” will not be recompiled with an extended THRU or
compiled with a symbolic NAMES load. Third, each block within the range specified by the
%NAME and %NAME-END partition is loaded. During this profile interpreting, the
definitions “def2” and “def3” will be compiled. When the source word %NAME-END is
executed, the input stream is reset to the end of the block so that interpreting terminates.
Thus, the definition “def4” will be ignored. %NAME-END completes the loading with a “Y”
marking of the profile. Finally, the profile loader restores the input stream to the original
status to resume interpreting. The save and restore operation permits profiles to execute in a
variety of environments. Profiles can be listed sequentially within a block or can cross-
reference another profile.

A Forth Profile Management System 67

Profile Status

With the creation of a profile list, status of the names can be displayed to the user. The
PM command ?NAMES allows the user to examine the current profile configuration. This
command displays all the complete names in the list and describes each name’s starting and
ending block, and the status, (i.e. “Y”, yes the name has been loaded or “N”, the name has
not been loaded.) From the previous example of a profile with one entry the following list
will be created:

INAMES
sample A 10 TO 20 N

Should “sample A” now be invoked, its execution will change the status from “N” to “Y”
as well as load the words “def2” and “def3.” The ?NAMES command will now display:

sampleA

INAMES
sample A 10 TO 20 Y

Any subsequent attempts to invoke “sampleA” will not allow the profile to be loaded.
This screening process provides the basis for the prerequisite profile management. Since
profile generation uses two passes, the first pass creates a profile list so that name invocation
during the second pass is independent of any ordering of profiles. Thus, prerequisite loading
profiles can be created within a profile without deference to actual profile loading order. The
following code outline illustrates the use of prerequisites naming and the independence of
profile order.

%NAME partl
part3
%9NAME-END partl

%NAME part2
part3
%NAME-END part2

%BNAME part3
" prerequisite code
ONAME-END part3

”

Excluded from this prerequisite ordering format are profile loads using circular reason-
ing, (i.e. two profiles that call each other.) Although embedding a name invocation offers a
flexible mechanism for dealing with load prerequisites, this option is available only when
PM is on-line, that is, resident in memory at the time of the load. Off-line load files created
by the source code generator of the PM, which will be discussed later, do not account for
cross referencing of prerequisites specified within a profile. Therefore, prerequisite specifica-
tion should be exclusively limited to on-line PM.

Profile Compilation Monitoring

While designing PM to address the static relationships among load modules is impor-
tant, PM includes dynamic program development tools to assist the programmer while
developing software. The command DEBUG was added so that the user can watch the
progress of a PM load. As blocks load, their status is echoed to the toggles, so that every
other invocation activates the echoing action. Another area of improvement was the addition

68 The Journal of Forth Application and Research Volume 2 Number 3

of an interpreting enhancement that monitors the dictionary free space pointer, HERE.
Additions and removals of dictionary object code, plus resuming compilations, unfold from
this slight upgrade.

The command KILL removes a profile that has been added to the dictionary space.
KILL also resets the PM list pointers and status of those profiles loaded after the killed
profile. In other words, after several profile name loads, should the first name be killed, all
those names loaded that followed the original name will have their status reset to “N”, not
loaded.

Further, as a debugging tool, the user could load in a profile, execute some code, and as
necessary, KILL this error tainted code from the dictionary, repair the code and load in the
profile once again. Because this load, go, repair, kill load sequence is unfortunately prone to
occur over and over, several features were incorporated into PM to reduce this headache.
First, after the first invocation of a profile, that name will act as the default on any
subsequent PM core commands. This allows the programmer to use longer file names
without remorse over extended typing. Second, the command GO was added to exploit this
default concept to load a profile. Thus, the debugging sequence has been streamlined to the
following series of commands:

namel (load in default name once)

(repair code)

KILL (reset the dictionary)

(repair code)

GO (load in the last accessed PM name)
KILL (reset the dictionary)

(repair code)

GO

While this approach to code development is helpful, many times simple compile time
errors within loads would necessitate a KILL and a complete reload of the profile source
code. The addition of a dictionary and a block tracking mechanism within the interpreter of
PM allows for two more timely debugging tools. Whenever an error stops the loading cycle,
the user needs only enter the command ED, and the block editor will grab the block that was
interpreting when the error occurred as the edit block. Once the user has corrected the error,
the PM command RESUME will start the interpreting from the beginning block of the
error. The reason this capability is available, is that before interpreting any new block,
HERE and BLK are saved. Thus, if an error that requires modification of the current
loading block occurs, RESUME forgets back to HERE, and uses the saved BLK as the
beginning of the interpreter loop and fetches the last block from the profile of the name to
terminate interpreting. The addition of these PM dynamic compilation features all stem from
an enhancement of the FORTH word INTERPRET.

INTERPRET (last Ist —~)

DO I BIK'! 9 Set interpreter block number.
I SCR ! 9 Set editing block number.
I pmBLK ! 9% “Save current block and
HERE pmHERE ! % dictionary pointer for RESUME.
DEBUG IF 1. .S THEN 0p Check for debug monitor.
0 >IN ! INTERPRET % Then interpret code.

R> DROP BLK @ >R 9 Check for reset blocks during
LOOP ; % interpret.

A Forth Profile Management System 69

Finally, software development is a growing process so that the static block boundaries
originally defined are soon exceeded. For this reason, the command RELINK was included
so that as programs grow, the last block of a profile can be reset to reflect this change. After
allocating new space, a RELINK command scans from the original %NAME to find its
corresponding %NAME-END to expand (or shrink) the profile.

Profile Extensions

So far, the discussion of profiles has been limited to an on-line system of a single
dimension. However, various enhancements permit Profile Management to adapt to the
various requirements of a users programming environment. Although each of these enhance-
ments is modest, the total package performs a variety of tasks that lend a Forth programmer
a useful helping hand.

Incorporating recursion within the defining sequence allows profile management to
become a multi-dimensional hierarchical management system. Now, instead of loading entire
profiles of code, the user can selectively add portions of profiles as required.

Within this hierarchical structure, Profile Management need not be restricted to single
loading modules. The opportunity for repeated loading profiles offers a convenient vehicle
for help, diagnostic, and other status reporting loads. Although slower due to the necessity of
interpretation, these repeatable load modules will not require dictionary space.

The addition of code generation permits Profile Management to negotiate the con-
straints imposed by a system’s memory. Profile images created by a code generator reside in
disk blocks that can later be accessed on-line as required. The heart of the code generator is
a query program which systematically interrogates a user concerning the need to load a
particular profile. For each “yes” response to a profile name query, the code generator
produces a text entry on disk matching this request. The generated text is a range-of-blocks
load derived from the parameters of the selected profile. Overhead involved with maintaining
load modules is limited to the symbolic commenting style of Profile Management. Thus, PM
attempts to offer a simple off-line query system to handle the creation of a variety of load
modules.

Profile Recursive Embedding

Profile Management enables named profiles to embed definitions recursively. %NAME
match causes a named entry to be inserted in the profile list. During the search for the
matching %NAME-END, a %NAME pattern match will trigger an embedding addition to
the profile list. Each embedded %NAME and corresponding %NAME-END pairing are
restricted to complete containment within the outer profile.

70 The Journal of Forth Application and Research Volume 2 Number 3

To help clarify the powers of embedding profiles, consider the following profile outlined
example.

%NAME application
%NAME partl
%NAME—I.Ei\iD partl
GNAME part2
%NAME part2,1
%NAME—}'SND part2,1
%NAME part2,2

BNAME-END part2,2
%NAME-END part2

%NAME part3
part] 0% prerequisite : partl loaded

%NAME-END application

The initial profile setup occurs via a functional THRU or a symbolic NAMES
command. Then, ?NAMES command will display a profile list with each offspring of a

parent indented to highlight the embedding. In this example, the INAMES command will
display the following profile list:

10 18 NAMES

INAMES
application 10 TO 18 N
part 1 10 TO 12 N
part 2 13 TO 15 N
part 2,1 13 TO 13 N
part 2,2 14 TO 15 N
part 3 16 TO I8 N

After the initial profile list setup, the status of each profile name is “N”, not loaded.
Should we wish to load the entire application package, the outer profile “application” will do
50. As we are loading, subsequent %NAME words provide an embedded aspect. Each
%NAME within the input stream executes a dictionary search for the profile name
immediately following. Should this profile exhibit a loaded status, the input stream will be
reset to the position of the line and block following the corresponding %GNAME-END.
Profiles with a non-loaded status reset the input stream to the line following the word
%NAME. Thus, %NAME performs a variety of functions dependent on the status of the
profile.

Loading continues in this manner until a NAME-END is encountered. With matching
names, the status of the profile is marked “Y”, loaded. After all the embedding has unwound
so that the initial level is reached, the input stream is reset to the end of the block, thus

A Forth Profile Management System 71

terminating the profile load. The invoking of the word “application” would have the
following effect on the profile list.

application
INAMES
application 10 TO 18 Y
part 1 10 TO 12 Y
part 2 13 TO 15 Y
part 2,1 13 TO 13 Y
part 2,2 14 TO 15 Y
part 3 16 TO 18 Y

Suppose the user had only desired “part2,2” of the application. Then instead of
specifying the entire “application”, the profile name “part2,2” would exclusively load this

portion. No other items are required or loaded. The INAMES command now displays this
status:

part2,2 (load part 2,2)
INAMES
application 10 TO 18 N
part 1 10 TO 12 N
part 2 13 TO 15 N
part 2,1 13 TO 13 N
part 2,2 14 TO 15 Y
part 3 16 TO 18 N

Profile List Branch

Profile lists can grow to be quite large, so the command USE allows the user to set a
given profile name as the start of the profile list. The profile list stops before either the end of

the list or the next profile of the same level as the USE. The syntax for this optional
command is:

[USE profile-name]

This command is temporary, that is, it only lasts for the next profile list access. An
example of this subprofile list option is illustrated with the INAMES command.

USE part2 INAMES (use part2 brancj)
part 2 13 TO 15 Y
part 2,1 13 TO 13 Y
part 2,2 14 TO 15 Y
INAMES (default to full profile list)
application 10 TO 18 Y
part 1 10 TO 12 Y
part 2 13 TO 15 Y
part 2,1 13 TO 13 Y
part 2,2 14 TO 15 Y

part 3 16 TO 18 Y

72 The Journal of Forth Application and Research Volume 2 Number 3

Multiple Load Profiles

So far, profiles have been limited to one load per profile. Suppose we wanted to create a
named profile that only displayed status information. Unfortunately, this named profile
could only be loaded one time, thus rendering it ineffectual for repeated status updates. For
this reason, the profile type #NAME-LOAD was added to the PM system. %NAME-
LOAD is paired with a %SNAME-END to create an entry in the dictionary as well as the
profile list that differs from %NAME in that it can load its profile repeatedly. The status of a
9%NAME-LOAD entry is signified by an asterisk “*”. For example, the following code
outline includes %HNAME-LOAD profiles at the outer level and embedded within HNAME
profiles.

BLOCK 20

9%NAME application
%GNAME partl
” some code to be explained ”
%BNAME-END partl
GNAME-LOAD a-help
” some help report ”
%NAME-END a-help
%NAME-END application
ONAME-LOAD help
%NAME helpl

9%NAME-END helpl

9%NAME-END help

BLOCK 40

The corresponding "NAMES profile list to this code outline now includes the asterisk
denoting the %NAME-LOAD profile.

INAMES

application 20 TO 30 N
part | 20 TO 23 N
a-help 23 T0 30 *

help 30 TO 33 *
helpl 30 TO 31 N

At loading time, Profile Management treats embedded %NAME-LOAD profiles dif-
ferently than %NAME profiles. ZNAME-LOAD profiles can only be loaded by an explicit
reference to the profile name. That is, embedded offspring %9NAME-LOAD profiles will not
be loaded within their parent profile load unless an explicit reference to the offspring profile
name is invoked. The rationale behind this protocol is that %NAME-LOAD profiles are
designed for report help and status updates that are not important during loads. The

following code outline illustrates the use of a help report to be given at load time of “applica-
tion.”

A Forth Profile Management System 73

” 34 WORD DUP 1+ % assume immediate string
SWAP C@ TYPE ; % print is paired double quotes
%NAME application
a-help % Note the two pass invoke.
NAME-LOAD a-help
"Issue some printed text” % Issue message with
CR ” And Variable Status ” 9 status display.
VAR-X @ .
%NAME-END _-help % a-help invoked, not during

% an embedded load.
%NAME-END application

However, at any time help is required, “a-help” will be available for inspection. This
help could be given regardless of the load status of any part of the application program.

Profile Selection

At the basic level, each profile has been treated as an individual component, as opposed
to part of an entire list. A query system addition to PM makes use of the list to
systematically question a user about selecting profiles to load. This query process was
included in PM for users of other people’s software to have the ability to select component
parts. Combined with prerequisite profile embedding, the query system is a handy user
interface load mechanism. A typical query sequence would have this format:

Use? (Y/N) profile-name

The user would then supply a capital Y to signify, “yes” load this profile or a capital N, “no”
don’t load this profile. A “yes” response skips over all the offspring of a profile, while a “no”
response skips to the next name in the list which may or may not be an offspring.

The query system coupled with a code generator proves even more valuable. Now, a
user can select profiles to load which will produce an image on disk. Each “yes” response
within the query system moves a line of text to a disk block. An example of this line of code
generated text looks like this:

10 18 THRU % application

Input to the code generator is a starting block number. The code generator keeps track
of the line position on the disk as lines of text are being produced. The code generator does
not check to see if the block it is overwriting is important, so caution must be exercised in
choosing block numbers. In addition, profiles that do not fall on exact block boundaries are
not partially loaded. The overall format of the select command is

[USE profile] [TO>DISK block#] SELECT

where the user has the option to set the profile list branch from which to select and the
option to generate code on disk starting at the given.block number.

74 The Journal of Forth Application and Research Volume 2 Number 3

Commands
A summary of the commands and important keywords are as follows:

i) KEYWORDS : embedded within source code

BNAME “name” : denotes beginning of a name unit
BNAME-LOAD *“name” : denotes beginning of a name load unit
%BNAME-END “name” : denotes end of a name unit

Each “name”, when later interpreted, will load the range of blocks of a name and
name-end unit.

iiy COMMANDS : creating a profile
n n+ NAMES
n nt THRU : Within this range of blocks the %9NAME %NAME-
END pairs will be extracted to create named entries.
Code outside these named units will be loaded.

COMMANDS : dynamic

1) [USE name] I7NAMES

Display current names in profile giving name, start and end blocks, and a load status.
Optionally, USE assigns the name unit to profile, as opposed to the entire PMS.

2) KILL [name]

Kill the profile name so that the dictionary is reset to the status before the profile was added.
As a side effect KILL any profiles that have been added after this name. If no name
specified, the default is used, i.e. last loaded name.

3) GO [name]

Load into the dictionary the profile name. If no name is specified, the default is used, i.e. last
loaded name.

4) RESUME

Resume loading into the dictionary the last loaded name from the point of error. Forget
dictionary back to the start of this block and then begin compiling from the beginning of this
block.

5) DEBUG

Toggles a compiling monitor which displays the last successfully completed block and its
stack contents.

6) RELINK [name]

Resets the final block pointer parameter field. Starts scanning for the final block from the
original block parameter fields contents. Allows profile names to grow or shrink in size
without a complete redefinition of the profile list. If no name is used, the default name is
used, i.e. the last name loaded.

A Forth Profile Management System 75

7) [USE name] [TO>DISK block# | SELECT

Named units of ranges of blocks are selectively loaded. Interactively each name is presented
to the user to load. With each Y response, the name and all descendants are assumed loaded.
With each N response, the next name in the profile is used in the query.

TO>DISK block# delays the actual load and instead creates a load file starting at the block
given by the user. Each Y response will post another range of blocks to load on disk. The
actual start and finish block numbers THRU are written on the disk so the PM need not be
present when loading. Optionally, USE assigns the name unit to select.

Summary

Profile Management offers a powerful extension to a Forth programming environment.
Essentially PM is an off-line file system that provides status information of source code
location on disk as well as on-line information concerning what named source code modules
have been loaded. PM utilizes a two pass approach to scan through embedded comments to
extract the beginning and end disk blocks of a range of source code grouped together as a
unit, known as a profile. From this information, the user can either 1) continue working
on-line and selectively load names, or 2) create an off-line load profile based on the current
name profile.

Although PM displays a number of useful functions, extensions to any file system could
perform them. The current version of PM stresses an efficient upgrade from the current
Forth disk block management style as well as dealing with the building block approach of
Forth. With many microcomputer systems headed toward a multi-tasking environment, the
advent of profile-like status could prove advantageous when dealing with several pro-
gramming systems simultaneously.

References

(1] L. Brodie, Starting FORTH, Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[2] P. Reese,“A Disk Operating System for FORTH, An In-depth Look at How a DOS
operates,” in BYTE April, 1982 pp. 322-341.

Mr. Michaloski received a BS in Mathematics from the University of Maryland in 1976,
and an MS in Information and Computer Science from Georgia Tech in 1978. His work at
NBS has been involved with the upper levels of a real-time rabot control system. Currently,
his efforts are directed at automating the metaknowledge about programs.

76

The Journal of Forth Application and Research Volume 2 Number 3

