Introduction

Enhancing Forth

Forth is a singular language. It is used where other languages tend not to fit, such as in
compact, ROM-able systems, or in highly interactive applications. Partly because of its lack
of competition, its adherents have tended to ignore features and structures of other
languages. Even so, most Forth programmers recognize that there is room for improvement
in Forth. Indeed, it has been observed that the first thing a Forth programmer does is
enhance his/her system by customizing it to the programmer and application at hand.

The introduction of an individual system’s features to the entire Forth community is a
slow process. For example, most Forths have a multitasking capability via user variables or
state vectors, but many programmers don’t use multitasking, even after ten years of
availability. Other enhancements, like Bartholdi’s TO [BART79] and Rosen’s QUAN
[ROSER2] for data structures, or Ragsdale’s ONLY [RAGS82] for vocabulary search order,
have been widely disseminated, and are now being put to use. On the other hand, Shaw’s
vocabulary stacks [SHAWS2], Kitt Peak’s orphan and pseudo vectors [BART77] and
Schleisiek’s number input formatting [SCHL82] were never widely adopted.

This issue of the Journal contains several papers concerned with enhancing the Forth
environment. Duff and Iverson’s paper, “Forth Meets Smalltalk” describes a Forth-like
language, Neon, for the Apple Macintosh computer. They took their cues from the
Smalltalk community, but with one exception: performance. Smalltalk’s contribution to
Forth is the idea of object-oriented programming, or the definition of classes of objects with
embedded rules for their manipulation, and the definition of instances of a particular class
of objects. These are constructed in Forth using defining words which define defining words
[FORS82]. Neon further enhances Forth by adding named input and output parameters,
and local variables, via a third, methods stack. Duff and Iverson maintain Forth’s speed as
shown in their benchmark (Figure 11).

Similarly, Korteweg and Nieuwenhu§jzen address local storage in their paper, “Stack
Usage and Parameter Passing”. Like Neon, their system allows for named local variables
via an additional stack. They discuss implementation tradeoffs and run-time parameter
code techniques. This work was preceded by Bartholdi’s paper on parameters [BARTS2].
Both the Duff and Korteweg papers reflect a trend towards higher level operators and away
from low level stack and data storage manipulations: indicating that what is being done is
more important than how it is done. It is an exercise for the reader to determine whether
these concepts enhance Forth, or supercede it.

Maclntyre addresses the subject of floating point calculations in his “Number Crunch-
ing with 8087 FQUANSs: The Mie Equations”. MaclIntyre solves a series of functions which
relate a small bubble’s diameter to its light scattering spectrum. He notes that highly
iterative computations with wildly varying dynamic ranges can’t be solved using Forth’s
integer scaling operator */ or its extended brethren. Although his code took but a second of
CRAY computer CPU time, it required 24 hours of turnaround; whereas he was able to

The Journal of Forth Application and Research Volume 2, Number 3, 1984
3



4 The Journal of Forth Application and Research Volume 2 Number 3

compute the same equation in 15 minutes on an IBM PC with an Intel 8087 floating point
CO-Processor.

The subject of Michaloski’s “A Forth Profile Management System” is the problem of
source code control in large projects, one of the recognized problems in Forth. Although the
manipulation of individual screens rather than files is efficient in testing, it often becomes
unwieldy for large programs. Michaloski describes a compact package using commenting
structures to break up screens, and parts of screens, into independently loadable and
trackable partitions, or profiles. His system is analogous to the use of : definitions to define
new relationships. Only here, the relationships evolve from testing and maintenance needs.
The author uses the underlying Forth block structure to implement a system more useful
than a simple, or even hierarchical, file system. As he notes, “. .. the profile management
system is only a stepwise upgrade from a Forth block management system”.

The technical note by Ko and Jenson on “Patching the ONLY Structure on Top of
fig-FORTH” and an algorithm by Duff on “A Group Construct for Field Words”, continue
this issue’s theme. Ko’s technical note includes 10 screens of source code indicating how to
upgrade the limited FIG vocabulary structure to that proposed by Ragsdale [RAGSS82].
Duff’s algorithm also deals with data structures, and improves upon the work of Haydon
[HAYDS8I] and others by providing a replication mechanism for aggregations of fields in
repeating groups.

It is no coincidence that each of these papers builds on ideas developed over the past
few years by work in Forth and other fields. Just as these papers grew, they may inspire
others to further enhance Forth. It will be interesting to see where this issue of the Journal
leads over the next few years.

Lawrence P. Forsley
University of Rochester

References

[BART77] Bartholdi, Paul, “Pseudo-Vectors EFUG Notes”, European Forth User’s Group.
June, 1977.

[BART79] Bartholdi, Paul, “The ‘TO’ Solution”, Forth Dimensions Vol.I, No 5. pp
38-40. January/ February 1979.

[BART82] Bartholdi, Paul, “Another Aid for Stack Manipulation and Parameter Passing
in Forth”, 1982 Rochester Forth Conference Proceedings pp. 221-226.

[FORS82] Forsley, Lawrence P. “Recursive Data Structures”, /982 FORML Proceedings
pp. 205-207.

[HAYDS1] Haydon, Glen, “Elements of a Forth Data Base Design”, 1981 Rochester Forth
Conference Proceedings pp. 165-177.

[RAGS82] Ragsdale, William F. “The ONLY Concept for Vocabularies”, 1982 FORML
Proceedings pp. 109-115.

[ROSE82] Rosen, Evan, “High Speed, Low Memory Consumption Structures”, 1982
FORML Proceedings pp. 191-196.

[SCHL82] Schleisiek, Klaus “NUMBER Input Wordset”, 1982 FORML Conference
Proceedings pp. 147-153.

[SHAWS81] Shaw, George W. II, “Executable Vocabulary Stack”, 198/ FORML Conference
Proceedings pp. 117-120.




