Forth in a Hardware-Rich Environment
Mitch Bradley

Sun Microsystems
2550 Garcia Avenue
Mountain View, CA. 94043

Historically, Forth has excelled on computers with limited hardware resources — small
memories/16-bit address spaces, small or nonexistent mass storage devices and CPUs capable of
executing less than 1 million instructions per second (1 MIP). Forth has done well in this kind of
hardware environment and will probably continue to be a language of choice for such small
machines.

However, computer hardware is getting cheaper and more powerful each year. Already a 64K
memory is considered small. Microprocessors are getting faster and faster, and their memory
address space is well into the several megabyte range. During 1985, systems based on the Motorola
68020 or the National 32032 will boast a full 32-bit address space (4 gigabytes!) and CPU speeds
of 2 MIPs or more. Mass storage devices are similarly improving. It is already possible to buy a
hard-disk drive that stores over 100 MBytes and fits in the space of a standard-height floppy drive.

Forth, as most of us know it, doesn’t know what to do with a machine like this. If Forth is to
have a future in applications other than machine control or real-time systems, it must evolve to take
advantage of the hardware capabilities of machines like these. For the purposes of this review, such
a hardware-rich machine will be called a “workstation”,

Currently there are several aspects of Forth that do not match well with workstations. Many of
these problems are not inherent in the Forth language itself, but rather parts of the Forth “culture”,
which is accustomed to having to live with very limited hardware.

Problem No. 1: The 16-bit Syndrome

A 16-bit address space is too small for even the current generation of microprocessors (20 to
24 bit address busses), and it is ludicrous for the next generation of 32-bit microprocessors. For a
32-bit memory interface using 256 Kbit dynamic RAMs, the smallest memory possible is 1 Mbyte!
True, many interesting things can be done with only 64 K of memory, but there are also lots of
applications whose data won't even begin to fit in 64 K.

Unfortunately, most Forth systems, including the 83 Standard, explicitly assume or specify that
the stack width is 16 bits. Because this assumption is buried so deeply, it is not possible to produce
a “standard” Forth system with addresses or stacks wider than 16 bits.

Problem No. 2: No Files

Remembering block numbers on a 50 MByte disk is next to impossible. Restricting source code
to fit into a 16 line by 64 character format makes no sense on a computer with fast disks. The 1K
block notation is an artifact of the days when microcomputers all had low-performance /0 systems.

The Journal of Forth Application and Research Volume 2, Number 4, 1984
5

6 The Journal of Forth Application and Research Volume 2 Number 4

True, blocks are still useful in some applications like data acquisition, but for many other
applications, they are extremely cumbersome. Named files of arbitrary length are the obvious
solution to this problem, but there is no standard for how to deal with files in Forth.

Problem No. 3: The ‘Do Everything Yourself in Forth” Mentality

Most machines today come packaged with a lot of software. Some of it is very good. The Forth
community does not have a strong notion of coexisting with and complementing existing software
systems. Instead, the idea prevails that other languages/operating systems are somehow “bad” and
that every bit of software should be written or rewritten in Forth. Theoretically, this might be nice;
it isn't going to happen. There is just too much software out there to reinvent it all in Forth.

This attitude is hurting Forth because it tends to isolate the Forth community from the
mainstream of what is happening in the software world. Besides the attitude problem, there is an
associated technical problem. Since the only mass storage access that the Forth standard specifies
is blocks, and since no other applications software that I have seen uses blocks, there is no standard
way in Forth to communicate with the rest of the software world.

Problem No. 4: The “Clever Bit-Hacking” Syndrome

It has become standard practice to encourage Forth programmers to be “clever” and to save
bytes at every opportunity. The trouble with this is that many byte-saving techniques hinder
portability by taking advantage of implementation details of the particular Forth system. This in turn
makes it necessary to modify the program to make it run on a different Forth system. Forth
programmers have not tended to build on top of each other’s work to a great extent, perhaps because
of the portability problems introduced by being too clever.

A particularly prevalent example of “cleverness” is that of using an existing Forth word to do
something for which it was never intended. For instance, it is possible in many Forths to use the
word COUNT to step through an array of bytes. This takes advantage of the implementation detail
that the length field of a packed string is the first byte in the string, and the address of the actual
characters in the string is the next byte address. This trick does not work if a Forth implementor has
chosen a different representation for packed strings. In addition, such usages can be confusing to
read because they require intimate knowledge of implementation details.

Sometimes such techniques are necessary to make a program fit on a particular machine, but
too often they are done when they are not necessary.

Problem No. 5: No Electronic “Standard Interchange Format”

We need to be able to share code with each other. Publishing Forth screens is better than
nothing, but typing them in to your machine is slow and error prone. It just doesn’t work for anything
longer than a few screens. The CP/M world has Modem 7, the Unix world has UUCP mail, the
Forth world has typing. If Forth programmers are ever going to routinely share significant (i.e.,
long) programs, some better interchange medium has to be used.

Solutions:

Forth has a lot to offer to the world of powerful computers. I would very much like to see Forth
become a popular language on workstations. I therefore offer the following solutions to the problems
just mentioned.

Solution A: Remove the 16-bit Restriction

Remove the 16 bit restriction from the standard. It is possible to describe Forth stack operations
as operating on “stack items” instead of on “16 bit numbers”. This, in conjunction with a few extra
words and a slight shift in the way we think about addresses and data, can result in a Forth standard
that is equally applicable to 16 or 32 bit machines.

Forth in a Hardware-Rich Environment 7

Using techniques described in [1,7], the author and others have written code which runs
unmodified on both 16 bit and 32 bit machines. It is not hard to do, but it requires a clear
understanding of the difference between the size of a stack item and the size of a datum stored in
main memory.

Solution B: Standardize a File System Interface

Standardize a portable file system interface. There are two distinct objectives that a file system
interface needs to satisfy. One is to allow Forth programs to access files in the same way regardless
of which Forth implementation is being used. The other objective is to allow a Forth program to
access and manipulate files used by other utilities which may be available on a particular machine.
These objectives are roughly equal in importance and they need not be mutually exclusive.

One popular notion is to have a Forth file system built entirely on top of the BLOCK system.
This approach fails to satisfy the second goal. Another approach is to duplicate the file system access
calls of the particular operating system your favorite machine runs. This solves the second problem,
but doesn’t solve the first.

The key to the simultaneous solution of both goals lies in choosing what to standardize and what
to leave unspecified. The file system has to specify a model for a file and a set of standard words
for accessing such files. The model has to be simple enough to be compatible with files from nearly
every existing operating system, and powerful enough to be useful for the majority of applications.
For standalone applications, the file model would be implemented on top of BLOCK, but Forth
systems that run under some other operating system should implement the file model using the files
already provided by that operating system.

Here is a good model: A file is an array of bytes numbered from 0 up to the number of bytes
in the file. No other sub-structure is imposed by the file model; for example, there is no notion of
a “record”. Records and such can easily be built on top of the basic “array-of-bytes” model needed.

The basic operations on such a file are opening, closing, reading or writing a specfied number
of bytes and setting the position within the file for subsequent read or write operations. For a further
elaboration of such a file system interface, see [2,3]. The referenced file system interface may be
implemented on top of just about any popular operating system and the Forth programs which use
the interface will be portable from machine to machine. The Forth programs can access files created
by other utilities, and vice versa.

Solution C: Attitude Adjustment Hour

The Forth community must realize that Forth is not going to take the software world by storm
and supplant all other systems (Unix, CP/M, MS/DOS, C, PASCAL, etc.). The best we can hope
for is that Forth will become widely accepted as a tool on equal footing with these other, more
established tools.

This means that we, as Forth enthusiasts, must abandon our cherished hope of solving the whole
universe of software problems with Forth and get on with the task of making Forth work with these
other systems. We must rid ourselves of the notion that other languages and operating systems are
an evil conspiracy shoved down the throats of an unsuspecting public by the dark side of the force.

Once we have a spirit of cooperation, we can start to freely use software other people have
written in other languages. This includes editors, print spoolers, spreadsheets, text formatters, ad
infinitum. This does not preclude us from going ahead and implementing such tools in Forth, but
we must not fool ourselves into thinking that something is better just because it’s written in Forth.
“Reinvention of the Wheel” is only justified if the wheel can be improved in some way.

The main technical problem involved is sharing data with other programs. This is solved by a
suitable file system interface as described earlier. Please note: I do not advocate simply constructing
Forth words which mimic the file system access calls of your favortie machine. I propose a file

8 The Journal of Forth Application and Research Volume 2 Number 4

system interface which is the same on any Forth system on any machine, but which uses and
accesses the files already provided by the “native” operating system on the machine. See {4] for proof
that this is possible.

Solution D: Restrict Cleverness

Don'’t be clever unless you really need to be. Use Forth words to operate only on the data
structures they were intended to access; don't take advantage of things that “just happen to work on
my machine”. Invent new words that do what you need, even when they happen to be the same as
some other existing word. For example, inventing a word NEXT-LINK which just does a fetch (8)
is clearer and easier to modify later than just using @ directly.

Doing things explicitly makes it much easier to move programs from machine to machine, and
thus makes it more likely that people will build on each other’s work.

Solution E: Standard Interchange Format

The only hope that I see for such an interchange medium is the phone line. We need a standard
protocol for transferring data over the phone line. I see no reason not to use the Christensen (Modem
7) protocols [5] already established in the CP/M world. The only problem is that the Christensen
protocol assumes the transfer of files, not blocks, which brings us right back to the need for a file
system.

For a lot of people, the file system interface alone solves the interchange problem. Many
operating systems already have a file transfer program which can talk to many other machines and
which transfers native operating system files. If Forth programs can access those native fields, the
problem is solved.

Summary

Forth needs to break out of the tiny machine mold if it is going to be used on the next generation
of machines. The major things that Forth needs in order to move to the next generation are:

1) the removal of the 16 bit orientation from the standard,
2) a suitable file system,

3) a cooperative attitude toward other languages,

4) less use of implementation-dependent knowledge,

5) an electronic means of sharing programs with each other.

References

1. Bradley, Mitch, and Sebok, Bill. “Extended Addressing Wordset,” Proc. 1984 Rochester Forth
Conference, 1984, p. 284.

2. . “A Portable File System Interface for Forth,” Proc. 1983 Asilomar FORML
Conference, 1984, p. 231.
3. . “Operating Systems Working Group Report”, Proc. 1984 Rochester Forth

Conference, 1984, p. 291.

4. Kernighan, Brian, and Plaugher, Bill. Software Tools. Prentice-Hall.

5. Christensen, Ward. “Modem Protocol Overview”. Unpublished, but available on various CP/M
electronic bulletin board systems.

6. Taylor, Robert. “Send and Rev: A Forth Implementaion of the XMODEM Protocol,” Dr. Dobb’s
Journal, Vol. 8 No. 9, Sept. 1983, p. 82.

7. Bradley, Mitch, and Sebok, Bill. “Compatible Forth on a 32-bit Machine,” Journal of Forth
Application and Research, Vol. 2 No. 4, 1984,

Manuscript received July 1984.

