Token Threaded Forth
and the Extended Address Space

Terry Holmes

Information Appliance, Inc.
530 University Avenue
Palo Alto, CA 94301

Abstract

This paper outlines a proposal for token threaded code to extend FORTH beyond its traditional
64K boundary while maintaining the compactness of 16-bit FORTH systems. Comparisons are made
with the efficiencies and functional characteristics of indirect- and direct-threaded extended-address-
space implementations on the MC68000 microprocessor.

Introduction

The intention of this paper is to examine ways in which FORTH systems may effectively align
themselves with the capabilities of current microprocessors —in particular, here, the MC68000. The
technical terminology follows Ritter and Walker (Ritter, 1980) in identifying three of their four
varieties of threaded code structure. These are direct threaded code (DTC) consisting of lists of
addresses of machine code; indirect threaded code (ITC) consisting of lists of addresses of machine
code; and token or table threaded code (TTC) consisting of lists of values representing offsets into
a table of pointers. Advantages and disadvantages of token threading will be discussed.

The Tyranny of the Address Space

There are a number of characteristics of conventional threaded code implementations (both DTC
and ITC) which stem directly from the use of absolute addresses as compilation tokens. Compiled
code consisting of only addresses must execute where it was complied, and since the addresses of
FORTH primitives vary with the machine used, it probably will run only on the machine on which
it was compiled. The penalty for choosing an address-dependent rather than tokenized approach to
compilation is the necessity of a class of rather complex programs called target (or meta-) compilers
to generate code not intended for execution in the immediate memory or processor environment.

Using a DTC or ITC model on the MC68000 processor requires either compiling 32-bit
addresses, or compiling 16-bit addresses but restricting code to a 64K partition. The alternate scheme
proposed here involves compiling 16-bit numbers and storing 32-bit addresses in a lookup table for
use at execution time. This means four extra bytes are required with each word defined. Assuming
each dictionary entry requires 20-30 bytes of storage, this threading technique would be 10-15% less
memory efficient than conventional 16-bit FORTH systems, but 40-45% more efficient than 32-bit
ITC/DTC systems, which would require 40-60 bytes of storage per entry. Thus, 16-bit token

The Journal of Forth Application and Research Volume 2, Number 4, 1984
21

22 The Journal of Forth Application and Research Volume 2 Number 4

systems, like 32-bit ITC/DTC systems, have the capacity to use the extended MC68000 address
range, but are less wasteful of memory resources.

Implementation Particulars

The most straightforward approach to the use of the MC68000 address space involves using
32-bit wide stacks. This entails a small speed penalty while allowing the use of full 32-bit addresses
as stack arguments.

The following threading comparison considers the inner interpreter (NEXT) and the nesting and
unnesting routines (: and ;) as used for extended-range DTC, ITC and TTC implementations.
The interpretive pointer (IP), return stack pointer (RP), parameter stack pointer (SP), and nesting
routine pointer (NP) are all assumed to be permanently assigned address registers.

The DTC implementation requires that each word definition begins with executable code (Figure
1). A high level FORTH word begins with a transfer to the nesting routine with a cost of 8 cycles,
two bytes of code, and the permanent allocation of an address register (NP) dedicated to holding the
address of the nesting routine. The execution of code words will require the accesssing of only one
address, since the compiled value leads directly to executable code.

FIGURE 1: DTC diagram

interpretive pointer

address of A

B address of B

address of C

High-level word: Code word:
Al IMP (NP)
address of X

machine code

address of Y

next, machine code

address of exit

Code for DTC NEXT:

MOVE.L (IP)+,AQ 12 ; Get 32-bit execution address.
JMP (AQ) 8 . Execute word or transfer to other
routine.

total 20 cycles

DTC nesting routine:

JMP (NP) 8 ; Transfer to nesting routine.
MOVE.L IP,-(RP) 16 : SavelP to return stack.

LEA 2(A0) ,IP 8 ; New Ip follows 2-byte jump to nest.
<NEXT> 20 ; Ready to interpret new word.

total 52 cycles

d
S.

12
re
S,
he
ne

cr

nest.

Token Threaded Forth and the Extended Address Space 23

DTC unnesting routine:
MOVE.L (RP)+,1IP 12
<NEXT> 20 ;

total 32 cycles

: Recover old IP.

The ITC implementation is noticeably slower as two memory fetches are required for code
words to execute (Figure 2). To its advantage it does not require a transfer to be emplaced at the
beginning of high level words, since that function is filled by a pointer located there.

FIGURE 2: ITC diagram

interpretive pointer

address of A
address of B

Y

address of C
High-level word: Code word:
A address of nest B: address of code
address of X machine code <
address of Y
next, machine code

address of exit
Code for ITC NEXT:
MOVE.L (IP)+,A1 12 ; Get pointer to pointer.
MOVE.L (A1)+,AQ 12 ; Get address of code to execute.
JMP (AQ) 8 ; Execute machine code.

total 32 cycles

ITC nesting routine:

MOVE.L IP,-(RP) 16 ; Save IP.
MOVE.L A1,1IP 4 ; Al is “work” register from NEXT .
<NEXT> 32 ;
total 52 cycles
ITC unnesting routine:
MOVE.L (RP)+,1IP 12 ; Old IP.
<NEXT> 32 ;

total 44 cycles

24

The Journal of Forth Application and Research Volume 2 Number 4

The TTC implementation (a variant of the Ritter and Walker TTC) resembles the ITC version
in that two memory accesses are required for code words, but high level words here require an
emplaced transfer to nesting code in the same manner as DTC (Figure 3). First a 16-bit token is read
from the interpreting word. Then a 32-bit execution address is fetched from the lookup table and
control transfers to that location. Two versions are provided — one that will handle 16,384 tokens
and a somewhat slower one that will handle up to 65,536 separate tokens.

FIGURE 3: TTC diagram

interpretive pointer

token of A

| token of B

token of C

token B used as offset into pointer table

Pointer Table:

A:

2| address of B

addresses of
other words

High-level word: Code word:
IMP (N) B: machine code
token of X .
token of Y

next, machine code

token of exit

Code for TTC NEXT (16K version):

MOVE (IP)+,D7 8
MOVE.L D7,A1 4
MOVE.L (A1),AQ 12
JMP (AD) 8
total 32
Code for TTC NEXT (64K version):
MOVE (IP)+,D7 8
MOVE.L D7, A1 4
ADD.L A1,A1 6
ADD.L A1, A1 6
MOVE.L (A1), AD 12
JMP (AD)

8
total 44

; Get 16-bit token.

;D7 has offset to table in high bits.
; Get 32-bit address.

; Execute.

; Get token.
; Get table address.
; Shift left twice, address*4

; Get 32-bit execution address.

sion
e an
read
and
kens

 bits.

Token Threaded Forth and the Extended Address Space 25

TTC nesting routine:

JMP (NP) 8 ; Transfer to nesting code.

MOVE.L IP,-(RP) 16 ; Save IP.

LEA 2(AD), IP 8 ; New IP follows jump code,

<NEXT> 32 ; Timing estimate uses smaller token
space.

total 64 cycles

TTC unnesting routine:
MOVE.L (RP)+,1IP 12 ; Getold IP.
<NEXT> 32 ;
total 44 cycles

One comparison which the preceding analysis suggests follows from the execution times for the
respective threading types. An empty high level word in DTC costs 84 cycles; in ITC costs 96
cycles; and in TTC costs 108 cycles. This rough estimation suggests that ITC may be 10% slower
and TTC 20% slower than DTC. Taking into consideration that a large percentage of FORTH code
consists of short stack and arithmetic operators, it may be that DTC is actually more efficient than
this would indicate, and that TTC and ITC are approximately of the same efficiency.

The particular version of token FORTH demonstrated here is not machine independent because
the prologue routine in high level words is represented by a particular MC68000 machine
instruction. A third level of indirection (a pointer instead of the prologue routine) would be required
for machine independence (Kogge, p.24). However, this would still require that the nesting routine
be at a fixed location on any system that would use this code. A fourth level of indirection would
yield truly address and machine independence (emplacing a token for nesting) at the cost of a
significant sacrifice of execution speed (Ritter and Walker, p. 212).

An issue that applies to the present DTC and TTC implementations is the allocation of the
address registers. There are potentially many candidates for the use of these limited resources, such
as stack pointers and prologue branches to VARIABLE , CONSTANT , etc. One solution is to
place all of the internal routines in a contiguous area and allow the other prologue code pieces to be
of the form: * JMPd(NP) ” where “d” is the number of bytes from the beginning of the common
code area to the beginning of the code for this particular routine. These instructions require four
instead of two bytes per usage.

Difficulties with Tokens

The chief disadvantage of token systems is the fragmentation of the dictionary into a pointer
table and a code portion, and the memory management problems that arise from this. In fact, it is
probably advantageous to make a third piece out of the dictionary headers. Strategies to
accommodate a table lookup scheme in mixed RAM/ROM systems may require complex decisions
to be made in NEXT . One such approach in RAM-based systems is to approximate the functional
characteristics of conventional systems by having contiguous table and code areas grow from low
memory. As a page of tokens (256 bytes or 64 pointers) is exhausted, another page can be allocated
by moving all code forward in memory, and appropriately updating the pointer (token) table.
Forgetting words from the dictionary would, conversely, contract the table and code areas. Clearly,
this scheme is more complex than with conventional FORTH systems.

Further Comments on Tokens

A primary distinguishing feature of token systems is transportability and relocatability inherent
at the object code level. This is enforced by a discipline which disallows absolute addresses in the

26 The Journal of Forth Application and Research Volume 2 Number 4

code space — all addresses being segregated into the lookup table. Moving code to a different
memory environment involves adding a fixed displacement to all addresses in the lookup table.
Unneeded words can be purged from the code space by moving code down over deleted material
and updating the lookup table as required. Even tokens may be recycled by placing unused tokens
on a list of free tokens. Indiscriminate use of this capability could lead to the removal of words called
by other routines which are still active. Whether the system should protect the user from making
such mistakes is an open implementation issue facing the designer in this kind of mutable
programming environment.

Traditionally, FORTH system designers have struggled with two opposing notions. One is to
extend FORTH with special functions and operators to assist words from which all of FORTH can
be generated. Commercially available systems often have 5000-8000 bytes (300-500 FORTH words)
as a basic configuration. A designer working within the exisiting paradigm must pursue a course
toward a small but functional nucleus, avoiding special temporary constructs which may have little
future use but will be locked into the address space of the system. A token system, on the contrary,
need not be so constrained if it has been designed to allow the redefinition and removal of words.

Experience to Date

The FORTH system described in this paper has not been implemented exactly as suggested here,
but I offer the following observations from having implemented a similar TTC system. First, the
process of target compilation conformed closely to the normal compilation of FORTH words, so that
the target compiler needed to be only about 6 screens long. Most of the remaining difficulty with
target compilation resulted from cross-talk between vocabularies — the system performing the target
compilation used words whose names also appeared in the target dictionary under construction.
Second, this experimental system allowed only one instance of a name to appear in a vocabulary.
Subsequent attempts to define the word would actually alter the operation of the original word by
updating the entry in the token table to point to the most recent code. With the redefining technique
modified in this way, existing words are quickly changed and tested without recompiling large
amounts of source code. Forward referencing can be done rather easily in this system by creating
a word without a code section. When the word is redefined later, the code portion of the word is
defined.

This experimental system followed the FORTH-83 Standard only in the operation on most stack
and arithmetic primitives. The 32-bit stack as well as vocabulary and dictionary structures were of
course incompatible with the Standard.

Conclusions

Three strategies for expanding FORTH out of its 64K partition have been considered. Direct
and indirect threaded code requires the compilation of 32-bit addresses — DTC being the choice
where execution speed is foremost. Token threaded systems will probably be the choice for
integrated packages requiring large amounts of code due to the great compaction achieved. Also,
token systems offer greater flexibility and portability of object code.

References

Barnhart, Joe. “Forth and the Motorola 68000,” Dr. Dobb’s Journal, Vol. 7 No. 9, September 1983,
p. 34.

Kogge, Peter M., “An Architectural Trail to Threaded-Code Systems,” IEEE Computer, Vol. 15
No.3, March 1982, p. 22.

Ritter, Terry, and Walker, Gregory. “Varieties of Threaded Code for Language Implementation,”
BYTE, Vol. 5 No. 9, September, 1980.

Manuscript received August 1984.

