
Proceedings of the 1985 Rochester Forth Conference

Expanding the Forth dictionary beyond the
64k limit by using 'Bodiless' code

Robert Boni
Kodak Research Labs

Rochester, New York 14650

ABSTRACT

97

At the Kodak Research Labs (KRL), experimental test beds
are controlled from Forth. The most complex test beds
require a Forth system with a dictionary larger than 64
kilobytes of memory will allow. An existing Forth system,
modified to produce bodiless code, now supports a dictionary
of several megabytes. These modifications, which generate
the bodiless code, provide a method to increase the
dictionary space of a Forth system running on a computer
with memory management capabilities.

This paper describes the modifications made to an
existing Forth system to allow compilation and execution of
source code beyond the normal dictionary space. High-level
extensions are added to polyFORTH (a product of FORTH, Inc.)
which runs on a DEC 11/23 plus computer. These extensions
manipulate the Memory Management Unit (MMU) while source
code is loading and pro v ide for a linkage between
definitions in high memory and the Forth dictionary. Using
these extensions, most of the addressable memory can become
extended dictionary space.

These extensions consist of three basic commands:

1) [MODULE] <name>
2) LINK
3) [END]

The word [MODULE] executes immediately before loading
the source code to be compiled into high memory. Following
the [MODULE] command is a word which is the name given to
the section of code being loaded. After a word is defined
in a module, LINK makes this word from high memory part of
the Forth dictionary by linking it to the Forth dictionary.
The word [END] identifies the end of the module being loaded
into high memory. No word follows the [END] command.

For the purpose of illustration, here is a module using
these commands:

[MODULE] EDITOR (a large full screen editor)

98 The Journal of Forth Application and Research Volume 3 Number 2

The source code for the editor is placed in this
section following the [MODULE] command. The source code is
written exactly as if it were to be compiled into the normal
Forth dictionary.

EDIT

LINK
[END]

START .EDITOR
(word to invoke the editor)

(start the editor)
(link EDIT to the dictionary)
(end high memory compiling)

The word EDIT and all other definitions in this
module -- will have headers and compiled Forth code in high
memory. There will be a new word in the Forth dictionary
with the same name -- EDIT. Using the word EDIT will cause
the Forth system to memory map to the module EDITOR and
execute the high memory definition EDIT. When the definition
of EDIT is finished executing, EDIT restores the original
memory mapping.

If a word defined as part of a high memory module is
linked to the Forth dictionary, it can be used in a
definition that is part of a different high memory module. A
simple example of this capability follows:

[M ODULE] ALPHA (name for the first module)

ALFRED (colon def. in this module)
" I am Alfred" (this word identifies itself)
"Who are you?" ; (asks who else is there)

LINK (links Alfred to the diet.)

ALICE (second def. in this mod u le)
" Hello, I'm Alice" (this word says hello)
" Where is Alfred?" ; (Alice asks for Alfred)

[END]

[MODULE] BETA

BRUNO
ALFRED

." This is Bruno,
LINK

(note: ALICE not linked)

(second module in high memory)

(first name, second module)
(use def. from first module)

Alfred" ; (Bruno answers question)
(link BRUNO to the dictionary)

BRENDA (this definition will fail)
." Is that you Alice?" (Brenda sking for Alice)
ALICE; (ALICE not linked, this fails)

[END] (end this second module)

When the definition BRENDA tries to compile the word
ALICE , the error message -- ALICE? indicates that the word
cannot be found. When words are defined in one module and
used in other modules, they must be linked to the dictionary
using the word LINK.

Proceedings of the 1985 Rochester Forth Conference 99

the words [MODULE]
as can be seen in the
of how a module is

Only the amount of addressable memory limits the number
of different modules allowed. Different modules are needed
because the 11/23 memory manager can only map 8k sections of
memory at a time with each MMU register. In terms of loading
Forth source code, this MMU feature means that there must be
less than 8k bytes of compiled source code between each
matched [MODULE] and [END] command. This is not as limiting
as it sounds because array and buffer space can be allotted
outside a module.

The manipulations performed by
LINK and [END] are remarkably simple
following step-by-step explanation
created.

[MODULE] TEST (Part of the source code)

A dummy word ZZZZ is defined in the Forth
dictionary.

HERE is moved to address 40k.

The section of memory from 40k to 48k is mapped to
high memory. The module is now ready for
definitions.

The word TEST is automatically defined as the
first word in the module.

All the following definitions are compiled.

: NEW.WORD ; LINK (This word in the source code)

LINK saves the Name Field Address (NFA) of
NEW.WORD in a buffer.

Other words in the module TEST can be linked.

[END] (Part of the source code)

The command FORGET ZZZZ executes, restoring HERE
and breaking vocabulary links to high memory.

The NFAs saved in the buffer are used to create
new words in the Forth dictionary with the same
names as their high memory counterparts.

These new words will memory map to the module TEST
and execute the original definitions when
executed.

The module is closed. The system has returned to
normal operation.

100 The Journal of Forth Application and Research Volume 3 Number 2

By dividing a Forth application into well-defined
modules with only a few words from each module being linked,
the effective dictionary space can be increased by a factor
of at least one hundred. Modules with only one word linked
to the dictionary can provide a five hundredfold increase in
dictionary space. If jumping between modules is minimized,
the reduction in execution speed will be negligible.

This method of extending the dictionary space of a
Forth system represents only one of many possibilities. Its
primary strengths are that no changes need to be made in the
Forth nucleus and very few are required in the existing
source code.

