
Proceedings of the 1985 Rochester Forth Conference

CONVERSION OF A TOKEN THREADED LANGUAGE
TO AN ADDRESS THREADED LANGUAGE

Bob Buege
RTL Programming Aids

10844 Deerwood SE
Lowell, MI 49331

ABSTRACT

113

After becoming spoiled by almost four years of
experience with a token threaded language, I find it
difficult to imagine ever going back to an address threaded
language. Token threading gives me the flexibility of a
metacompiler without the complexity. All code is
relocatable. I can modify or delete words at the beginning
of the dictionary without recompiling. I can eliminate the
words not needed for an application before burning the
application in ROM, and since garbage collection becomes a
trivial problem, I can even eliminate the need for screens
by decompiling object code and doing all my editing from
RAM.

Many of the tools which I have come to depend on would
be difficult or impossible to adapt to an address threaded
language. However, address threaded languages do have a
speed advantage over token threaded languages for most
applications.

A compromise has been achieved which allows me to do
all my development work in a token threaded language and
then use self-modifying code to convert the language into an
address threaded language for increased speed when the
project is completed.

INTRODUCTION

There are many ways in which a token threaded language
may be implemented. The language RTL (Relocatable Threaded
Language) is based on 16 bit tokens in which each token is
divisible by two (4 in 32 bit versions). The token is used
as an index to one of two address tables to find the name or
code assigned to each token. Each entry in the names table
contains an address which points to a name in the names
block. The corresponding entry in the code table contains an
address which points to the code for that word in the code
block of the appropriate vocabulary.

Since there is a one-to-one correspondence between
tokens and code addresses and the tokens take the same
amount of space as addresses, it is possible to go through
the enti re language and replace each token wi th the code
address associated with that token.

This results in two advantages. There is an increase in
speed because the inner interpreter gets the code address
directly from the instruction stream instead of looking it



114 The Journal of Forth Application and Research Volume 3 Number 2

up from a table and the memory required is sometimes less
because the code table is not needed for turnkey systems
which don't require the outer interpreter.

THEORY

It's very easy to see how the token threaded language
works and how the address threaded language works. The
difficulty arises during the conversion process. While the
conversion process is taking place, part of the language is
implemented as a token threaded language and part of the
language is implemented as an address threaded language. In
fact, the division usually occurs within a word so that part
of a word is token threaded and part is address threaded.
The inner interpreter must be able to distinguish tokens
from addresses and make the appropriate response.

I simplify the task of the inner interpreter by
ensuring that the words are converted to address threading
in order of their location in memory. A marker is
continuously updated so that it always points to the last
address where a token was converted to an address. The inner
interpreter can thus determine whether the instruction
pointer is pointing to a token or an address just by
comparing the instruction pointer to the last address which
was converted to address threading. The steps for my
conversion algorithm are as follows:

1. Declare space for a temporary table.

2. Make a 1 ist of all tokens wh ich correspond to threaded
words.

3. Sort the list so that the code addresses are in ascending
order.

4. Set the marker to zero, indicating that all threaded
words are token threaded.

5. Substitute a smarter interpreter which uses the marker to
distinguish between token threaded code and address threaded
code.

6. Go through each word in the 1 i st, replac i ng each token
with its code address and adjusting the marker.

7. Replace the smart interpreter with an interpreter which
expects all code to be address threaded code.

Step 6 of the algorithm requires the ability to
distinguish between code and in line parameters. This
problem has been treated in prior papers which I have given
at the 1984 Rochester Conference and the 1984 FORML
Conference and will not be treated in this paper.



Proceedings of the 1985 Rochester Forth Conference

CONCLUSION

115

There is a considerable loss in flexibility by the
conversion to address threading which makes the language
barely operable after the conversion is completed, the main
problem being the fact that the compiler still generates
token threaded code. This technique is therefore only useful
in applications where the flexibility of a full language
isn't needed in the finished application. A simple example
of such an application is a utility which I wrote for a
multiprocessing CPM system which accepts arguments from the
command line to initialize various serial ports for
differing baud rates, bits per character, stop bits, and
pari ty.

The following procedure shows how such an application
may be turned into an executable program.

1. The word COLD is redefined to perform the desired
application and then return to the operating system. COLD is
the first word executed when the language is booted.

2. The dictionary is separated into two vocabularies with
all words initially placed in the second vocabulary.

3. The command KEEP COLD then moves
vocabulary 1 along wi th all the words
either directly or indirectly.

the word COLD to
which COLD calls

4. The various modules of the language are moved to
appropriate areas of memory so that the variables block and
the code for vocabulary 1 are adjacent and may be saved
without saving unneccessary modules such as the names table,
code table, names block, or code for vocabulary 2.

5 •. The language is converted to an address threaded
language.

6. The portion of the language containing the variables
block and vocabulary 1 is saved as an executable file.

REFERENCES

1. R. Buege, "Status Threaded Code", Proceedings of the 1984
Rochester Forth Conference.

2. R. Buege, "A Decompiler Design", Proceedings of the 1984
FORML Conference



116 The Journal of Forth Application and Research Volume 3 Number 2




