
Proceedings of the 1985 Rochester Forth Conference

A MICRO BASED ASW TRAINER IN FORTH

Robert H. Davis

ABSTRACT

129

The author's group at the Naval Surface Weapon Center
is engaged in the development of a low cost desktop trainer
for NAVY ASW Acoustic Sensor Station Operators. Each device
is based on a Zenith 150 microcomputer, with the software
being developed using ROHDA-FORTH, the author's personal
implementation of the FORTH language. Brief descriptions of
the system being simulated and the Forth based simulation
are given. The paper then focuses on the productivity
aspects of using FORTH in the development effort.
Particular areas discussed are the value of very high level
coding (using the ROHDA-FORTH Data Structures and Symbolic
Function compilers) to expedite development of all coding
for an initial pass, and use of trace facilities to achieve
extremely rapid code development. Selected examples of
coding from the project will be used to illustrate the use
of the high level programming constructs and the trace
facilities used in the software development.

DISCUSSION

The Navy's AntiSubmarine Warfare (ASW) systems depend
heavily on information derived from the spectral analysis of
underwater acoustics. The operation of the spectral
analysis equipment and the interpretation of the outputs of
that equipment require considerable expertise. Personnel
turnover is rapid and the training necessary to develop the
required expertise has been chronically inadequate.
Interactive training devices have been expensive and in
short supply. The author and two other engineers at the
Naval Surface Weapons Ce'nter in Whi te Oak, Maryland, have
undertaken the development of a low-cost desktop training
device for initial training based on the Zenith 100/150
microcomputer. The software has been developed in FORTH
using ROHDA-FORTH, the author's personal implementation of
the FORTH language.

The primary output of the ASW acoustic processor is a
spectral 'gram', which consists of a time history of
Spectral Power Density estimates displayed as successive
scans of an intensity versus frequency display. Modern
processors display such grams on CRT monitors, and therefore
a micro with reasonable graphics capability makes a fine
basis for a low cost simulator. The simulator display
provides a 12 minute 'gram' (120 scans) with 512 frequency
bins per scan. The graphic display includes frequency
cursors (controllable by the student), and alphanumeric
time, cursor frequency, frequency limits and mode readouts.
The simulation scenario allows two acoustically radiating
'targets' in a typical ocean environment. Motion dynamics

130 The Journal of Forth Application and Research Volume 3 Number 2

and acoustic signature dynamics are modeled to allow a
problem to evolve in real time.

Of the three engineers, one (the author) had
considerable experience in FORTH, one had minimal FORTH
experience, and one had no previous FORTH experience.
However, all three are very capable assembly language
programmers, and in addition had the benefit of having
programmed similar simulators on other computers (Data
General Novas, Navy AN/UYK-20s, and VAXs). With this rather
atypical set of initial conditions, any rigorous attempt to
compare productivity relative to other programmers,
languages or tasks is not easy. Some subjective
observations may be made, however, both in loose comparisons
with the rest of the world and in the perceptions of the
programming team.

The time available for producing a deliverable
prototype system (software running and about 99% debugged
but minimal documentation) was approximately 90 days. The
software developed for the deliverable prototype consisted
of approximately 70 FORTH screens, each with an average of a
dozen lines of code, for something on the order of a
thousand lines of (FORTH) source code. The compiled code
occupied around 24000 bytes (not including data arrays), so
it is estimated that something on the order of 4000 to 5000
FORTH operators were coded. If one uses the source lines of
code (SLOCs) as the software industry is want to do, one
arrives at a productivity of 100+ debugged SLOCs per man
month. This appears to be, if anything, a little low by
industry norms. In FORTH, however, each operator is more or
less equivalent to a line of code in other languages, so one
might venture an 'equivalent' productivity measure of 400+
SLOes per man month, which looks a little more impressive.

Neither of the above 'productivity' numbers really
tells the whole story. A similar but considerably less
sophisticated program was written in FORTRAN on a VAX
11/780. This effort resulted in about 1500 lines of FORTRAN
in about 1.5 man years, for a productivity of a little under
100 lines of code per man month. Several critical
differences exist, however. The display programming for the
VAX program was essentially already available and the
program ran as a single process - no interrupt handling was
necessary. For the micro system, the first two weeks were
spent developing interrupt driven multiprocessing for ROHDA
FORTH. The VAX-FORTRAN program used floating . point
throughout, while the micro system uses a mixture of single
and double integer fixed point, and a double mixed fixed
point (16 bits of integer, 16 bits of fraction) which is
supported in ROHDA-FORTH. An added advantage of the FORTH
implementation is that, as is often done, a slightly
simplified FORTH interpreter is made available at the
foreground (non-interrupt driven) level. This permits
interactive display and modification of program variables,

Proceedings of the 1985 Rochester Forth Conference 131

and greatly facilitates interactive control. Obviously,
nothing equivalent to this was available in the VAX-FORTRAN
program. Last, but not least, the VAX program (even though
a simpler system running on a much more powerful computer)
required bumping other users for demonstrations to insure
against unacceptable interferences for real-time operation.
Thus it can be reasonably claimed that a more powerful and
sophisticated simulation program was developed in less time
with FORTH in spite of considerably less powerful hardware
and a supposedly inferior programming environment.

ROHDA-FORTH is an almost 79-Standard system with most
FIG-FORTH words available plus several powerful extensions.
Although the lion's share of credit for an impressively
productive programming effort goes to the FORTH concept
itself, many of the ROHDA-FORTH extras were found very
helpful. In particular, a PASCAL like Data Structures
compiler, a Function compiler with local variables, and a
recursive single step TRACE facility played key roles.

ifor,

Memory for the array
consumes all remaining
Dictionary area)

ALLOCATE TIMED-COMMAND TCARR
The 19th TIME can then be obtained by:

TIMED-COMMAND 19 TIME
which would leave a double integer on the stack,
within a loop, the 'l'th string can be obtained by:

TIMED-COMMAND I COMMAND
which would leave an address pointer to the first character
of the 'I'th COMMAND string followed by the character count
80.

To the author, the only useful feature of the PASCAL
language is the ability to define complex data structures
and to then let the compiler worry about where particular
elements are located. The ROHDA-FORTH Data Structures
compiler provides a capability similar to PASCAL in that
arbitrarily complex structures may be defined and then
accessed symbolically. The compiler computes as much as
possible of the address of the desired element and compiles
the minimum runtime code to effect the access. As an
example, delayed action commands were implemented using a
data structure consisting of an array of records, each of
which contained a double variable TIME and a COMMAND string.
The structure was defined as follows:

DINTDT « TIME» (define a db!. into datatype TIME)
80 STRDT COMMAND (and 80 char. string datatype COMMAND
RECDT TCREC « TIME COMMAND» (record of 1 each)
100 ARRDT TCARR TCREC (finally an array datatype TCARR

of 100 'TIME COMMAND' records)
is then reserved in HEAP (which
available RAM after a 64Kbyte

The Data Structures compiler took the labor out of
managing an involved program database. Similarly, the
Function compiler greatly eased the pain of stack-based
programming. It has been pointed out by others that most of

132 The Journal of Forth Application and Research Volume 3 Number 2

the difficulty in FORTH programming is the necessity for the
programmer to mentally keep track of where things are on the
stack. ROHDA-FORTH provides a Function compiler which
allows the programmer to declare the input and output stack
configurations symbolically, and to declare temporary local
variables. Coding then proceeds using the stack as in a
normal FORTH word, but with inputs, outputs and intermediate
results accessed symbolically with the local symbols. As an
example, the following is a single pole recursive filter
with stack inputs parameter A, old state V', and new input
X, and output Y, and coded using the Function compiler:

: 2PFIL FUNCT(A Y' X > Y)
X Y' - M* Y' + TO Y DROP F;

where the compiler word FUNCT(initiates the local variable
declaration phase ended by), and F; is the Function
compiler equivalent to; for a normal definition. Notice
that any FORTH words including stack manipulation operators
may be used in the body of the definition, but that the
stack must be clean when finished.

Both Data Structures and Functions provide runtime I

checks for critical errors. Runtime array computations
check for indices out of bounds, and runtime Function
support checks for stack residue errors. These obviously
extract a small penalty in speed, but greatly aid debugging.
If necessary, two runtime words can be redefined to
eliminate all runtime checks once the program is completely
debugged.

Last but not least is the value of an interactive TRACE
facility. ROHDA-FORTH provides a recursive single step
debugger which allows one to TRACE and high-level definition
and to optionally descend and TRACE any other high-level
definition encountered during a TRACE session. As most of
the FORTH community knows, the value of such a tool to
quickly pinpoint bugs is immense. For the Micro Simulator
effort, the average debug time for high-level definitions
was probably about 15 minutes.

In summary, the development of a desktop training
device using the FORTH language on a personal computer
provides another example of applying the power and
efficiency of FORTH to real problems. Although direct
comparisons of productivity with other languages is
virtually impossible without comparing apples to oranges,
all three of the programmers, FORTH freaks or not, agree
that development time and effort was drastically less than
previous similar efforts. The Department of Defense could
benefit greatly by serious consideration of FORTH as an
alternative to ADA, but Bureaucratic inertia being what it
is, it will probably take a club the size of a battleship to
change its direction.

