
Proceedings of the 1985 Rochester Forth Conference

R FORTH Implementation of the Heap Data Structure*

W. B. Oress
Instrumentation and Controls Oivision

OaK .Nidge National.laboratory
OaK .Nidge, Tennessee 17811

135

The use of the heap for memory management provides the FORTH
programmer with a versatile tool. Its use speeds program development at
the conceptual level by allowing the program designer a means to consider
dynamic arrays, garbage collection. and overlays; and at the implementation
stage by providing a framework for easy manipulation of data structures.

The need for a heap memory manager arose during a project to
rewrite OPSS, a popular expert-systems language, to respond to real-time
events. Once the syntax and underlying algorithm of OPSS were incorporated
into a FORTH environment, the language could be extended towards the goal
of a multitasking, real-time expert-system tool. It was at this point that the
need for garbage collection became evident. A subject of numerous research
papers, book chapters, and vendor hype, garbage collection is a means of
marking list nodes (linked data elements) as unneeded and reclaiming
memory space when it is almost exhausted. A feature of this process is that
the typical application software ignores reclamation, leaving it to a
garbage-collection cycle which can last a very long time indeed. Strictly
speaking, garbage collection could be fatal in a real-time system.

With the Macintosh heap memory manager [l ,21 as a model for the
basics of memory allocation and deallocation, it became a matter of a few
hours to write code implementing a simple, but adequate, heap data
structure in Multi-FORTH [31. The fundamental idea of the heap is to reserve
a large pool of memory which is partitioned into two major portions: the
handles and the pieces. The pieces are blocks of memory of arbitrary size
which are reserved for use by a call to the heap manager. The pointers to
these pieces are contained in "handles" which reside at the top of the heap.
Figure 1 shows the basic internal structure as implemented.

IResearch performed at Oak Ridge National Laboratory and sponsored by the
U. S. Department of Energy under Contract No. DE-ACOS-840R21400 with
Martin Marietta Energy Systems, Inc. An expanded version of this paper,
including the source code, has been submitted for publication in The
journal of FO.NTH Application and .Nesearch.

136 The Journal of Forth Application and Research Volume 3 Number 2

Handle: Pointer I
I

Block Length
......

Block
of

User
Data

Figure 1. Pointer and Handle Relationships
within the Memory Heap.

When a block of memory is required, the address of the neIt available
memory location is written to the neIt available handle cell, the memory
location pointer is advanced by the size of the piece requested, and the
handle (address of the pointer to the memory actually allocated) is returned
on the stack. The user application is responsible for keeping track of the
handle until it is no longer needed. A call should then be made to the heap
manager to release the handle thus deallocating the referenced memory
block. At this point, the collection of allocated blocks is compacted to recover
the unused space. Such holes are moved to the top of the allocated portion
for later use. Figure 2 illustrates this process.

b.~~~:~:;.::~:"0:;::::::"':~1:""'"'.~';".~"";.~.~.::~:'0':~~::;~~:~>:"0'~~;::~;"~.Il----- NEHI.PIEeE

·:~f~:.f'i:~;::~,r~~:::.:~:If:~~:f::~;;:~~;:
(Block 2)

Free Space

High Memory

Low Memory

Figure 2. Removal of Block 2, Showing the Heap
Before and After Compaction.

Proceedings of the 1985 Rochester Forth Conference 137

Since the region of the heap containing the handles is never moved
once the heap is created, the handles can be thought of as absolute memory
locations containing pointers to blocks of relocatable memory. The virtue of
such activity is the optimal use of memory even when the size and temporal
characteristics of data blocks are apriori unknown.

The use of the heap to solve (more properly, avoid) the garbage
collection problem involved running the system in a synchronous mode.
Thus each time a block of memory was needed, it was reserved by a simple
call to the heap manager. Alternately, when the space was no longer needed,
it was returned to the heap via the handle, when the memory was reclaimed.
Removing the top block involved only a pointer update and a handle reset.

The use for data overlays is straightforward unless the data contain
references to other nonresident data which must then be located and
brought into the heap. Assume the compilation to have occurred earlier
within the normal FORTH dictionary structure and that the compiled code
has been copied to mass storage and then forgotten. To elecute the stored
code, simply allocate heap space for the stored code, read it into the heap
and execute the sequence " @II PFA CFA EXECUTE" after the handle to the
code has been placed on the stack. Note that this direct execution of the code
assumes that all PFAs in the heap refer to code or data currently resident in
main memory, and at the same locations as at compilation time.

The problem (insurmountable in some languages) of arrays whose size
is unknown until run time is one that most every FORTH programmer meets
sooner or later. The usual solution is to allot enough memory to cover every
conceivable case, which is wishful thinking for an application to be turned
over to an end-user. The use of the heap is quite simple in this case; the
size, determined at run-time, is used to request heap space which is then
used for the array. If the allotted size becomes insufficient as determined
by the usual bounds tests, the piece can easily be resized. When the array is
no longer needed, the space is returned to the heap.

Most any type of data can be represented in the form of a linked list.
The convenience of allowing such lists to be made and destroyed at run time
is a solution to the problems of sorting and data-base searches. Since
efficiency requires as many keys as possible to be present in memory and
the data base is almost certainly larger than available memory. a rapid
means of allocation and deallocation is necessary. This is particularly true
when lists of varying sizes are arranged without the benefit of suitable keys.

138 The Journal of Forth Application and Research Volume 3 Number 2

The simple implementation presented here is useful only for single
user systems (who releases a structure?) and where absolute memory
references are only made outside the heap. A natural extension of the
memory heap is to add features allowing absolute references to in-heap
data and resolving conflicts between different users. An approach to
extending the usefulness of the heap would be to allow an extra byte in each
memory block, or in the handle itself for a tag field containing bits for
marking (as in standard garbage collection), for information as to the
absolute nature of the data contained in the referenced block, as well as a
flag to indicate the presence of a semaphore field in the block (for resolving
mutliuser requests). A few verbs could be written to make appropriate use
of the tag field according to the needs of the application. For example, one
would add verbs to lock a block in memory (assuring validity of absolute
memory references) and a means to mark a block as purgeable (can be
removed on the next heap compaction) and unpurgeable. A means of
reallocating a block via an additional level of indirection is also possible.

The uses of the heap data structure, even in its simplest form, are
varied and versatile. Ranging in complexity from the simple dynamic array
to the FORTH program overlay in multiuser systems, the heap memory
manager has a place in the toolbox of every FORTH programmer. Once
familiar with the heap concept, the programmer can defer thorny issues
from the design stage of a problem, where details do not belong, to the
implementation stage where they are necessary.

The ease of bookkeeping necessary for many volatile list structures
makes the heap a natural manager for LISP-like extensions to an application.
The idea of keeping a list of handles in the heap (a handle to a block of
handles) provides a way to manage second order data structures in the same
convenient manner as primary ones.

The heap as presented here has been us.ed for some time in our
FORTH-based version of the expert-systems language, OPS5. This has
resulted in faster execution times for OPS5 programs and overcome
problems in extending the language to the real-time domain.

[I] Apple Computer, Inc., Inside Macintosh, Cupertino, California, 1984.
[2) Creative Solutions, Inc., MacFORTH Level Two User s Manull/,

Rockville, Maryland, 1985.
[3) Creative Solutions, Inc., Multi-FORTH Version 2. 00 User's Mllnu8/'

Rockville, Maryland, 1984.

