
Proceedings of the 1985 Rochester Forth Conference 145

Interactive Videodisc Control and Computer-Based Training on
the Apple Macintosh-

Nick Francesco
JAM., Inc.

300 MaIn Street
East Rochester. NY 14445

In the education field. the use of video had traditionally been limited to short movies. The
instructor (or audio-visual assistant) would turn off the lights, start the film. and for the next
45 minutes students sat through ali near presentation, attem pting to take notes in the dark.

With the advent of videotape. the instructor had aslightly wider repertoire. The videotape could
be used in a non-1 inear fashion; that is to SffI, the instructor could fast-forward or rewind to
different areas of the tape. If the machine was sophisticated enough, the instructor could hold on
asingle image However, the searches to different areas of the tape are slow; tapes can stretCh,
which means that the tape counter will not be accurate after five or six uses; and holding on an
image ("freeZing") will eventually wear through the tape at that point, resulting in a loss of the
image or even tape breakage.

Videodisc offers an excellent alternative to videotape. The image on a videodisc can be frozen
indefinitely without degradation of the image; search times are under 3 seconds end-to-end of
the disc (depending on the player). and videodiscs are nearly indestructibIe. even in aclassroom
environment I

There are three methods of controlling the presentation on a videodisc. The first, and least
expensive method, is to use the videOOisc player's remote control unit. This allows the
instructor to play a sequence, jump to any area of the disc, freeze the action, etc. The second
method, which necessitates a higher grade player, involves a small program on the videodisc
which is automatically downloaded into an onboard microprocessor when the videodisc is first
started. This program. in conjunction with the remote controller, offers a slightly easier
method of control.

The third method, and the one that most concerns us here, is to use a microcomputer to control
the action of the videOOisc player. This has the great advantage of allowing an instructional
designer to create acomplete course for the student, with remediation and branching, that can
either be run by the instructor in aclassroom setting, or by the individual student at his or her
own pace.

Control of the videodisc by amicrocomputer offers the highest rtlgree of interactivity. Testing,
branching through use of menus to different sections of the program, and remediation con be
cleaner and faster through the microcomputer than through the remote controller.

146 The Journal of Forth Application and Research Volume 3 Number 2

JAM., Inc. is a company specializing in interactive videOdisc. We have a number of products
t.hat run from the Apple IITM and IBM-pe™ series computers I was asked to transport our
software to the Apple Macintosh™. At that time, the only available languages were Apple Pascal
(an interpreted Pascal, very limited), Microsoft BASIC, and MacFORTH from Creative Solutions,
Inc.

The Macintosh has a reputation as being very difficult to program. The very features that make
it so easy to use (winOOws, pull-OOwn menus, mouse control, graphics, etc.) aiso make it
difficult to program. Porting standard software to the Mac makes that software look extremely
dull in comparison to software created to tak.e advantage of the features of the Mac.

Creative Solutions has implemented aversion of Forth that accesses all of the Mac's features in a
painless fashion. In fact, I was able to implement a demonstration version of our software
(using all the Mac's features and controlling avideodisc player) in two weeks!

The first step was to implement the videodisc control words. The player chosen was the Pioneer
LD-V6000 Interfacing was accomplished through the Mac's modem port. MacFORTH includes
t.he words S.EMIT, S~EXPECT, S. ?TERMINAL (which perform the obvious functions to the
serial port) and S. ?READY to determine if the port is busy. Thus:'

XMIT (C -- \ send chcr to videodisc player)
BEGIN S.?REfIlY utlTIL (wait. for it ...) S.EMIT (go!) ;

00> (n -- \ oet n chcrs froll vd player to pod) ("vd froa")
BEGIN S. ?TERt111'R.. ltITiL (wi t for soeething COIling in ...)
PfI) S\.lAP (set up addr, count)
S.EXPECT (.ove buffer to PAD) ;

HALT SF XMIT ;

GET .STATUS (- c \ get status byte froll player)
04 XM IT 1 00> PfI) C@ 7F fltI) ;

?BUSV (- f \ get status froll player - 0 i f stopped)
GET. STATUS 65 =I'()T ; (fudge for true =busy)

[£LAY BEG IN ?Bl.ISY I'()T ltITi L ; (just waitt i I player ready)

These few words form the basis for the rest of the words needed to control the LD-V6000.
Finding out which frame the player is currently showing, initiat.ing a search, or playing a
sequence are very simple:

?FRAI1E (- n \ get fraM ntaber froa p Ioyer)
D3 XI'II T (request. fMae -)
2 00> PfI) ~ ;

Proceedings of the 1985 Rochester Forth Conference

IJPLAY FD XMIT;

taF IIt) (n - \ search to f ralle n)
DlP STARTFRfI'E ! (save copy incase need to repeat)
[IF ?FRAI1E = IF (CINII 1M a Iready t.hre?)

DROP ELSE (do noth i ng)
SEND.NUMBER F7 XMIT
BEG IH GET. STATUS SO =HOT LtIT IL (honut)

net;

147

The word SEND.NUMBER is necessary to turn the frame number on the stack into the sequence
of bytes that the LD-V6000 expects.

This program, being a prototype, did not have a complete authoring language implemented.
Therefore, I used some specific conventions: any word that returned a value started with a
question mark (?FRAME. ?BUSY); any word that the instructional designer might have to use
that expected a number on the stack started with a number sign (-FIND. -PlAYTIl); any
word that I needed which was alreaay aMacFORTH word I simply added a "V" to the beginning of
(VPlAY, VPAUSE). This meant that the designer could control the player directly from the
keyboard, testing options and making decisions about sequences of motion and still frames with a
minimum of fuss, using Forth's immediate mode (Of course, I didn't tell our designers that they
were writing programs I):

42322 taF I It) 43743 ttflLAYT IL
50435 ttF IIt) 50647 8pLAYT IL MA IH.MEtIJ

Once the designer had decided on the exact sequences he or she wanted, and their order, I would
code the final controls into Forth words, Meanwhile, the deSigner would be creating a standard
text file of questions and answers for student testing. In order to make it as simple as possible
for the designer, I told them I would worry about formatting to fit the windows, I created some
special Windows for the questions and answers to give an additional visual interest to the
program:

DECItR.

tELl. UII'DlJ TEST. U (create the • i ndolI for tt-.. test quu t i OM)

50 20 240 240 TEST. \.I \.I. BOlH)S (where the • i ndow • i I I appear)
3 TEST.1oI IoI.TVPE (no title, no close, drop shadow)
HOT.UISIBLE TEST.U U.ATTRIBUTES (don't show it ti I I want it)

teuB tf)(lI.I CCflAECT. U (create the • i ndolI for the answer)
100 260 217 sao CORRECT.1oI \.I.BOLKlS
1 ctHlECT.U U. TYPE (no ti tie, no close, double frCRe)
OOT .UISIBLE CORRECT. U U. ATTR IBUTES

TEST .101 fD). 101 Itf)(lI.I CORRECT. 101 fD). loll tf)(lI.I

148 The Journal of Forth Application and Research Volume 3 Number 2

The problem with creating programs on the Mac is that you never want to slop OOjing Mac
features. I hed already effectively ported the existing capabilities of our other versions, but
now I added agame. We were teaching about Local Area Networks, and I added agame in wh ich the
student set up an office. He or she would place microcomputers, file servers, printers and dumb
terminals in the office, connect them with cables, pick the type of network, then run it. The Mac
would test each component of the network., and let the user know if the network had run or not.
This section alone would have taken weeks, except that MacFORTH has the capability of loeding a
MacPaint graphic image into a MacFORTH window. This meant that the introduction, the office,
and some additional graphics could be created off-line by me or an artist (note the distinction),
end then added at a later date. This gave me the time to work on the game itself.

Each element of the game was fine-tuned to take advantage of the Mac. For example, running
cable from one element of the network to another was done through a "rubber band" effect:

RUBBER BAND (x Y -- \ siMUlate the riband effect)
BEGIN

2DlP tr10USEXY (starting and ending points)
3 3 PEttSIZE PATXOR PEtt'lOOE (type, size of pen)
4 PICK 4 PICK 4 PICK 4 PICK
(dup start/end pts - not alQ9CW\t, but it works)
VECTOR VECTOR (draw & erase)
DO. EVENTS MOOSE. DQI.tI =

lJI'fTIL; (leave final craw for do.cable)

DO.CABLE
@I"IOlJSEXY~

LI£RE. IS. IT? (- of rect Ile're currently in)
?DlP (rect-) IF ("'ra in a network cOlllPonent ...)

1- ROT ROT RlIl8EfI. BAtt) (do the rubber band)
@l1OUSEXY 20lF LI£RE. IS. IT? (• of rec t we ended in)
?DlP IF (we ended in a c~t ...)

t- 0 RCU. OVER OVER (get seconcI set for first I ink)
SAVE.LINK (to other end of cable)
SloW (use first set, save in other I ink)
SAUE. LINK (back the other way)

VECTOR (ended okay) ELSE 2DROP 2OROP DROP THEN
ELSE 2DROP (not a good start) TI£tt (started okay) ;

The videodisc program was completed in record time. Forth's interactive nature allows me to
test different w~s of doing things to get just the "look" I want on the Mac. It's interpretive
nature allows our instructional designers to map out different sections of the program and test
each as they go along. It's speed gives me the ability to control every aspect of the player
without resorting to assembly languClJe.

I could not have completed the project in the amount of time I was given using a different
language. The number of features available on the Mac. coupled with bringing up a complete
instructional package on a new computer would have been overwhelming in a language that did
not offer the power and friendliness of Forth.

