
Proceedings of the 1985 Rochester Forth Conference

LOCAL VARIABLES
John R. Hart
John Perona
HARTRONIX Inc.

1201 N. Stadem dr.
Tempe, Az. 85202

INTRODUCTION

159

There are some cases where the number of variables inside a
procedure exceed the maximum that can be easily accessed
with simple stack operators.

Local variables are proposed to free programs from stack
thrashing and spaghetti like manipulation that can occur in
programs with a large number of stack variables.

DESCRIPTION

Standard FORTH can easily access the top three elements on
the stack. The Return stack can contain a fourth variable.
Programs with more than four variables require a careful
arrangement of the stack order and execution sequence.
Sometimes there is no reasonable solution. These problems
make it difficult to justify using FORTH for tasks that
require a large number of variables.

There are several ways to implement local variables. One
is to use a standard variable and save its contents at the
start of the procedure and restore at the end. Other
methods would be to assign space in memory or on one of the
stacks and develope a means of addressing the space.

A data stack implementation has the following advantages:

1. Ease of allocation of temporary space.
A simple adjustment to the stack and local frame
pointer create Local variable space.

2. Ease of accessing the local variables.
Addition of an offset to the local frame pointer
gets the address of a Local.

3. Self initialization
All stack input to a procedure is in the same space
that is assigned to the Local input parameters.

4. Ease of deallocation of Local space.
When a procedure is finished Local space is
deallocated by moving the data on the stack up to the
end of the Local frame pointer.

5. Overflow exceptions are detected by the stack and
dictionary error checking procedures already in FORTH.

160

SYNTAX

The Journal of Forth Application and Research Volume 3 Number 2

The syntax developed to
similar to the usual input
Local variables are defined
by enclosing them in braces

define the local variables is
output comment used in FORTH.
after the name of the procedure
n{}n.

First the input parameters are listed followed by a dash.
Next the temporary variables followed by a dash and finally
the output parameters. To facilitate variable length
output and recursion, the output labels are used only as a
comment. When the semicolon is encountered, the local
labels are forgotten from the dictionary.

EXAMPLE {INl IN2 - TMPl TMP2 - OUTl OUT2
INl IN2 + -) TMFl
INl IN2 - -) TMP2
INl TMPl * IN2 TMP2 * \ leaves the outputs on the stack

When referenced, local variables are fetched to the stack.
When the label is preceded by a goes to arrow" -) ", a
number is taken from the stack and stored in the variable.
If the address of the local is needed an" 'A " will put
the address of the local on the stack.

This allows words like" +! n to be used.

Example:

45 'A TMP2 +!@

The example adds 45 to TMP2 and fetches it to the stack.

Implementation can be divided into the execution phase and
the compilation phase.

IMPLEMENTATION

At the start of a procedure containing local variables, the
old local frame pointer is saved on the return stack. The
new frame pointer is set up and any temporary variables are
filled with zeros.

Proceedings of the 1985 Rochester Forth Conference 161

The initialization of the locals is accomplished by calling
the EXECUTE. LOCALS program. The two initialization
parameters which follow the call are:

1. The total number of locals.
2. The number of temporary variables.

After initialization, the EXECUTE. LOCALS program calls the
body of the procedure which is located after the
initialization parameters.

When the procedure that is using locals exits, it returns
to the last part of the EXECUTE. LOCALS program where the
local space is deallocated. The old frame pointer is
restored and the output is copied to the current stack
position.

References to locals inside of the body of the procedure
will compile in one of three different programs. LOCAL
returns the address of the variable. LOCAL@ returns the
contents of the variable. LOCAL! stores a word from the
stack into the variable.

These programs should be written in machine code so they
will execute as fast as possible.

EXECUTE. LOCALS
R> FRAME @ >R >R
R@ 1 + @ ?DUP

IF 1 DO 0 LOOP
SP@ FRAME !
R@ 2 + EXECUTE
FRAME @
DUP R@ @ +
OVER SP@ 3
MOVE>
R> @ SP+!
R> FRAME !

LOCAL
R> DUP 1+ >R @
FRAME @ +

LOCAL@
LOCAL @

LOCAL!
LOCAL

(---)
\ save old frame pointer
\ get number of temporary vars

THEN \ initialize temporary vars
\ setup new frame pointer
\ execute body of procedure
\ bottom of frame
\ top of frame
\ number of words to move

\ adjusts stack pointer
\ restore old frame pointer

--- ads)
\ gets the local offset
\ calculates the local address

(--- data)

(data ---)

162 The Journal of Forth Application and Research Volume 3 Number 2

Compilation of locals begins with a 11 { 11 following the
name of a procedure. This program first compiles in the
address of the EXECUTE. LOCALS program followed by two
zeros. Then the current values of HERE and LATEST must be
saved. HERE is set to zero and the error vector is set to
the local compiling error program.

Input labels are parsed and created in a new dictionary
whose space is located 100 locations from the top to the
stack. The zero in HERE is a flag saying that no l~bels

have been created yet. When a 11 - 11 is found, the parsing
of input labels stops and the parsing of temporary labels
starts.

When the second 11 - 11 is encountered, the create phase is
finished and the program looks for the "} 11 skipping over
the output labels. If the symbols 11 {- -} 11 are missing
or in the wrong order the local compile error will be
called. After correct creation of local labels, the error
vector is changed to the forget locals program. HERE and
LATEST are restored.

The remainder of the procedure compiles in the normal
manner but the semicolon forgets the local labels.

NOTE: To obtain the remainder of the
HARTRONIX, Inc. The address is listed at the
this article.

code contact
beginning of

