
Proceedings of the 1985 Rochester Forth Conference

HFORTH: A High Level Business Language in FORTH

Pierre Moreton
990 Arnold Way

San Jose, CA 95128

ABSTRACT

37

A presentation of some features of HFORTH, a high level business
language written in FORTH, some recent applications, and the extension
to THE ROBOT, a menu driven program generator.

INTRODUCTION

FO RTH has demonstrated the interest of its concepts essentially in the
scientific domain, in process control and in graphics. Its main
arguments are speed, compactness, and interactivity. However, I have
spent over seven years using FORTH exclusively for writing business
applications, a domain for which FORTH was not originally designed,
and where none of these characteristics are critical.

I selected the language for other original features it has:

1) the capability to easily define a very high level, English-like
language on top of it, to which anyone can be trained in a couple of
hours.

2) the ease of building a library of standard business routines, so that
a new application can be written from existing modules.

3) the impressive flexibility to change any feature of an application.

4) the portability of the resulting packages.

The main characteristic of the business software, in vertical markets
like banking, insurance, real estate, medical analysis, law offices, and
food industries, in which I have been involved, is that the
specifications are continually changing. This is because the user does
not really know what he wants until he actually uses the product,
because each user has his own way of managing his business, and
because his needs are in constant evolution. Looking back to all these
applications, for which the size of the compiled code varies from 300k
to 2000k, it seems to me that the major desirable points of a business
language are:

1) speed of development, provided by a very high level set of business
oriented instructions.

2) low cost for entirely modifying an application, even in a final stage,
provided by a straightforward readable syntax.

This paper is about the steps accomplished in this direction.

38 The Journal of Forth Application and Research Volume 3 Number 2

The structure of the system is the following:

user
program

or generated
program

THE ROBOT Program generator

HFORTH

HFORTH

MFORTH

KFORTH

high level language

multiuser database

any type of FORTH

This language is intended to be used by programmers, totally ignoring
what FORTH is about. It is made of about 120 basic words with which
any business application (so far) can be written. For very specific
functions, or in the very rare cases where speed may become critical,
the underlying FORTH can be used and mixed in the HFORTH code. I
do not intend to give here a tutorial on HFORTH, but examples in two
areas, data declarations and files, show some significant caracteristics
and explain why it is so cost effective to program in HFORTH. In what
follows the HFORTH words are underlined.

1. Data Declarations

The basic syntax is

v CLIENT# :N: 50 ••

where V is a defining word for an HFORTH variable.
N means that the preceding variable is numerical, in this case

with 5 integers and 0 decimals. This will be used to control the entry
format and to display accordingly, although all the numbers are
internally handled in double precision•

•• marks the end of the definition.

There are four basic types of HFO RTH variables:

Numerical, as above
Strings (text)

V NAME T : 21
Dates - --

V DATE.OF.BIRTH : D :
Boolean (true or false)-with

LOGIC MARRIED

6 0 : TEST-DATE: DIS-DATE ••
another defining word

Automatic Controls
To the variable can be attached two optional procedures, as above in the
definition DATE.OF.BIRTH. The first one will be executed at entry time,
in addition to the simple format checking, to control that the entered
value conforms to some special characteristic. TEST-DATE is an HFORTH

Proceedings of the 1985 Rochester Forth Conference 39

word which controls that the entered number is consistent with a date
and stores it as an absolute day on which calculations can be
performed. The second one redisplays the entered value as desired.
DIS-DATE is an HFORTH word which redisplays the date with slashes
and the name of the day of the week.

The control procedures can be either existing HFORTH words or further
defined by the programmer:

V FAMILY-SITUATION: T. 2: CTL.SIT : DIS.SIT
with

:CONTROL CTL.SIT
IF(ENT-VALUE =/= " MA " AND
- ENT-VALU~~" sf ")TRUE

" Enter MA or SI please .:. -> TEXT-ERROR
THEN

1..

An entry not equal to MA or SI will issue the above message and will
prompt for another entry.

:DISPLAY DIS.SIT
ACCORDING-TO DIS-VALUE

VALUE" MA " ==> PRINT" Married"
VALUE'" SI I'==> PRINT I'Single .:.

END-VALUES

L

In this example the content of the variable never appears to the user
because it is displayed differently.

These HFO RTH procedures have a strong flavor of FO RTH, because the .£
and ; are used the same way, but they show the use of some HFORTH
words, which have the "natural" notation instead of RPN. ENT-VALUE
and DIS-VALUE are general names that replace any HFORTH variable and
take all its characteristics (dynamic vectoring). It allows one to build
libraries of procedures of general use.

In the above example, if we wanted the progI!am to accept more than
these two programmed values, but control that the entered value matches
with a series of values stored in a file filled in by the user, this can
be executed automatically if the definition mentions it:

V PROFESSION.CODE : T : 3.. TABLE PROFESSIONS

In this case the system will forbid any entry of a value which does not
exist in the named file (PR OFES SIONS) and if this value exists, the
system will display the field of its related file which is associated
with THE-KEY, called its REFERENCE (PROFESSION.NAME, for instance).

At entry time some essential commands are built in:

* If the user wants to enter a value which has not yet been entered
in the related file, typing a * will open a window to add a new entry
in this file, and the entry of-this value will then be permitted without

40 The Journal of Forth Application and Research Volume 3 Number 2

interrupting the normal transaction. The word NO* can disable this
remote creation (in file systems for instance).

? The entry ? will open a window to display all the keys of the
related file and the entry of ?XXX will display only the keys of this
file starting with XXX.

A last optional feature can be added to the data definition, which is
the attribute HM meaning Help Message. This will display the data for
which a help message, of variable length, can be entered by the word
HMESSAGES and stored in a file independently from the code. The
appropriate message will be displayed when typing ? instead of an
entry for this data. It supercedes the listing of a related file in case
both attributes are given to a datum.

All these attributes that can be given to a variable at definition time
are stored in the parameter field, of variable length, and executed
automatically, without any additional code.

2. Files

All the business applications use a great number of data files, and the
need for high level words to manipulate them is obvious.

2.1 Declarations

The typical syntax is

un STR CLIENTS
ORO CLIENT#
RFR NAME

DATE.OF.BIRTH
FAMILY.SITUATION
PROFESSION

END-STR

This descriptor is a logical file called structure. By its label (here 101)
it is assigned, through a table (unknown by the programmer) of
assignments, to a physical file on disk. The assignment of the physical
file is done by

101 LABELFILE C:PCLIENTS

assuming that the file PCLIENTS has been created on disk. This
assignment can be changed dynamically by a command like 102 ASSIGN
CLIENTS.

STR is a defining word for the name of the structure (CLIENTS).
ORO means that we want a file ordered (balanced AVL tree) by the key
whose name follows (CLIENT#).
RFR means that we want to associate the field whose name follows to
the key; that is to say, each time the program will mention PRINT
CLIENT# it will display not only the content of CLIENT# but the NAME
too. I call this feature automatic decodification.
END-STR ends the definition and stores in the parameter field of

Proceedings of the 1985 Rochester Forth Conference 41

CLIENTS, in addition to the PFAs of all the fields, the type of file and
the record length that it computes from each field.

Each field can be given an attribute like
AH always hidden
AD always displayed
OH optionally hidden
OD optionally displayed

This feature is of considerable interest in customizing a running
application for a specific customer without either changing the code or
recompiling, but as an installation procedure.

2.2 File Manipulation

A set of very general words allow us to enlarge our library of modules:

THE-KEY REFERENCE

ENTER-RECORD

prompts for an entry for each field of the record, and eventual
modifications of the entries. Here are some examples of these words.

JUMP
E"N'TER-NKEY
<SECUR SAVE

: ADD

L

ENTER-NEW-KEY \ prompts for the key field
\ and controls that it does not exist

\ = C R but scroll inside a window
\ prompts for all other fields

SECUR> \ stores the record under
\ security protection

: DISP IN CLIENTS \ makes this file current
BEGIN ENTER-KEY \ accepts only an existing key
WHILE(THE-KEY =/= BLANK)TRUE

ACCESS \ reads disk and copy to files buffer
DISPLAY-RECORD

L

REPEAT
OUT \ closes the file

As these routines can be totally written in general terms, a super high
level word MANAGE does all the usual actions on a file: ADD, UPDATE,
DELETE, DISPLAY, for a given record, and LIST a series of records
with the option to print or not.

Example:

V FILE.TO.MANAGE : T : 20 ••

: RUN
ENTER FILE.TO.MANAGE \ prompts for a file name
IN [FILE. TO. MANAGE] \ makes this file current
--\ by executing whatever is in the string between brackets

MANAGE \ prompts for the action and executes it
OUT

42 The Journal of Forth Application and Research Volume 3 Number 2

2.3 Relations Between Files

They are automatic when the same field name belongs to two different
files and is the key of one of them. They can be forced between fields
with different names by the TABLE function discussed previously.

All these instructions and functions considerably reduce the number of
lines of code to write, and subsequently the time spent in coding and
testing, which has alway been one of the important goals of FORTH.

APPLICATIONS

Here are two examples of applications written in HFORTH.

1. PERSONAL INJURY System for Law Offices

This application manages the database of all the information involved in
an action to sue for personal damages that occurred in an accident. The
structure of the database is the following:

courts attorneys 20 GLOBAL FILES •••••••

general info. accident litigation closing

employers

claims I
n per each

I

n LETTERS with Tickles to anybody above

Proceedings of the 1985 Rochester Forth Conference

2. FOOD Management System

43

This application is used to build recipes made either of basic items or
of other previously defined recipes.

A menu is made of several recipes, a day is made of several menus, and
finally a cycle is made of several days. An order can be entered at any
level, and the system scales the various paths in units and quantities to
give the order to the vendors, to the kitchen, and to the inventory. It
also performs a Cost/Sales analysis. The basic database design is the
following:

units

THE ROBOT

departments GLOBAL FILES •••••••

cycle

variable number
of levels

THE ROBOT is a program generator which can generate business
applications that do not require a complex database structure. It can,
however, handle a 2 level tree structure, and any relation between an
almost unlimited number of files. It includes a Report Generator and a
Word Processor capable of retrieving any information from the database.
Its features are very similar to DBASE II, but with a greater ease of use
by the fact that it is entirely menu driven and does not require any
programming at all.

Here is the automatic documentation that the user gets from his entries
in the generator.

44 The Journal of Forth Application and Research Volume 3 Number 2

SYSTEMS INC. THE ROBOT : BILLING DATE : 06/12/85
FILES Define the files
DIP Display a record on printer Nbre : 7

FILE NAME ••••••••••• LINES
FILE CODE ••••••••••• LIN
[MASTER FILE NAME].INVOICES
RECORD LENGTH ••••••••• 58
GENERATED? •••••••••• Yes

L# FIELD NAME INDEX TYPE INT DEC CONTROL OlD FILES/CALCULAT

KY CHRONO.LINES Yes Number 5 0 INC

03 INVOICES Yes Number 3 0 ENT

04 PRODOCT# Number 3 0 ENT

05 PRODUCT. NAME Text 25 RIM PRODOCTS

06 CATEGORY Yes Text 3 R/O PRODOCTS

07 UNIT.PRICE Number 3 2 R/M PRODOCTS

08 QUANTITY Number 3 0 ENT
TO+ PRODOCTS

09 TOTAL. PRICE Number 5 2 CAL 07+08
TO+ PRODOCTS

10 AMOUNT Number 5 2 CAL 09
TO+ INVOICES

REPORT DEFINITION :

REPORT CODE •••••••••• LINl
REPORT NAME ••••••••..Ordered list of
NAME (continued) •••••• LlNES
FILE NAME •••••••.•... LINES
REPORT INDEX•••••••.•• INVOICE#
REPORT WIDTH•••••••••••• 72
GENERATED? ••••••••.•• Yes

NAME OF FIELDS INDEX SEQ TOTAL WIDTH HEADING

01 CHRONO.LINES Yes 2 7 CHRONO.
02 INVOICE# Yes 6 4 INV#
03 CATAGORY Yes 7 3 CAT
04 PRODUCT# Yes 8 4 PROD
05 PRODUCT.NAME 9 25 PRODUCT. NAME
06 UNIT. PRICE 10 7 UNIT.PR
07 QUANTITY 12 4 QUAN
08 TOTAL. PRICE 14 Yes 10 TOT. PRICE

Proceedings of the 1985 Rochester Forth Conference 45

The generator creates an HFO RTH source code from the specific entries
of the user, which is then automatically compiled and unloaded on disk
in various file overlays. The user menu is generated, too. For larger
applications this code can be used as a basis, leaving to the
professional programmer only the most complex part of the application.

CONCLUSION

These two products demonstrate, assuming this is still to be done, the
high capability of FORTH to compete with the most popular products in
a domain for which it was obviously never designed. I personally made
the decision to develop all my tools and packages in FORTH in 1978,
and today I am glad I did.

46 The Journal of Forth Application and Research Volume 3 Number 2

