Proceedings of the 1985 Rochester Forth Conference 211

Combining Forth and the Rest of the Computer World:
Dynamic Loading of Subroutines Written in Other
Languages and Their Use as Forth Words.

William. L. Sebok

Princeton University, Dept. of Astrophysics
Peyton Hall, Rm. 129, Princeton, NJ 08544

ABSTRACT

Dynamic subroutine loading has been added to the local Vax [1] imple-
mentation of Forth-79 that runs under the Berkeley dialect of Unix [2] (so
called "Princeton Forth'). This paper is about the semantics of how this
might be specified and a sketch of how it was implemented here. Also men-
tioned are some of the problems that must be faced.

Introduction

In an operating system there may exist many other computer languages. One can
often construct a program from pieces in different languages, compiling each piece
separately and using a linker to combine them into a larger program. However when one
writes part of a program in Forth the rest of the program must be written in Forth. One
has to play the Forth game all the way.

There are several reasons one might want to include a subroutine written in some
other language inside a Forth program:

1) A subroutine might already exist written in some other language.

2) One may want to access operating system features in an operating system version
independent way. For example, in the Unix operating system files intended to be
loaded into C programs are provided that give symbolic names to various magic
numbers and which define the layout of various data structures. The names of these
files and the symbolic names contained within them are generally guaranteed to
remain the same between versions of Unix, but the values of the symbolic names and
the layout of the data structures may change between versions of Unix. It is difficult
to make use of these files outside of the C language.

3') For heavy numerical calculations Forth may not be one’s language of choice.

In Unix it is quite practical to have Forth words which run other programs as separate
processes. These programs can be written in any language. However, this is not enough.
In general, Forth shines when used to maintain a list of programs accessed from the key-
board (i.e. as set of Forth words). That these programs are resident in memory can be a
big advantage over a more conventional array of disk resident programs, as access time is
much shorter.

It is also possible to relink the Forth kernel to add new subroutines. However, doing so
requires exiting Forth. It also may require detailed knowledge of the operation of the

[1] VAX is a trademark of Digital Equipment.
[2] UNIX is a Trademark of Bell Laboratories.

212 The Journal of Forth Application and Research Volume 3 Number 2

kernel. A method of dynamically loading new subroutines from within Forth is more desir-
able.

Such a method of dynamically loading subroutines has been created for Princeton
Forth, an implementation of Forth-79 which runs on a Vax computer under the Unix operat-
ing system. [3], [4] This implementation of Forth was distributed over Usenet, the Unix
network, during July, 1984. In this implementation floating point numbers and character
strings have their own stacks and integers are 32 bits wide.

Syntax
Dynamic loading is invoked by the defining word SUBROUTINE. Executing the word
defined by SUBROUTINE executes the externally loaded subroutine.

The syntax of SUBROUTINE is:

incastn ... incastlincast] nargs oufcast
filen_s ... fileZ_s file 1_s nfiles entrypoini_s SUBROUTINE name

In the notation used here arguments ending with the characters '"_s" are character
strings on the string stack. All other items are integers on the ordinary parameter stack.
entrypoini_s is the name of the subroutine to be invoked.
nfiles is the number of strings to be passed to the loader.
filel_ s, fileZ s, ... filed s are the set of strings to be passed to the loader. These strings

contain things like file names.

outcast is a number which indicates the type of item returned by the
function. One possible value is VO/D_TY, i.e. return no item.

nargs is the number of arguments that this subroutine takes.
incast 1, incast2,... incasin are integers that indicate the type of each argument. Argu-
ments are gathered from the appropriate stack and passed to

the subroutine, incast! corresponding to the first argument,
incast2 corresponding to the second argument, etec.

The values of which the casts can take are defined as CONSTANTs.

Definition of Argument Type Casts
Type value stack location description
void_ty 0 - null type
addr_ty 1 parameter stack address (a pointer to something)
int_ty 2 parameter stack "standard" integer, i.e. 1 stack-cell size
dbleint_ty 3 parameter stack two stack-cells wide
float_ty 4 floating point stack floating point
dfloat_ty 5 floating point stack double precision float
string_ty 6 string stack character strings
char_ty 7 parameter stack 1 byte character
uchar_ty 8 parameter stack 1 byte character unsigned
short_ty 9 parameter stack 2 byte word signed
ushort_ty 10 parameter stack 2 byte word unsigned
long_ty 11 parameter stack 4 byte word signed
ulong_ty 12 parameter stack 4 byte word unsigned

The SUBROUTINE implementation keeps track of any global symbols that have been
previously loaded. The names of these symbols are passed to any further invocation of the
loader. Thus if two SUBROUTINE's are loaded and both reference a third subroutine, only

Proceedings of the 1985 Rochester Forth Conference 213

one copy of the third subroutine will be loaded. Also, if SUBROUTINE is invoked requesting
an entry point already present in previously loaded code no further code is loaded. Instead
a reference is compiled to the previously loaded entry point.

Example

Suppose there exists a C library subroutine cos which takes a floating point number as
an argument, takes the cosine of this number, and returns it as a floating point number.
One desires to use this library routine to define a Forth word that does the equivalent
operation, taking a floating argument and returning a floating point value. The definition
that will do this is:

float_ty 1 float_ty \-Im 1 _cos SUBROUTINE cos

Note that in this Forth implementation a backslash precedes a string constant which
is placed on the string stack. The string -lm is a reference to the math library. Under Unix
entry points in the C language have underscores appended to them. Thus the entry point

name is ''_cos".

Implementation
Loading takes place in 5 steps:

1) A dictionary header is constructed and an interface routine is compiled. This inter-
face routine, 1) uses the supplied casts to gather the arguments from the various
stacks and constructs a parameter list to pass to the subroutine, and 2) calls the sub-
routine. The return stack pointer (which in this implementation is the same as the
hardware stack) is saved and the hardware stack is made the parameter stack. This is
done because in this implementation the parameter stack is bigger than the return
stack and one does not know how big a stack the called subroutine might need. Upon
return from the subroutine the returned value is placed on the proper stack.

2) A temporary file which contains an image of Forth memory is constructed for the use
of the loader. The file also contains a symbol table constructed from the symbol table
kept in memory. This symbol table contains the symbols brought in by previously
loaded subroutines and also contains the names of routines initially linked into the
kernel. It is sufficient here to store zeroes (actually file system holes, which do not
take up disk space) into the memory image as the loader only cares about the size of
the image and the symbol table.

3) The loader ("1d") is invoked. Two special options exist in the loader which make this
process easier. The first option is the -A option which allows one to specify a file whose
symbol table is referenced but not actually loaded. The file constructed in the previ-
ous step is used with this option. The second option is the -T option that allows one to
specify where the output of the loader is to start. The current high point of the Forth
dictionary is used with this option.

4) The contents of the output of the loader are loaded into Forth memory.

5) The new symbols in the symbol table of the output of the loader are appended to the
symbol table kept in Forth memory.

A Complication — malloc vs. FORGET

There is a complication that has had to be faced. This concerns this interaction of
Forth with the standard Unix library subroutine maliloc.

In this Unix implementation of Forth, growth of the Forth dictionary is handled tran-
sparently to the user. Under Unix, virtual memory is divided into two segments. One seg-
ment grows downward from high addresses. In this segment are placed the stacks, with the
parameter stack occupying the leading edge. The other segment grows upward from low
addresses. In this segment resides the Forth dictionary. The boundary of this segment is

214 The Journal of Forth Application and Research Volume 3 Number 2

extended or contracted by a Unix system call. This is done automatically by the Forth
memory management routines.

Malloc allocates a block of memory. It takes a single argument which is the number of
bytes of memory desired. It returns a pointer to the allocated block of memory. Also
present is the routine free which frees a block of memory previously allocated by malloc.
Malloc first tries to allocate memory from memory that has been previously freed. How-
ever, if this is not possible it will also issue the system call to move the leading edge of
memory.

Thus there is a potential conflict between malloc and Forth memory allocation. It is
quite possible to create a version of malloc which respects Forth memory allocations. How-
ever, a fundemental problem still remains.

This problem occurs when malloc is called and then a FORGET is issued. Suppose
pointers to the malloc’ed memory are saved somewhere in the memory of the calling sub-
routine. These pointers are no longer valid after a FORGET. Attempts to use these
pointers will cause an illegal memory access. The issue is made hard if one wants to use
standard library routines which are unaware of Forth's use of memory. This problem has
been solved in a way that imposes no new restrictions on either Forth or the non-Forth sub-
routine.

A call to free which frees memory adjacent to the dictionary pointer will cause the dic-
tionary pointer to be moved back to the beginning of the area freed. A call to malloc which
cannot be satisfied from existing free areas causes the dictionary pointer to be advanced.
If a FORGET is issued and the memory to be forgotten contains one or more areas allo-
cated by malloc and not freeed then in addition to its usual actions FORGET takes these
actions:

1) The dictionary pointer is moved back to the end of the last area allocated by malloc.

2) The areas of memory that are above the FORGET point but are between the malloc
allocated memory areas are marked "free” as if they had been freed by the library
Jree routine. Thus this memory will be the first memory reused by further calls to
malloc.

The net effect of all of this is that malloc, free and normal dictionary growth and FOR-

GETting can co-exist in the same memory, without the necessity of pre-allocation of fixed

size areas of memory to either malloc or to dictionary growth.

Conclusion

A package like the one described here can allow Forth to live comfortably under Unix
and make the best use of whatever tool is most suited to the task at hand. It is likely that
similar methods are applicable to Forth under other operating systems.

Acknowledgements

I would like to thank Mitch Bradley and Jim Gunn for helpful discussions. As often is
the case most of the time here was spent working on the syntax and the form of the
interaction with the operating system rather than the actual coding.

References

[3] Sebok, W. L., 1984, Rochester Forth Conference, "A Vax Implementation of the Forth-79
Standards’’ (abstract)

[4] Sebok, W. L., 1984, Journal of Forth Applications and Research, "A Vax Implementation
of the Forth-79 Standards”, submitted.

