
Proceedings of the 1985 Rochester Forth Conference

The Reed for a Standard Test-Suite

Nicholas Spies
313 Grace Street

Pittsburgh, PA 15211-1503

Mahlon G. Kelly,
268 Turkey Ridge Rd.,

Charlottesville, VA 22901

215

A test-suite is a set of programs used to assure that a compiler or
programming language meets explicit specifications. A standard FORTH
test-suite would bring many advantages to the FORTH community.
Ambiguities in the language of the standard would be resolved through
example. Both users and system-authors would have a convenient way to
confirm that their dialects meet standard requirements. And most
importantly, dialects that could run the standard test-suite
successfully would be virtually assured of being code-compatible. In
short, we feel that a standard test-suite is a necessary step in the
evolution of an effective FORTH standard.

But before a standard FORTH test-suite is written some questions
must be answered. These include: How would a FORTH test-suite be
designed and written? How reliable, redundant or inclusive would it be,
or would it have to be? In what dialect or dialects would it be
developed? Who would write it, and by what process would it be approved
by the standards team? Would a standard test-suite be accepted by the
FORTH community? Would the effort be justified? Of course many of these
issues will have to be resolved by discussion and consensus so the
discussion that follows will be restricted to some thoughts on how a
standard test-suite might be designed.

Each FORTH word may be considered to be a "black box" whose stack
input, output, and actions are defined in the standards but whose
implementation is left to the authors of standard FORTH systems. The
test-suite would test each word for its proper function with particular
attention being paid to the allowed limits of its arguments and for
interactions with other words and memory as appropriate. A complete
tes t-sui te would need to perform an undetermined number of redundant
tests to assure that all words meet standard requirements. The material
presented here raises more questions than it answers and is meant to
stimulate thought about a test-suite rather than to offer a particular
solution. The standards team would have to determine the form and scope
of the test-suite.

The first step 1n defining a test-suite would be to glve examples
for each definition in the required word set so as to make explicit the
various conditions and limits of the use of the word. For example the
FORTH-83 definition of + is simply

+ wI w2 -- w3 79
w3 is the arithmetic sum of wI plus w2.

"plus"

but the definition is almost circular in
practically synonymous with the outcome of

that "arithmetic sum"
the operation "plUS".

is
The

216 The Journal of Forth Application and Research Volume 3 Number 2

definition should address the question of how + transforms w1 and w2 to
give w3. Giving some examples in the definition would leave less to
guesswork or prior knowledge. If some limiting conditions such as

32767 32767 + U.
-32768 -32768 + U.
-32768 65535 + U.

displays
displays
displays

65534
o

32767

were defined the action of + would be made more explicit. These kinds of
examples, even for "self-evident" definitions, would go a long way
toward making the standard more informative (and would probably force
the re-writing of some vague definitions). Of course the standards team
would have to decide what examples would be appropriate.

Once the limiting conditions are determined they could be used to
define a simple word to check whether + functions properly. This might
be done with

: +TESTER (--) 32767 32767 + 65534
-32768 -32768 + 0
-32768 65535 + 32767

IF ." + passed" ELSE "+ failed"

AND
AND

ABORT THEN;

Words analogous to +TESTER could be defined for all the other required
words to make up a simple test-suite.

If the data for + is stored in a table a more general form of test
word could be written.

CREATE +DATA 32767
-32768
-32768

32767 , 65534 ,
-32768 , 0,

65535 , 32767 ,

If two variables were created

VARIABLE SELECT and VARIABLE FUNCTION

then the generalized form of the test-word might be

MATH-TEST (--) SELECT @ >R
R@ @ R@ 2 + @ FUNCTION @ EXECUTE R@ 4 + @
R@ 6 + @ R@ 8 + @ FUNCTION @ EXECUTE R@ 10 + @ AND
R@ 12 + @ R@ 14 + @ FUNCTION @ EXECUTE R> 16 + @ AND
IF •" passed " ELSE ." failed " ABORT THEN;

and the test for + could be made after

, +DATA >BODY SELECT ! and ' + FUNCTION !

MATH-TEST could also be used to test - , * , I and other words requ~r~ng

the same number of arguments and type of test, given the appropriate
data tables. This approach would simplify the design of the test-suite
considerably and lead to a useful catagorization of words by stack
effects and functional type.

Proceedings of the 1985 Rochester Forth Conference 217

Designing a test-suite seems simple, but ~s it? For one thing,
+TESTEB. and HAm-TEST rely on a series of other words in order to
execute properly, as well as a properly functioning outer interpreter
and address interpreter. The word being tested may fail (or pass) for
reasons having nothing to do with the word itself. Is it possible to
design a test-suite that does not rely to some degree on the rest of the
FORTH system? Probably not, because the test-suite could not function
without the rest of the FORTH system and its internal code.

But this problem is not as great as it may seem at first. By
definition the test-suite would only be used on a FORTH system that ~s

up and running, which itself means that many words function as they
should. Even if some tests are invalid because of untested words used in
the definition of the test, other tests will probably turn up those
words. The inherent redundancy of the test-suite should give it a high
reliability. The amount and form of this redundancy will require careful
study; writing a good test-suite would be much less trivial than these
examples may suggest.

Technical problems are not the only ones that will need to be
resolved by the test-suite. Although the definition of WORD is explicit
in FORTH-83, it is qualified by the sentence

'The counted string returned by WORD may reside in the
"free" dictionary area at HERE or above.' (emphasis
added)

Only careful reading of the standard reveals that the phrase
34 WORD C@ 1+ ALLOT

cannot be used to compile a quote-delimited string ~n a standard
program, but instead

34 WORD DUP DUP C@ HERE SWAP 1+ CMOVE C@ 1+ ALLOT
must be used to allow for standard dialects that do not parse strings to
HERE • As most dialects do parse to HERE chances seem fairly good that
this bug could easily creep into an otherwise standard program. The
question is: How many other caveats and exceptions of this sort are
there in the standard? The test-suite definitions would provide the
definitive answer on how WORD and every other required word would have
to be used in a standard program. Reducing the potential for this sort
of error would be a major benefit of a standard test-suite

Although it will be difficult to write a standard test-suite we
feel the effort would be richly repaid. System-authors would have a tool
with which to assure compliance with the standard and users would have
the means of confirming this compliance. The test-suite would be a
library of standard FORTH usage and a guide for students and
professionals. And standard FORTH dialects would be more compatible with
one another, in keeping with the purpose of the FORTH-83 standard,
namely:

"A standard program shall execute equivalently on all
standard systems".

218 The Journal of Forth Application and Research Volume 3 Number 2

