
Proceedings of the 1985 Rochester Forth Conference

NAPLPS Decoding in Forth
Dr. Billie Goldstein Stevens

CBS Technology Center
227 High Ridge Road

Stamford, Connecticut 06905

221

Abstract
The North American Presentation Level Protocol Syntax (NAPLPS) is a
standard for encoding both textual and graphic information for
videotex. Given a personal computer with hardware (either built in
or added on) that can produce a display conforming to the standard,
the actual decoding of NAPLPS-encoded data can be done in software.
Such software decoder. have been written both experimentally and as
commercial product. (primarily in Canada, where consumer videotex is
more prevalent than in the U.S.). NAPLPS decoding i •• imilar to
recursive descent par.ing, but NAPLPS code does not always have the
clean .tructure of a context-free language. There are awkward jumps
and unexpected escape. possible. Forth lends itself readily to the
task of NAPLPS decoding, gracefully handling both the
straightforward par.ing and the sudden .hifts. An experimental
NAPLPS decoder in Forth has been developed at the CBS Technology
Center. We briefly describe the NAPLPS coding techniques, then
explain the design and implementation of the decoder. The
suitability of Forth for this task i. illustrated and emphasized.

1 INTRCDUCTION
The North American Presentation Level Protocol Syntax [1] is a

.tandard for encoding display data. There are two major components
to a NAPLPS receiving device: a decoder and a di.play. The decoder
may be either hardware or .oftware. This paper describes a software
NAPLPS decoder, written in Forth, that runs on an IBM PC with a
colorboard. As we explain below, it would be a relatively easy task
to port this decoder to different hardware.

Section 2 gives a greatly simplified description of the NAPLPS
standard, explaining only as much as i. necessary to understand what
decoding entails. Section 3 describes the design and implementation
of the Forth decoder, and di.cusses why Forth is partiCUlarly
well-suited to NAPLPS decoding. Thi •• ection elucidates why good
programming practices, combined with the facililties provided by
Forth, made writing the decoder an interesting and enjoyable
project.

2 A SIMPLIFIED LOOK AT NAPLPS
As tbe heading implies, this section gives only an extremely

brief overview of NAPLPS. The (literally) definitive work on NAPLPS
i. the ~I.1.b Am-'-I.i~.aD UfS. 1.1..lIUU.!..l1 [1]. An introduction to NAPLPS
was presented several year. ago by ~ magazine [2].

NAPLPS i. a .tandard formali.m (i.e., language) for encoding,
in a machine-independent manner, text and graphic di.play
information for videotex. Eacb character in a NAPLPS stream is a
token (word) of the language. NAPLPS has botb a .even-bit and an
eight-bit mode. For tbe .ake of .implicity, tbi. paper describes
only tbe .even-bit mode; there i. an eight-bit analog to each
feature described below. A .tream of NAPLPLS-encoded data is just a
stream of ASCII cbaracter., ranging in value from Oh to 7Fh.
(Lower-case 'b' following a number indicates a hexadecimal value;
all cbaracter values are represented thi. way.) Characters are
usually interpreted as indices into a look-up table, called the

222 The Journal of Forth Application and Research Volume 3 Number 2

in-ule table. The most lignificant hexadecimal digit of a character
is the column number; the least lignificant digit is the row number.
The action caused by a particular character depends on the contents
of the table at the time the character is received.

The in-usc table consists of two parts--a 32 element control
set and a 96 element character .et. The contents of the in-use
table change when characters arc received specifying a new control
set or a new character set.

There arc two control .ets, known as CO and CI, defined In
NAPLPS. (The standard also leaves "hooks" for other control .ets to
be added.) The control set characters can be used to change cursor
positions and text characteri.tics (normal, double-size, reverse
video, etc.), as well as the contents of the in-use table.

There arc six character .ets: dynamically redefineable
character set (ORCS), picture drawing instruction set (POI),
primary, supplementary, mosaic and macro sets. The primary,
supplementary, mosaic, and ORCS sets are character sets in the
conventional sense--that is, each character received when one of
these character sets is in the in-use table causes one character to
be drawn on the screen. The first three sets are fixed sets of
characters, specified in the NAPLPS standard document. ORCS, as its
name implies, allows the creator (encoder) of the information to
define her/his own characters, but invocation of a character while
the ORCS set is in use causes a particular (previously defined)
character to be drawn. The POI set i. used primarily to draw basic
geometric shapes--arcs, rectangles, points, polygons. The macro set
i. used to invoke previously defined streams of NAPLPS; that way,
sequences that are used more than once need only be transmitted
once.

We stated above that characters are "usually" interpreted as
indices into the in-use table. Certain characters, in certain
(control and character) .ets introduce multi-character sequences.
In these cases, subsequent characters are interpreted as part of a
sequence, rather than as indices into the table. There are certain
characters, however, that are always interpreted according to the
table, even when they occur in what would otherwise be the middle of
a sequence. The NAPLPS standard specifies what happens when a
sequence is interrupted in this fashion. There are also characters
that interrupt only some types of sequences.

All of these arc aspects of NAPLPS that must be considered when
designing a decoder. As stated above, there are many other features
of NAPLPS; all them must be handled by the decoder. The features
described here arc only those necessary to understand the following
sections.

3 THE FORTH DECODER
Forth decoding is similar to recursive descent parsing.- (For a

detailed explanation of recursive descent parsing, consult any
standard text on parsing or compilation, such as [3] or [4].) That
is, the decoder, like a parser, inspects each token. In NAPLPS,
each character is a token. (This minimizes transmission length as
well as obviating the need for lexical analysis.) If the token
initiates a particular type of sequence, the process that decodes
(parses) that type of sequence is invoked. In programming languages
that are parsed in this fashion, either a sequence-terminating token

- "Recursive descent interpreting" might be a more accurate phrase,
since the decoding process acts on characters as they are received.

Proceedings of the 1985 Rochester Forth Conference 223

i. received, or an error condition exi.t •• In a NAPLPS stream,
however, there arc other possibilitie ••

Some .equences have fixed terminator.--e.g., the END character
(45h in the Cl set) marks the end of a macro, texture, or DRCS
definition. Other .equences have a length that is known in advance
by the sequence proces.or, .uch as the APS (active position .et; lCh
in the CO set) cursor positioning character. In either of these
ca.es, however, certain characters can cause termination of the
sequence before either the terminator (in the fir.t case) or the
expected number of bytes (in the .tcond) is received. What action
i. taken upon such "abnormal" termination i. .pecified by the
standard. In general, the character. that cause such terminatIon
also initiate other actions, .0 their values must be retained beyond
the terminating process.

Additionally, there are sequences that have no "normal"
termination--that i., .equences of indeterminate length with no
special terminator. The four "draw polygon" commands (34h, 35h, 36h
& 37h in the POI set) are all in this category. In these cases,
.equence proces.ing continues until a character is received
initiating some other action. At that point, processing of the
current sequence must be completed by the decoder, and then
processing of the new character must occur.

Thi. aspect of NAPLPS can be viewed another way. That is,
certain NAPLPS characters, occuring in certain contexts, .erve a
dual function-- they both terminate an ongoing sequence and initiate
.ome other action. It i. this feature that makes strict recursive
descent algorithms inadequate for NAPLPS decoding.

The decoding process itself is similar to recursive descent,
with "escape hatches" where necessary. Forth lends itself
gracefully to this type of processing. The decoder was designed in
a top-down fashion, with records kept of day-to-day progress. The
fir.t routine written was the highest-level decoder proces.; i.e.,
the routine that receives each character and decides what to do with
it. This routine was .ubsequently revi.ed three times before being
frozen; each revision was neces.itated by having encountered, while
working on lower level., lome special case requiring a high-level
escape hatch.

The design preceded from the top down; coding was done from the
bottom up. Here again Forth made things very easy; each low-level
routine could be tested and thoroughly debugged on its own. No
linking or dummy routines are required for testing. Once the
routines on one level were done, those on the next hIgher level
could be worked on. Since the decoder was designed from the top
down, this bottom-up implementation was always clearly directed.

Essentially, there are routines at five levels in the decoder.
The lowest level includes all of those routines that actually change
the display. These routines constitute a primitive graphics package
for the PC; they are not strongly tied to NAPLPS in any way. All of
the hardware-.pecific code is at this level.

At the next lowest level are the utility routines. The best
example of this type of routine is the routine called OPS->XY; thIS
routine takes an <X,Y> coordinate pair in the special format
required by NAPLPS, and translates it into a normal integer pair.
Another utility is the routine ?RANGE, which tests whether a given
integer lies within a specified range.

The next level up includes all the routines that actually
correspond to NAPLPS "commands." This level inCludes, but is not
limited to, the following:

224 The Journal of Forth Application and Research Volume 3 Number 2

1. routines that draw individual geometric .bapes, .uch as draw
line, draw point, etc., each of which hal four forms in NAPLPS
(2~h through 37h in the PDI .et);

2. cursor positioning routines, e.g. active position .et, forward,
back, up, and down (08h, 09h, OAh, OBh, and lCh in the Cl set);

3. routines that put character. on the .creen (for the primary,
.upplementary, and mosaic .et. there i. one routine tbat handles
every character in that .et);

~. routines that effect text di.play attributes, .uch as
rever.e/normal video and .mall/medium/normal text (~8h through
~Ch in Cl set).

At the .econd highe.t level are the routines that determine how
to interpret a given character. These routines do tbe work of
determining what character. are part of, ongoing .equences; what
character •• erve to terminate ongoing .equences and initiate otber.;
etc. These routines call the proce •• es at the next level down to do
the actual work, once they have determined what needs to be done.
The highest-level routine essentially performs the same function at
a slightly higher level; it i. described above.

It should be apparent that the decoder i. highly modular in
structure. The high degree of modularity i. pos.ible because the
decoder was thoroughly designed from the top down, This modularity
itself enables the clear .eparation of .eparate tasks. Because the
decoder is written in Forth, each module could be thoroughly tested
before being integrated with other module •• This simplifies the
testing process while improving reliability.

A final advantage of this program .tructure is the relative
portability of the decoder. A NAPLPS decoder is by definition
machine-dependent. The .tructure of this decoder, however, clearly
separates the machine-dependent aspects of decoding from the
machine-independent aspects. Porting this decoder to different
hardware requires rewriting only those routines that are strictly
hardware-dependent; that is, what were referred to above as tbe
lowest-level routines. (Thi. assumes that a Forth system exists on
the other hardware, of course.)

In general, developing thi. decoder was an intriguing and
enjoyable project. (Most of the intrigue came from the mysteries
and vagaries of NAPLPS.) Utilizing good program design techniques
was essential; had we not started out in that fashion, we might
still be debugging. Using Forth wa. almost as important in making
the project manageable, possible, and fun.

~ REFERENCES
[1] Yig~~~~xlI~l~~~Xl ~£~~~1i~n ~~1 fL~~~~l S~n~~x~ ~~L~h

~~l~~n £L£S~ Published jointly by American National Standards
Institute, Inc., New York, as ANS X3.110-1983; and by Canadian
Standards Association, Rexdale (Toronto), Canada, as CSA
T500-1983; December, 1983.

[2J Fleming, J. and W. Frezza. "NAPLPS: A New Standard for Text
and Graphics." llITf; 8:2,3,~; February, March, April, 1983-

[3] Gr i e s, D a v i d • ~~ilu. ~ntl.uil.iiln ll.I. Ql~l~~l C2ID~lU.~.I.J.~
John Wiley and Sons, New York, 1971.

[4J Aha, A. V. and J. D. Ullman. Ih~ ~~~ ~i f~.I.J.inz~

~n£l~~l~n ~g CQw~inz~ ~lym~ ~~ f~LJ.in~ Prentice Hall,
Englewood Cliffs, New Jersey, 1972.

