
Proceedings of the 1985 Rochester Forth Conference

REvised REcursive AND? 'REPTIL :IS
Israel Urieli

Ohio University, Athens OHIO 45701

229

Background

Forth, described by some as the "hackers' language", is having a hard time being
accepted within the computing community ranging from schoolchildren through
computer scientists. Schools and colleges which are happily teaching BASIC, LOGO
and Pascal, are not even considering Forth as an alternative. Probably the major reason
for this is the singular lack of readability of Forth, demanding a strict self-discipline
from the programmer with regard to style, documentation and structure. Many have
addressed the question of readability (e.g. [1], [2], [3)), and have suggested that the
major culprits include the cryptic symbology, the strange structured constructs and the
lack of local parameters requiring an excessive dependence on stack operations. There
have been many attempts to eliminate these problems, however. most of these have
been in terms of extensions to the existing Forth kernel, rather than an appraisal of
the language and some restructuring.

REPTIL represents an attempt to present a Forth-like language as a viable, pedagogically
sound, alternative language for student programming at all levels [4]. Since its initial
presentation in 1984 it has been totally revised and is currently being rewritten. This
paper is a review of the infrastructure and some of the structured features of REPTIL.

Infrastructure

REPTIL has adopted the basic infrastructure of Buege's RTL [5]. RTL is a Token Threaded
language having some unique features, including a one-to-one mapping between source
code and object code. Thus no source code is ever retained. If source code is required
for any purpose (such as editing) then it is regenerated from the lists of tokens in a
"pretty-printed" structured format. This aspect is probably the most significant depar­
ture from Forth. The concept of source code screens and the associated virtual screen
memory, which is fundamental to Forth, is no longer relevant. Other features of RTL
which influenced the revision of REPTIL include its inherent recursive capability and
the use of local variables.

Structures

The four fundamental structured constructs of REPTIL have been described previously
[4]. In this paper we consider only extensions and modifications to two of these struc­
tures; the loop and the conditional branch. This is done by means of examples. Two
good examples are taken from the source code for REPTIL's own system verbs. The
operating system verb RUN is equivalent to the Forth verb INTERPRET and is defined
as follows:

'RUN DO:
R.RESET \ initialize Return Stack pointer
READ-LINE
DO-LINE
RUN

:END

This verb is defined recursively mainly to show how simple it is to use recursion in
REPTIL. Note that the name (indicated by the quote) precedes the defining verb pair
DO: :END as is common in many Forth-like languages such as STOIC, PISTOL and
SPHERE.

230 The Journal of Forth Application and Research Volume 3 Number 2

In the coding for DO-LINE shown below we notice that the looping construct is given
by the REPEAT[lEND pair with optional exit conditions. Whenever the condition on
the stack preceding an ?EXIT is TRUE, then execution continues with the verbs follow­
ing lEND. This single loop structure can replace all the various loop structures in
Forth. Soloway et al [6] reported extremely interesting empirical results which showed
overwhelmingly that a loop form having an arbitrary exit condition allows the freedom
of matching the programming strategy to a preferred cognitive strategy.

In the case of DO-LINE we see that when the end-of-line has been reached then the
loop is exited. The body of the loop checks the following word in the input stream to
determine if it is a NAME? (preceded by'), a STRING? (preceded by"), a VERB? or
a NUMBER?, and the appropriate action is taken (DO-NAME, DO-STRING, DO-VERB
or DO-NUMBER respectively), otherwise the system aborts with a call to RUN.

The coding for DO-LINE follows:

'DO-LINE DO:
REPEAT[

SKIP-BLANKS
EOl? \ end-ot-Iine?

?EXIT
NAME?
?THEN

DO-NAME
?ElSEIF
STRING?
?THEN

DO-STRING
?ElSE

BLANK
WORD.O
SCAN
WORD.O
VERB?
?THEN

DO-VERB
?ElSEIF
WORD.O
NUMBER?
?THEN

DO-NUMBER
?ElSE

WORD.O
UNKNOWN
RUN

?END
?END

lEND
:END

Proceedings of the 1985 Rochester Forth Conference 231

Notice the conditional branching structures including the ?THEN, ?ELSEIF, ?ELSE
and ?END verbs. The Forth convention for conditional branch is inconsistent with a
postfix world. Non-programmers of all ages were surveyed to determine which of the
following two examples is the more meaningful:

1. HUNGRY? IF EAT ELSE STARVE THEN
2. HUNGRY? ?THEN EAT ?ELSE STARVE ?END

In all cases the subjects found the first statement difficult to read or ambiguous and
contradictory (if one eats, then why should one be hungry?). and the second statement
perfectly clear.

In REPTIL the conditional branching structure also includes optional ?ELSEIF ?THEN
pairs. These are widely used in procedural languages such as FORTRAN or Pascal as
a more readable alternative to deeply nested IF structures, however they have not been
used in Forth-like languages.

Closing Remarks

REPTIL is still in the development stage and significant changes may occur before it
is released. The main effort is being directed to a fundamental readable (and writeable)
syntax in order that REPTIL can be a viable alternative to BASIC or LOGO as a student
programming language at all levels. The reason for this continued premature exposure
is to obtain feedback and criticism from the Forth community.

References

1. H. Glass, "Towards a more writeable Forth syntax",
Proceedings of the 1983 Rochester Forth Conference, June 1983.

2. E. E. Bergmann, "PISTOL - a Forth-like Portably Implemented Stack Oriented
Language", Dr. Dobbs Journal, Number 76, February 1983.

3. C. B. Duff, N. D. Iverson, "Forth meets Smalltalk", The Journal of Forth Application
and Research, Volume 2, Number 3, 1984.

4. 1. Urieli, "HELLO, A REPTIL I AM",
Proceedings of the 1984 Rochester Forth Conference, June 1984.

5. B. Buege, "Status Threaded Code",
Proceedings of the 1984 Rochester Forth Conference, June 1984.

6. E. Soloway, J. Bonar, K. Ehrlich, "Cognitive Strategies and Looping Constructs:
An Empirical Study", Communications ofthe ACM, Volume 26, Number 11. November 1983.

232 The Journal of Forth Application and Research Volume 3 Number 2

