
Proceedings of the 1985 Rochester Forth Conference

Top-down Design in Fort~

Dr. James Basile
Department of Computer Science

Long Island University - C.W. Post Campus

ABSTRACT

Top-down design and coding practices are central to
effective software engineering. Forth provides a
programming environment which readily can be modified
and expanded to suit particular needs. This paper
examines the relationship between Forth as a
programming environment and the use of top-down design
and coding.

81

This paper is not intended as a treatise 'on top-down design.
Rather, it is assumed that the reader is familiar with the basic
concepts of top-down design and espouses these principles as
common programming practice (see [3]). It focuses instead on
some techniques that are helpful in implementing top-down design
and coding in Forth.

Because Forth is an extensible programming environment, one has
an unlimited set of tools to work with when programming in Forth.
This is always a double-edged sword: one can either use such
freedom to write virtually unmaintainable code or one can design
structures, and ultimately code, which reflects the simplicity
and clarity of well-designed programs.

One of the advantages of coding in Forth is that one can more or
less write the code directly by designing the application from
the top down. This minimizes the need for external design tools
such as structure charts. The code itself performs that
function. The major problem with this approach is that the
resulting code is in the wrong order for Forth definitions.
Forth must be defined from the bottom up (unless the version
being used supports forward referencing, of course). So the
basic bu~lding blocks of the code must be written first. In the
absence of other techniques, this little shortcoming can be
resolved by starting at the highest block in a series to be
loaded and working backwards.

Let's look at an example for clarification. Suppose we are
designing a terminal emulator. Forth allows us to work up a
preliminary design for such a program rather easily. After all,
the terminal emulator performs two major functions. It must
capture keystrokes and pass them along to the host. It must also
monitor the communications port and display the characters

82 The Journal of Forth Application and Research Volume 3 Number 2

received on the screen.
attempt.

Thus, we might start with the following

EMULATE
BEGIN ?KBD IF

?PORT IF
o UNTIL

< key pressed ?) SEND
(something coming in ?

THEN
) EMIT THEN

We now have a basic design concept and we can begin to analyze
its suitability. First, we can refine the design by specifying
what each of these words must do.

?KBD

SEND

?PORT

check the keyboard input buffer to see if a
character is waiting to be processed. If so,
return the character and "true". If not, just
return "false".

similar to EMIT, simply sends a character out on
the communications port

similar to ?KBD, check the communications buffer
to see if a character is waiting to be processed.
If so, return the character and "true". If not,
just return "false".

Given these specifications for the top level modules, does this
design really encompass all that a terminal emulator should do?
Let's look a little more closely. The first thing we can observe
is that the emulator doesn't handle half duplex communications
very well. EMULATE will display the characters received over the
communications port but does not display those pressed at the
keyboard. We need a word that will echo these characters if the
communications are in half duplex mode.

ECHO If half duplex mode flag is set, display a copy of
the character on the top of the stack. If not, do
nothing.

The next thing we might want to provide is a little more
intelligence for the emulator. Most terminals have some control
sequences that can be used to provide capabilities such as cursor
positioning. The emulator should mimic these. We probably also
want the capability to upload and download files. Since we have
added control sequences to the emulator, we might as well provide
one that ends the endless loop by setting a flag called DONE
<which will be queried at the end of each pass through the loop).

Without cluttering up the design, we can take care of these
additional requirements by substituting a slightly more
complicated word for EMIT:

DISPLAY examines the characters to be displayed looking
for control sequences. If one is encountered
perform it. Otherwise, display the character.

Proceedings of the 1985 Rochester Forth Conference 83

Now, that's a bit easier said than done but this is top-down
design at its best. We simply indicate the function of the
module in the next level and leave its actual implementation for
later.

One last concern might be to ensure that the emulator doesn't
lose any characters coming in the communications buffer. To do
this, we might set up a Forth task with a queue (see [2]) to
monitor the buffer. Then ?PORT can look at that queue instead
of the actual port. This port task can be initiated when
starting the emulator and suspended when the emulator is exited.

The emulator design has evolved somewhat, but the basic
definition is still pretty sound. With a few modifications, it
now looks like:

EMULATE PORT-UP (start up communications port
BEGIN

?KBD IF (key pressed) ECHO SEND THEN
?PORT IF (character waiting) DISPLAY THEN

DONE UNTIL PORT-DOWN

The design process can now work at refining the details of each
of these words. We have a working definition for each word needed
along with the overall structure for the program. Now, we can
begin to speculate how to design each piece.

For a simple terminal, DISPLAY may just be a CASE statement or a
few nested IFs. For a more complicated terminal, DISPLAY might be
designed more elegantly, perhaps using a state machine structure.
The decision will not alter the overall logic, only the actual
definition of DISPLAY.

Similarly, for a time critical application, we might opt to make
the port task an interrupt-driven assembly language routine rather
than a high-level Forth task. Again, this does not impact the
overall logic. It will only affect those words initiating and
terminating the port task.

We then can apply these same techniques in refining each word in
the program to basic Forth building blocks. For one example of
how such an emulator turns out, see [1].

As illustrated above, the process of coding in Forth lends itself
quite naturally to top-down design. A top level word, defining
the overall flow of the program, leads to a definition for each
of its component words. This process is continued on each of the
component words until each bottom-level component consists of
only Forth building blocks. Nonetheless, the programmer can
either strengthen the relationship between Forth and top-down
design or obliterate it. There are three factors which are
central to strengthening the relationship: writing code which is

84 The Journal of Forth Application and Research Volume 3 Number 2

simple to follow and well-documented, designing useful control
and data structures, and recognizing the implications of the
stack oriented nature of parameter passing in Forth.

While there may be some variation from language to language, the
basics of good coding are no different in Forth than in any other
language: identifiers <variable names, word names, etc.) should
be chosen to reflect their meaning as best as possible; the logic
for control structures should be simplified as much as possible;
word definitions should not be too lengthy or too trivial;
comments should be meaningful and used as needed.

Because Forth is extensible, the language can be moulded to meet
the application. If specialized structures are needed in a
particular program, they may be defined. Thus, in most languages
the programmer must make his program fit the control and data .
structures of the language. In Forth, however, the language can
be modified to make the programming easier and clearer. For
example, specialized CASE statements or array structures can be
created.

F~nally, because parameter passing between routines is simply
implemented on a stack, program refinements and modifications can
be accomplished with minimal impact. Particular words may be
converted to assembler without impacting program development at
all. Similarly, words may change their meaning but have no
adverse affect if they maintain proper stack usage. A word of
caution is in order here: it is critical that comments for Forth
code accurately reflect the stack usage of each word so that the
programmer can easily ascertain the impact of a modification to
any word in the program.

When these principles are adhered to, writing maintainable Forth
code is ensured. There is nothing inherent in Forth that
prevents good software engineering practices. In fact, Forth
properly used allows easy application of good top-down design and
coding.

REFERENCES

[1] Basile, James. "The VT52 - Terminal Emulation in Forth".
E~Q£~ 12§1 BQ£b~§~~~ EQ~~b ~Q~£~~~Q£~~ Rochester:
Institute for Applied Forth Research, 1984.

[2] Leary, Rosemary and McClimans, Donald. "Message Passing with
Queues" • !b~ ~Q!:!~Q~! Q£ EQ~~b BQQH£~~iQ~ ~m:!
B~§~~~£b~ ~Q!~ 1~ ~Q~ ~~ Rochester: Institute for
Applied Forth Research, 1983.

[3] Yourdan, Edward. !~£b~ig!:!~§ Q£ E~Qg~~~ §i~!:!£i!:!~~ ~~Q Q~§ig~~
Englewood Cliffs: Prentice-Hall, 1975.

