
Proceedings of the 1985 Rochester Forth Conference

FORTH Implementation in a High-level Language

James C. Bender
The BOM Corporation

10260 Old Columbia Road
Columbia, Maryland 21046

85

A prototype FORTH interpreter has been implemented in
Ada as a research project. The FORTH interpreter is written
to take advantage of Ada features, such as range checking,
exception handl ing, and utll ity packages for string handling
and numerical operations. In the past, FORTH interpreters
have been written in high-level languages; most have been
source-level interpreters. That is not true in this case;
howe v e r , i nth i s cas e , a cor e v0 cab u1 a r y i s imp 1 em e nted a s
of a set of Ada procedures. Each procedure corresponds to a
single intermediate language code. The intermediate code
instruction set is, therefore, very large. Efficiency is
improved with a higher level instruction set, rather than
with a primitive instruction set.

The components of the interpreter are contained in a
set of Ada packages. The central core of the interpreter
consists of a package which defines the dictionary, a set of
registers, some basic operations, such as pushing to and
popping from the operand and return stacks, and pushing an
item to the dictionary. The dictionary and stacks reside in
an integer array. A hashed table is used for storing word
names and pointers into the dictionary. A table lookup is
performed rather than a search through a 1 inked 1 ist in the
dictionary when a word name is to be checked. This gives
considerably improved performance when executing in a purely
interpretive mode, rather than when executing compiled
words. A problem with this approach is that vocabularies
become more difficult to implement.

A special feature of the interpreter allows the entire
dictionary and register environment to be saved and reloaded
by name. A word is defined which, followed by a file name,
saves the dictionary, name table, and registers to the named
file. Another word followed by the file name will cause the
environment, previously saved, to be reloaded. Reloading
the environment, rather than loading a file which must be
compiled, saves a considerable amount of time during
startup.

The keys to the functioning of the interpreter are the
word definition format in the dictionary and the inner
interpreter algorithm. Both are closely related issues.

The word definition contains a flag indicating that the
word is a primary or secondary and another flag indicating
that the word is an immediate word or a normal word. Primary

86 The Journal of Forth Application and Research Volume 3 Number 2

words contain intermediate code terminated by an "end tag."
The "end tag" is a special operation code denoting the end
of the word. Secondary words contain a 1 ist of word
addresses, also terminated by the "end tag." The format of a
word definition is as follows:

a. Word N: length of name and first character;

b. Words (N + 1) to (N + 6): two packed characters;

c. Word N + 7: link to last word definition;

d. Word N + 8: tag field;

e. Word N + 9: start of code; and

f. Word N + J (where J - 10 is the length of the
code): end tag.

The inner interpreter (see Figure) is called with a
pointer to the word to be executed. If the word is a pri
mary word, a procedure which executes intermediate codes is
called. If the word is a secondary word,the procedure,
which executes secondary words, calls the procedure, which
in turn executes words, for each word address in the code
body. One additional problem exits: some words increment
the pointer to the current word so that the pointer is reset
past data imbedded in secondary word definitions. This
resolved by setting and resetting the instruction pointer in
the environment definition package. Word type and execution
mode type checking are done with a simple table look-up.
Word type (primary or secondary) and execution mode (immedi
ate or normal) are encoded, rather than specific bits being
set.

The outer interpreter is written in Ada and includes
the lexical analysis, compilation, and invocation of the
inner interpreter for execution. The outer interpreter is
implemented as a state-transition network with a state vari
able and case statement. This architecture allows a control
path, which is a non-planar graph, to be implemented in a
structured way. Instead of a "compile" mode or an "execute"
mode, the differentiation is made by the current position in
the outer interpreter state-transition graph. If an error
occurs, the state variable is reset to the starting position
in the graph. The use of an Ada string-handl ing package
simplifies the text-handling portion of the compiler.

Work is presently proceeding on modifying the inter
preter design to take advantage of the capabil ities of Ada
for defining abstract data types and procedures for operat
ing on them. Additionally, an implementation of the inter
preter in Modula-2 is in progress. The Modula-2 version is
designed to take advantage of Modula-2's capability for

Proceedings of the 1985 Rochester Forth Conference

defining abstract data types.

87

Another project is underway which combines the 1 ist
processing capabilities of LISP with Pol ish-postfix notation
and extensibility of FORTH. Only definitions and one func
tion require prefix notation. The language is called
"Fifth," and will be the subject of further research and
later publication. A prototype interpreter has been imple
mented in Ada, using many packages written for the FORTH
interpreter. A word definition in Fifth is as follows:

(: word name (list ».
The concept of a store is el iminated. Instead, all data is
stored as the word body associated with a name. Program and
data are identical: all are represented as lists.

END_TAG;
O·,

88 The Journal of Forth Application and Research Volume 3 Number 2

procedure EXECUTE_PRIMARYCN : in INTEGER) is
begin

REGISTERCPC) := N + CODE;
loop

FETCH_INST;
exit when OP
exit when OP
EXECUTE;

end loop;
end EXECUTE_PRIMARY;

procedure EXECUTE_SECONDARYCN in INTEGER) is
IR, WA : INTEGER;

begin
IR := N + CODE;
UPDATE_REGC IP, IR);
loop

WA := MEMORYCIR);
exit when WA = END_TAG;
exit when WA = 0;
if IS_SECONDARYCMEMORYCWA + TAG» then

EXECUTE_SECONDARYCWA);
elsif IS_PRIMARYCMEMORY(WA + TAG» then

EXECUTE_PRIMARY(WA);
else

raise PROBLEMS;
end if;
I R : = REG_ I S(I P) ;
INCR(IR, 1);
UPDATE_REG(IP, IR);

end loop;
end EXECUTE_SECONDARY;

procedure W_EXECUTE is
PTR : INTEGER;

begin
PTR := OS_POP;
if IS_SECONDARY(MEMORY(PTR + TAG» then

EXECUTE_SECONDARY(PTR);
elsif IS_PRIMARYCMEMORY(PTR + TAG» then

EXECUTE_PRIMARY(PTR);
else

raise PROBLEMS;
end if;

end W_EXECUTE;

Figure: Inner Interpreter Algorithm

