
Proceedings of the 1985 Rochester Forth Conference

An Implementation of MC68000 fig- Forth under UNIX

P.R. Blake and N. Solntseff
Department of Computer Science and Systems

McMaster University
Hamilton, Ontario L8S 4Kl

93

1. Introduction
The Department of Mathematical Sciences (the previous home of Computer
Science at McMaster) acquired three Pixel-80 computers in January 1984 for
graduate and senior undergraduate teaching. The computers incorporate a
MC68000 processor and are operate under the Unix [11 operating system.
Fig-Forth has been available on a variety of eight-bit microcomputers for
three years and has been used in several undergraduate projects. A graduate
course -- CS718: Scientific Applications of Personal Computers contains an
introduction to Forth as a real-time system. Prior to 1984, CS718 was run
using the microcomputer laboratory equipped with a number of MCS6502
computers. It was decided to transfer this course to the new machines
during the summer of 1984.

The present paper summarizes the work done to implement Forth on the
Pixel-80s. The version chosen was fig-Forth and the implementation of the
kernel was done in machine code. Section 2 discusses the impact of the
32-bit architecture of the MC68000 on the 16-bit Forth model. Section 3
outlines the manner in which C-coded routines can be used to implement
new Forth primitives. Section 4 summarizes the extensions to the Forth
vocabulary that were needed to implement string operations and variables,
file management in conjunction with Unix, and an interface to the standard
Unix tools. Finally, Section 5 contains a brief assessment of the project. A
more detailed account of this work can be found elsewhere [5].

2. The Model
The selection of fig- Forth as the version to implement was dictated by the
use of this version in the departmental Microcomputer Laboratory. Several
unpublished student projects have previously explored the implementation of
fig- Forth in C, Fortran, and Pascal. The overall conclusion reached was
that high-level languages were not very suitable for implementing Forth with
its attributes of easy extensibility and free access to the host's machine
language. Because of these requirements, it was decided to implement the
Forth kernel in 68000 machine language. Considerable effort was saved
through the availability of an implementation under the CP/M-68K
operating system kindly provided by Christoph K. Kukulies [2].

The addresses, data paths, and stacks of the abstract Forth machines (AFM)
[3] underlying Fig-Forth, as well as Forth-79 and Forth-83 standard
models, are all sixteen bits wide. This means that without special measures,

94 The Journal of Forth Application and Research Volume 3 Number 2

an implementation such as that received from [2J is meant to reside in a
64-Kbyte segment of a MC68000 computer. This is an intolerable
restriction in the case of a multi-user operating system such as Unix !lJ,
where a loadable program must be in the relocatable format needed by the
operating system. It was decided to retain the AFM architecture of 16-bit
addresses and values, but to treat this as an embedding in a 32-bit world of
Unix as implemented on a MC68000 computer [4J.

The solution adopted was to consider AFM addresses as 16-bit offsets from
a 32-bit base address which represents the start of a load module. In order
to convert the contents of the Forth instruction pointer (lP), say, which is a
16-bit offset into a 32-bit effective address, the former has to be loaded
into a 32-bit scratch register, with its upper half cleared to avoid sign
extension. The base address is then added and the result moved into an
address register for further use. The conversion of a 32-bit effective address
into a 16-bit AFM address is done in an analogous manner. Details of the
implementation can be found in [5J.

3. Interface to the C Language
Apart from a very small nucleus implemented in machine language, the
whole of the Unix operating system is written in the C language. Thus, the
C/Unix interface provides the necessary mechanisms for program access to
the filing system, device I/O, and the Unix shell. Because of this, the
Forth/Unix interface was also designed as a set of C-language routines.
Moreover, this approach was extended to new Forth primitives that would
otherwise have been coded in machine language. The Script facility in Unix
is a valuable feature which allows the user to keep a complete record of an
interactive session. As one of the significant attributes of Forth is its high
degree of interactivity, it was decided to include a script-like feature in the
new implementation.

The main problem in interfacing C and Forth routines lies in the way the
two languages use their stacks. The C stack is found at the top of virtual
memory, namely, $FF,FFFF in hex, and is 32 bits wide. The Forth stack is
to be found within the Forth 64-Kbyte segment and is, of course, 16 bits
wide. The difference between the base addresses of the Forth segment
(approximately $20,0000 in our system) and the C stack is greater than a
16-bit offset can accomodate. Thus, the Forth system has to be aware of
the existence of the C-stack. The Forth model as received [2J makes use of
all eight address registers, so that it is necessary to exchange stack registers
when moving from Forth to C and vice versa.

The following steps have to be taken within a Forth primitive which calls a
C procedure or function:·

(1) switch return stack pointers,

Proceedings of the 1985 Rochester Forth Conference 95

(2) push any arguments passed to the C routine onto the C stack, after
extension of 16-bit addresses and values to 32 bits,

(3) save all Forth registers, call the C routine, and afterwards restore
the Forth registers,

(4) if there is a value returned by the C routine, truncate it to 16 bits
and leave on the Forth data stack,

(5) transfer control to the Forth address interpreter NEXT.

It should be noted that machine code to perform steps (1) to (5) above has
to appear in every Forth word that calls a C routine.

4. Extensions to Forth
The new implementation contains several new words that that were included
to meet the requirements outlined in the introduction. They fall into three
major categories: string extensions, file-management words, and general Unix
interface tools. The extensions are briefly discussed below (a more detailed
account can be found elsewhere (5]).

String extensions have been adapted from those considered in [6] and include
string literals, string variables, and a variety of operators. Run-time checks
are included whenever necessary to ensure that string stores are within
bounds imposed by the allotted string space.

File-management extensions were directly patterned on the words introduced
in [7]. Fig-Forth as implemented on the Pixel-80, can only access its own
files which are of type screens. A Unix editor can be used to edit a screen
file, but only after it has been converted to the standard Unix format. Any
Forth editor can be used for editting a screens-type file. The access words
read, write, and modify are the same as described in [7). Most of the
remaining file words (active, close, default, delete, file, include, make, and
open), taken from [7), were implemented in a different manner in order to
take account of Unix-system features. In addition, several new words were
also included to improve access to the filing system. A more detailed
account of this is given in [5].

The Unix interface tools have been added to the system to provide a number
of convenient procedures for performing several frequently needed tasks.
These are: (1) " <any Unix command string>" unix to invoke a Unix
command; (2) " <file name>" scr1 scrf Ipr to print a range of screens from
the specified file; (3) on script will result in the compilation of a complete
history of an interactive session, print script will send the script file to the
printer, off script will stop the accumulation of dialogue on the script file,
while clear script will erase the script file; finally, (4) " <file name>"
save-forth will create a new loadable module containing the original Forth
kernel and the user-defined words added to the dictionary since boot-up.

96 The Journal of Forth Application and Research Volume 3 Number 2

6. Discussion and Conclusions
The system described above has been in class-room use since September
1984 and and has proved to be robust. The 16-bit model is adequate, even
in a 32-bit environment, although beginners frequently forget to ensure that
the code-field is properly aligned on a 32-bit boundary. A more serious
fault with the implementation, is the cumbersome procedure needed to install
a machine-code primitive as described in Section 3. The kernel source and
the C-routine source have to be modified and both of them have to be
re-processed. This task takes about thirty minutes, so that a better
technique for interfacing Forth to C-coded primitives should be devised.

The department has acquired a Convergent Technology MegaFrame with two
MC68010 application processors and a micro-VAX computer, both operating
under Unix. It is planned to implement fig-Forth on these machines as
implementations now exist for both the VAX-11 and MC68000 processors.
Forth-83 is not being neglected, as it is the preferred version of Forth for
all personal computers to be bought by the Department.

6. References

[11 Unix is the trade mark of AT&T Bell Laboratories.
[21 "TTL 68000-Forth, Edit Lev. 13/21-Aug-83," Christoph P. Kukulies,

Heider Hof Weg, Aachen, 5100 West Germany, unpublished (1983).
[31 N. Solntseff, "An Abstract Machine for the Forth System", Proc. 1982

Rochester Forth Conference, LA.F.R. Inc., Rochester, N.Y. 14611, pp.
149-155 (1982).

[41 Pixel Computer Inc., "PIXEL/UNIX Version 2.10, Pixel 80 or 100/AP",
Wilmington, MA 01887 (1984).

[51 P.R. Blake and N. Solntseff, "A MC6800 fig-Forth Implemented under
Unix," Technical Report, Department of Computer Science and Systems,
McMaster University, (in preparation).

[61 A. Winfield, The Complete Forth, Sigma Technical Press, Wilmslow,
Cheshire, U.K. (1983).

[7) A. Anderson and M. Tracy, Mastering Forth, Micromotion, Los Angeles,
CA 90025 (1984).

