
Proceedings of the 1986 Rochester Forth Conference 185

An Implementation of FORPS
on a NOVIX Beta Board

Christopher J. HatheuJ
Instrumentations and Controls Divi~ion

Oak Ridge National Laboratory2

INTRODUCTION

FORPS is a Forth-based Production System (in the public, domain) developed
for fast, real time control problems (MATHUES86a). It employs a very
small and efficient inference engine (source c3k) to cycle through sets of
IF-THEN production rules. The original version of FORPS was written in
polyFORTH for a &8000 microcomputer. It has been applied to the real time
control problem of robot obstacle avoidance (MATHEUS86a), and to the
clas.ic AI problem, The Towers of Hanoi (MATHEUS86b).

Recently, FORPS has been ported to the NOV¡X Beta Board running
novixFORTH. The translation from polyFORTH to novixFORTH was
straightforward but was complicated by some problems with the NOVIX Beta
Board. For timing comparisons, the Towers of Hanoi solution was run on
the 6 MHz NOVIX wi th a realized speedup over the 10 MHz 68000 of nearly
30:1. With further optimization it is hoped that FORPS running on tre
NOVIX will approach speeds of 10,000 rules per second.

A BRIEFDES~RIPTION OF FORPS

For some of our work at ORNL we desired a production system which would
allow the easy application of high level expert- type knowledge to real
time control programs written in FORTH. This meant that, except for the
IF.. .THEN production syntax, the contents of the rules had to be user
definable FORTH words. The system also had to be as small and efficient
as poss ible so that it could be used in real time applications without
excessive consumption of computer resources. What resulted is FORPS, a
small production system with a fast, near minimal inference engine, and a
method for defining rules using FORTH words. Because it is so small and
efficient FORPS does not contain many of the features of more extensive
production systems. However, sin.ce FORPS is fully extensible, desired
features can be added as required.

RULE DEFINITIONS

Rules are defined in FORPS as simple *RULE*. ...*IF*.. .*THEN*,.. .*END*
structures (see Fig. 1). Each rule is given a name and an optional
PRIORITY value to be used during "conflict resolution" (i. e. when more
than one rule is active the rule with highest priority is fired). The
left band side(LHS~ or conditional portion of a rule contains standard
FORTH words defined by the programmer. These words will be executed by
the inference engine to determine if the rule is active - - the results
they leave on the stack are ANDed to indicate if tre rule is active. The
words appearing .in the right hand side (RHS) or action portion of the rule
are executed by the inference engine whenever the rule is both active and
is of highest 'priority from amongst all active rules.

1 On leave from the University of Illinois at Champaign-Urbana.

2 Operated by Martin Marietta Energy Systems, Inc., for the U. S.
Department of Energy, under Contract No. DE-ACOS-840R2l400.

186 The Journal of Fort Application and Research Volume 4 Number2

Consider the sample rule in Fig. 1 taken from an imaginary water control
system. The word PRESSURE could be either a variable holding the pressure
reading of a pipe or could reference an actual I/O port from which the
pressure is read. If the value is higher than 100, TRUE is left on the
stack (at run time). If the result of WATER-FLOW ~ NOMINAL - is also TRUE
then the rule will become active. If it also happens to be the active
rule of highest priority it will fire -- i.e. "Water pressure is too
high!" will be printed and OPEN-WATER-VALVE will be executed.

DICTIONARY ENTRY

When a rule is compiled a new entry is made in the FORTH dictionary under
the rule' s nam~. This entry actually becomes two words. The fir~t word
contains the code executed when the rule's condition is tested, and the
second is the code executed if the rule is fired (see Fig. 2). The C-PFA
points to the ~FAof the conditional code, and the A- PFA points to the PFA
of the action code. In addition to the compiled words of theLHSand RHS.
the PFA also contains several' words to mark the beginnings and ends of the
condition and action code, and code to determine when the rule is active
(see (MATHEUS86bl for an explanation of how this is accomplished) .

THE RULE TABLE

To make the inference engine as faSt as possible a table is created at the
time of rule compilation to store all relevant rule information (see
Fig. 3). This table contains four columns: C-PFA, A-PFA, active cell, and
priority cell. The C-PFA and A-PFA columns contain pointers to the rules'
C-PFA's and A-PFA' s. The active cell is used for storage of the truth
value that is calculated when the C-PFA of a rule is executed - - it is
stored automatically by code in the C-PFA. The priority cell contains the
rule's relative priority for use in conflict resolution.

THE INFERENCE ENGINE

The inference ~niine cycle is very simple:

1) t e 5 ta 1 1 conditionals, i.e. execute t heG - P FA's
2) select the active rule of highest priority
3) fire the selected rule, i.e. execute its A-PFA
4) repeat until no rules are active

The rule table allows this process to be executed very efficiently by
simply looping through the table to execute the C-PFA's and then looping
through again to find the highest priority active rule. The high level
code for the inference engine is shown in Fig. 4.

TRANSLATION TO NOVIX

novixFORTH was based on the design of polyFORTH. As a result, the vast
majority of the FORPS ported without modification. There where however. a
few problems encountered. Since polyFORTH for the 68000 uses 8 bit byte
addressing, address offsets had to be changed in FORPS to account for
NOVIX's 16 bit cell addressing. The NOVIX chip does not incorporate
CFA's, but this difference actually simplified the códesince it was no
longer necessary to explicitly compile a colon at the beginnings of the C-
PFA's and A-PFA' s. The novixFORTH compiler failed to compile "COMPILE
,EXIT" as desired and so we were forced to compile the EXIT op-code
explicitly as "32800 ,". It also became necessary to turn off the
optimizing compiler when attempting to compile "COMPILE *if*" at the end

Proceedings of the 1986 Rochester Fort Conference 187

of a definition. The familiar problem with NOVIX
(NOVIX86J) was never encountered -- for programs
of production rules, however, this could become a
being looked into.

page boundary jumps (see
requiring a larger set
serious issue and is

TIMING COMPARISONS

The FORPS solution to the Towers of Hanoi was translated to the NOVIX
FORPS version by simply changing address offsets from bytes to cells.
Timing tests where then conducted for towers of between five and ten
disks. The results are shown in contras tta identical tests an a 10 MHz
68000 in Table 1. The relative speedup obtained was greater than 28: 1.
For the NOVIX this resulted in approximately 6200 rules being fired per
second (with 2048 rules firing for 10 disks).

ANTICIPATED OPTIMIZATIONS

Our initial translation of FORPS from novixFORTH to polyFORTH did not
attempt to take advantage of any features offered by the NOVIX chip.
Thus, there is considerable room for optimization (see (NOVIX861). The
most obvious improvement would be to convert all DO LOOP's into the more
natural and efficient #DO #LOOPS. This improvement alone should result in
considerable time savings since DO LOOP's lie at the heart of the
inference engine. It ~s also possible to ~tudy the FORPS code and
optimize portions where two or more instructions might be combined into a
single NOVIX operati~nIBRODIE8sJ. Finally, there are things in FORPS
that could be changed to increase its speed (at the COSt of readability
and/or applicability). With there enhancements in mind, we anticipate
having FORPS running on the NOVIX Beta Board at around 10,000 rules per
second.

REFERENCES

(BRODIE8s1 Brodie, L. Programmer'& Introduction to the NOVIX NC4000P
Microprocessor, NOVIX, Inc. 1985.

(MATHEUS86aJ Matheus, C.J. and Martin, H.L.
Production System and its Application to
Problem, ASME International Computers in
Chicago, July 198~.

FORPS: A Forth-based
a Real Time Robot Control
Enginee~ing Conference,

(MATHEUS8~bj Matheus, C.J. The Internals of FORPS - A Forth-based
Production System, Journal of Forth Application and Research, 4, 1,
1986.

(NOVIX86j NC4000P User's Manual, NOVIX, Inc. 1986.

188 The Journal of Forth Application and Research Volume 4 Number 2

RUL: mOH-PRESUR PRIORIY: LA
"'IF"' PRESSUR (§ lOO ~

WATER-FLOW (§ NOMIAL =

"'THEN"' ." Water pressure is too high"
OPEN-WATER-VALVE

"'END.

LPA NPA ~,' MU.......
(;1 IlOH-PRUR ~

C-PFA) ::~;;:m
J PRUR ~l WATER-FLOw(

AN PS l- le .1
of -it. ...
..;a.... J OPEN-WATER-VALVE~

Plpr. 1. Sompl. Rul. Fiiur. 2. DlclioDOry Entry

..la
C-PPA P-PPA Active Prior.M

I 4020 4134 0 10

2 4148 4164 -I I

: : : : :

n 4902 5030 -I 0

: PORPS :.RUL-TABLE (¡4- :.LAST-RULE 1
o CYCL 1 .

BEGIN
I CYCLE +1
CLAR-AR
TET-RUL-CONDS
SELECl-BES-RUL
Pl-RULE
NO-AcriVI (¡

UNTIL

Figur. 3. Rul. Tobl. Figure 4. Inference Engine

Number polyFORTH novixFORTH

of Disks
OMNIBYTE 68000 NOVIX Beta Board

clock: 10 MHz clock: 6 MHz

5 .29 sec. .01 sec.

6 .58 .02

7 1.2 .04

8 2.3 .08

9 4.6 .16

10 9.3 .33

Tobl. 1. Timini ComporÌJonl

