
Proceedings of the 1986 Rochester Fort Conference 189

Knowledge Engieering, Expert Systems, and .Real-Time Envirnments

N. Solntseff, A.D. Hurst and W.F.S. Poehlman
Department of Computer Science and Systems

McMlLter U niver:ity
Ha.milton, Onta.rioL8S 4Kl

This paper describes the work on arificial intellgence and real-
time systems being planned in the newly formed Department of
Computer Science and 'Systems at McMaster University. After
a brief overview of the problems being considered, the goal of
the proposed research are presented;

INTRODUCTION

The Department of Computer Science and Systems was formed in July 1985.

It is in the process ,.of improving its research resources through the hiring of
additional faculty and the acquisition of reearhcompúters. A donation by
Sperry Inc. of a SPERRY EXPLORERl workstation together with the KEE2
Softwar Development System has provided the se for the amalgamation of
two research areas within the department, namely, thos dealng with real-
time data acquisition and arificial intellgence, into the Intellgent Real.. Time

Instrumentation Systems (IRIS) Group.

Knowledge engineering is one of the aras to be strengthened in the next
three to five year and the goal of the miS Project is to investigate the
applicatión . of knowledge-engineering techniques to the design and real-time
control of data acquisition ând other instrumentation systems for use in such
applications as automatic laboratories, power stations, and paricle
accelerators.

The structure of currntly available expert systems commonly cónsIsts ofa
development engine, used by the knowledge engineer to construct a
consultation environment, and an inference engine which interprets the
semantic structures in the consultation environment to prouce executable
code, most commonly Lisp or Prolog. The latter form the program which is
used by a client to obtain adviee concerning an application area. Thi
structure is directly analogous to that of a high-level laiguage (HLL)
translation system or a compHerin which HLL source codeIs first
syntactically and semanticalyanalyzed to produce intermediate code. This
intermediate code is then proessed bya code generator which yields the
final executable machine language. This paradigm for expert systems can be
used. à. a guide to the formal specification, description, and generation of
expert systems.

lEXORE is a tremak of Te:i Intrents In

2Knowledge Engieerig Envirent (K) is a trmak of Intell



190 The Journal of Forth Application and Research Volume 4 Number 2

This paper concerns the narrower problem of the design and construction of
expert systems capable of improving the implementation and operation of
real-'time environments. The wider" problem of the formal treatment of
expert-system shell wil be discussed elsewhere.

BACKGROUND

Modern real-time systems must have adequate high-speed performance. In
order to be able to operate such systems effectively, the user should be
familar with their internal operation. People with these qualfications are
not ea.ily found and, a. a, result, real-time systems ,are rarly programmed
to utilze the full capabilty of the available ,hardware. As hardware
components take on more of the, operations formerly performed by software,
more detailed harware knowledge ,wil be needed on the part of
instrumentation-system personnel and it is here that knowledge engineering
can make a significant contribution through the automatic generation of code
to operate the hardware ¡POE85, WIN84j.

An example of such a system is the mM shell for building expert systems to
analyze operating-system performance (HEL85j. In this ca.e, the expert
system is used to analyze the results, of performance mea.urements, and to
report the steps that the operator could take to improve the overal effciency
of the operating system. The next step" is to provide the expert system
with the means (i.e., runnable programs) to change the system paretersiii
order to improve system performance. The goal of such, a system would be
to generate optimized softwar that, would also be reuseable and, more
importantly, adaptable to changing conditions¡GOG861.

An, environment of this type must be based on a standar periphera bus
e.g.,the Smal Computer Systems Interface (SCSI) ¡WIN851. It should also be
possible to code time-criticaL. operations at the lowest possible language
level, e.g., at the mIcrocode level w,hen a writable control, store is available.
The present trend towards enibedded systems implies there is a n~ed for
networking, which is being met at both the departmental (POE861 and
university levels at McMa.ter by the provision of Ethernet connections to
departments within the, Faculties of Science and Engineering ¡EL086j, a. well
a. localy ,within DCSS.

METHODOLOGY

During the initial pha.e of work, KEE wil be used on the wil EXPLORER
a. a high-level development engine to produce Forth-, LISP-, or
Prolog-coded device handlers from a high-,level real-time speification
language, which is to be designed and implemented in a. ,user friendly a
nianner a. possible. The handlers are not just conventional interrupt-driven
device drivers, but rather are virtual-device handlers capable of reporting an
appropriate combination, of signal from severa actual devices within a
designated time interval (POE831. This approach wil require substantial
work on the creation of a syntax knowledge bas, a. well a. a semantic
knowledge base incorporating one of the usual models, namely, fraes,
decision trees, or object-oriented programming.



Proceedings of the 1986 Rochester Forth Conference 191

Forth is particularly suitable as an implementation language since not 'only
does it have suitable, real-tlme characteristics, but it is also highly extensible

and very portable to .a wide, rangeof architectures. ISOL82, SOL83, 80L841
A great advantage of Forth over other expert-system languages is provided
by the capability of a Forth development system to cross compile extremely
compact code. Finaly, it should be noted that Forth can be readily used for
numerìc computations unlike thenon-numerìc languages, such as Lisp or
Prolog whìch require the presence of special numerìc processors.
Real~time~critical code Can therefore be implemented directly in mìcrocode

ISOL79) to yield the highest performance possible.

The third aspect Of the work is the development of techniques to download
code generated by the development engine toa satellte processor system by
means or a local area network such. ,as ,Ethernet or the Manufacturing
Automation Protocol (MAP). DCSS alady has a number of machines (a
VAX-lll780, three Pixel-80s, a number of PDP-ii machines, as well as
many persnal computers) connected together either by Ethernet or an RS-
232 switch.

A long term goal is to ~place KEE with.a complete FORTH-based system
which wil have smal memory requirements, be capable of running at speeds
approaching those of pure machine code, and which' wil be highly interative
and easily extensible.

SUMMARY

The long-term goal of the IRIS project can be statédas follows: To
investigate the application of formal syntactìcand semantìc, techniques to the
description of knowledge 'engineering software considered as a general
language-traslation problem. The short-term goal is to apply
k.owledge-engineeringand .expert-system techniques to the generation. ,of
code suitable for real-time' instrumentation systems, namely:

(1) To use KEE to generate code in Forth, LISP, Prolog, POP-U, for use
in a real-time environment;

(2) To implement Forth on the Explorer with a view Of providing an
environment for the creation of portable, high-performance development
engines for expert-system such as KEE.

(3) To implement ~run-time system on the Sperr EXPLORER in Forth
whos compiler/interpreter, is to, be loaded into the writablecontrol store
of the host machine;

(4) To connect the Sperr EXPLORER into the DCSS network with a view
of creating a distributed and concurrent real-time system;



192 The Journal of Forth Application and Research Volume 4 Number 2

¡WIN851 R.G. Winterle and W.F.S. Poehlman, "Using SCSI peripheral on
DEC RT-ll systems," preented at the 18th Annual DECUS Canada
Symposium, Februar 19-22, 19&5, Proc. DECUS Canada (in the pre).


