Proceedings of the 1986 Rochester Forth Conference B 189

Knowledge Engineering, Expert Systems; and Real-Time Environments

N. Solntseff, A.D. Hurst and W.F.S. Poehlman
Department of Computer Science and Systems
McMaster University
Hamilton, Ontario ‘L8S 4K1

This paper describes the work on -artificial intelligence and real—
time systems being planned in the ‘newly formed Department of

- Computer Science and Systems at McMaster University. After
a-brief overview of the problems being considered, the goals of
the proposed research are presented.

INTRODUCTION

The Department of Computer Science and Systems was formed in -July 1985.
It is in the process of improving its research resources through the hiring of
additional faculty and the acquisition of research compiters. A donation by
Sperry Inc. of a SPERRY EXPLORER' workstation together with the KEE?
Software Development System has provided the seed for the amalgamation of
two research areas' within the department, namely, those dealing with real—
time data acquisition and artificial intelligence, into the Intelligent Real—Time
Instrumentation Systems (IRIS) Group. R

Knowledge engineering is one of the areas to be strengthened in the next
three to five years and the goal of the IRIS Project is to investigate the
application -of knowledge—engineering techniques to the design and real-time
control of data acquisition and other instrumentation systems for use in such
applications as automatic laboratories, = power stations, and particle
accelerators. B R .

The structure of currently available expert systems commonly consists of a
development engine, used by the knowledge engineer to ' construct a
consultation environment, and an inference engine which interprets the
semantic structures in the consultation environment to prodice executable
code, most commonly Lisp or Prolog. The latter forms the program which is
used by a client to obtain- advice concerning an application area. This
structure is directly analogous to that of a high—level language (HLL)
translation system or a compiler ‘in which- HLL source code is first
syntactically and semantically analyzed to produce intermediate code. This
intermediate code is then processed by a code genmerator which yields the
final executable machine language. This paradigm for expert systems can be
used'as a guide to the formal specification, *description, and’ generation of
expert systems. '

IEXPLORER is 2 trademark of Texas Instruments, Inc.

2Knowledgc Engineering Environment (KEE) is a trademark of Intellicorp.

190 The Journal of Forth Application and Research Volume 4 Number 2

This paper concerns the narrower problem of the design and construction of
expert systems capable of improving the implementation and operation of
real—time environments. - - The ~ wider ~problem of the formal treatment of
expert—system shells will be discussed elsewhere.

BACKGROUND

Modern real—time systems must have adequate. high—speed performance. In
order to be able to operate such systems effectively, the user should be
familiar with -their internal operation . People with these qualifications are
not easily found and, as a result, real—time systems are rarely programmed
to wutilize the - full capability of the available hardware. ~ As hardware
components take on more -of the operations formerly performed by software,
more detailed hardware . knowledge . will. be. needed on the part of
instrumentation—system personnel and it is here that knowledge engineering
can make a significant contribution through the automatic generation of code
to operate the hardware [POES5, WINB84].

An example of such a system is the IBM shell for building expert systems to
analyze operating—system performance [HELS85]. . In this case, the expert
system is used to analyze the results of performance measurements and to
report the steps that the operator could take to improve the overall efficiency
of the operating system. The next step, is to provide the expert system
with the means (i.e:;, runnable programs) to change the system parameters in
order to improve system performance. The goal of such a system would be
to generate optimized software that would also be reuseable and, more
importantly, adaptable to changing conditions -[GOG86].

An environment of this type must be based on a standard peripheral bus
e.g.,the Small Computer Systems Interface (SCSI) [WIN86]. It should also be
possxble to code time—critical operations at the lowest . possible language
level, e.g., at the microcode level when a writable control store is available.
The present trend towards embedded systems implies there is a need for
networking, which is being met at both the departmental [POE86] and
university levels at McMaster by the provision of Ethernet connections to
departments within the Faculties of Science and Engineering [ELOS86], as well
as locally within DCSS.

METHODOLOGY

During the initial phase of work, KEE will be used on the will EXPLORER
as a high—level development engine to produce Forth—, LISP—, or
Prolog—coded device handlers from a high—level real—time spec1ﬁcatxon
language, which is to be designed and implemented in as user friendly a
manner as possible. The handlers are not just conventional interrupt—driven
device drivers, but rather are virtual—device handlers capable of reporting an
appropriate combination of -signals from several actual devices within a
designated time interval [POES83]. This approach will require substantial
work on the creation of a syntax knowledge base, as well as a semantic
knowledge base incorporating one of the usual models, namely, frames,
decision trees, or object—oriented programming.

Proceedings of the 1986 Rochester Forth Conference ' 191

Forth is particularly suitable as an implementation language since not ‘omly
does it have suitable real—time characteristics, but it is also highly extensible
and very portable to a wide range of architectures. [SOL82, SOL83, SOL84]
A great advantage of Forth over other expert—system languages is provxded
by the capability of a Forth development system to cross compile extremely
compact code. Finally, it should be noted that Forth can be readily used for
numeric computations unlike the non—numeric languages, such as Lisp or
Prolog which require the presence of special numeric processors.
Real—time—critical code can therefore be implemented directly in microcode
[SOL79] to yield the highest performa.nce possible.

The third aspect of the work is the development of techniques to download
code generated by the development engine to a satellite processor system by
means of a local area network such as Ethernet or the Manufacturing
Automation Protocol (MAP). DCSS already has a number of machines (a
VAX—-11/780, three Pixel—80s, a number of PDP-11 machines, as well as
many personal computers) connected together either by Ethernet or an RS—
232 switch.

A long term goal is to replace KEE with a complete FORTH—based system
which will have small memory requirements, be capable of running at speeds
approaching those of pure machine code, and which will be highly interactive
and easily extensible,

SUMMARY

The long—term goal of the IRIS project can be stated as follows: To
investigate the application of formal syntactic and semantic techniques to the
description of knowledge “engineering software considered as a general
language—translation problem. The short—term” goal is to apply
knowledge—engineering and expert—system techniques to the generation of
code suitable for real—-time instrumentation systems namely:

(1) To use KEE to generate code in Forth LISP Prolog, POP-11, for use
in a real—time environment;

(2) To 1mplement Forth on the ‘Explorer with a view of provxdmg an
environment for the creation of portable, high— performa.nce development
engines for expert—system such as KEE.

(8) To implement a run—time system on the Sperry EXPLORER in Forth
whose "compiler/interpreter is to be loaded into the writable control store
of the host machine; :

(4) To connect the Sperry EXPLORER into the DCSS network with a view
of creating a distributed and concurrent real—time system;

192 The Journal of Forth Application and Research. Volume 4 Number 2 -

REFERENCES

[ELO86] S. Elop, R. Shepard, and W.F.S. Poehlman, "ETHERNET —-— The
Engineering experience at McMaster", submitted for presentation at the
Ontario Universities Computer Conference, (June 2—5, 1986).

[GOG86] J. Goguen, "Reusing and 'intercqnﬂecting software components,”
IEEE Computer, 19, No. 1 (February 1986), pp. 16—28.

[HEL85] J. Hellerstein and H. van Woerkom, "YSCOPE: A shell for building
expert systems for solving' computer—performance problems," IBM
Research Report No. RC11463 (51517), October 22, 1985, 18 pp.

[POE83] W.F.S. Poehlman, R.G. Winterle, and D.R. Raymond, "Towards a
general data acquisition system,” Internal Report No. IDL-8301,
Institute for Materials Research, McMaster University (September 1983),

~ 10 pp. ’ " '

[POE84] W.F.S. Poehlman, R.G. Winterle, and D.R. Raymond,
"Asynchropous events in a generalized data acquisition system," Proc.
Fourth Real—Time Systems Symposium, Austin, Tezas, IEEE Computer
Society (1984), pp. 208—211. \

[POE86] W.F.S. Poehlman and C. Bryce, "McMaster’s new Department of
Computer Science and Systems networking and communication system,"
submitted for presentation at the Ontario Universities Computer
Conference, (June 2—5, 1986).

[SOL79] N. Solntseff, "Experiences with a Portable Minicomputer Language",
INFOR, 17 (February 1979), pp. 52-57.) '

[SOL82] N. Solntseff, "An Abstract Machine for the Forth System", 1982
Rochester Forth Conference on Data Bases and Process Control,
Rochester, N.Y. (May 1982), Proc. 1982 Rochester FORTH Conference,
(October 1982), pp. 149—155. ’ ' ’ '

[SOL83] N. Solntseff, "An Instruction Set Architecture for Abstract Forth
Machines", 1983 Rochester Forth Conference on Robotics, Rochester,
N.Y. (June 1983), Proc. 1983 Rochester FORTH Conference, (October
1983), pp. 1756~183. . s :

[SOL84] N. Solntseff and J.W. Russell, "An Approach' to a Machine—
Independent Forth Model”, 1984 Rochester Forth Conference on Real
Time Systems, Rochester, N.Y. (June 1984), Proc. 1984 Rochester
FORTH Conference, (October 1984), pp..121-139. _

[WIN84] R.G. Winterle and W.F.S. Poehlman, "Asynchronous words for
Forth," Proc. 1984 Rochester Forth Conference, (October 1984), pp. 32—
41.

[WIN85] R.G. Winterle and W.F.S. Poehiman, "Using SCSI peripherals on
DEC RT-11 systems," presented at the 18th Annual DECUS Canada
Symposium, February 19-22, 1985, Proc. DECUS Canada (in the press).

