Proceedings of the 1986 Rochester Forth Conference . 193

SOME EXPERIENCES WITH EXPERT-2

C.M. Sargent, L.G. Watson, R:M. Westman
Department of Mechanical Engineering

University of Saskatchewan :

Saskatoon, Saskatchewan, Canada ST7N OWO

ABSTRACT . \ ‘ o

The use of FORTH to implement knowledge-based (expert) systems is
seldom endorsed by the Artificial Intelligence community. However,
FORTH's speed, e¢xtensibility, portability, and rapid-prototyping
environment make it 1ideally -suited for this task, =especially on
microcomputer-based systems. One example of using FORTH as a basis for
expert system development is - a very wuseful tool kit called EXPERT-2
(Park, Mountain View Press).

Although EXPERT-2 is intended to be -a learning aid only, it is
much more, bscause the full FORTH language is accessible through the
RUN-type operators. Also, since the source code 1is 1included,
programmers can tailor the tool kit ‘to a specific application, or add
features that are not presently available. Thus, EXPERT-2 provides the
basis for an extremely powerful, flexible expert system tool kit in
FORTH.

Qur experience with EXPERT-2 ''is described on two levels:
1) modifications to: the tool kit source code 1itself, and
2) exploitation of the syntactical and structural constraints within
the program environment. - Among the useful modifications are the
additions of tracing and debugging facilities, a simple forward
reasoning scheme, additional -operators, and the ability to chain
several rule-bases together in one consultation. :

INTRODUCTION : : : ; .

‘This paper presupposss familiarity with, or at least access to
EXPERT-2. EXPERT-2 1is a fifth-generation computer language which
facilitates the creation of knowledge-based computer programs. ‘It was
meant to be an introduction to expert systems in FORTH. However,
because EXPERT-2 is written in FORTH and allows access to the
underlying FORTH system, it provides a stepping stone to more elaborate
and sophisticated expert systems in FORTH.

Since “"the source code is included in the documentation
accompanying EXPERT-2, virtually any -desired. feature can - be
implemented. We have made various additions to EXPERT-2 over the past
2 years that have proved to be extremely useful, some of which are
described below. : ‘ :

These additional features:are presented to demonstrate some of the
tools which make development of FORTH-based expert systems practical.
Other features that might also be ‘useful but are not yet implemented
are: approximate reasoning methods, data-base interaction, and real-
time data acquisition and control facilities. - ,

FORWARD REASONING

' As 'a ‘consequent-reasoning system,’ EXPERT-2 chooses a goal
(hypothesis) and works backwards through its rules trying to prove it.
If a proof cannot be found, exscution moves to the next hypothesis. In

194 The Journal of Forth Application and Research Volume 4 Number 2

contrast, an antecedent (forward) reasoning system starts with facts
and tries to establish a conclusion. Ideally, both methods would be
employed in one inference engine. '

A simple forward-reasoning scheme was . developed through the
addition of SELECT and THENN. = SELECT offers the opportunity to begin
with some known facts. When SELECT is executed, all THENN strings are
presented with the question:

IS THIS TRUE? (Y=YES, N=NO, RETURN=NOT KNCOWN)
Returning 'YES' or 'NO' stores the string on the KNOWNTRUE or
KNOWNFALSE stack, respectively. After all THENN strings have been
presented, exscution passes to DIAGNOSE+ (DIAGNOSE without UNLEARN) for
normal EXPERT-2 testing of hypotheses.: THENN ‘is merely used to
distinguish strings for wuse with SELECT. During DIAGNOSE, THENN
behaves just 1like THEN.

This method allows the user to volunteer known information at th°
beginning of a session. As a result, irrelevant questions are
minimized and hypothesis testing can proceed more efficlently.:-

TRACE/DEBUGGING FACILITIES

A TRACE facility was added to provide thes user with the ability to
follow the reasoning leading to the current question or conclusion in a
consultation. The format for questions was modified to. inelude the
trace option as shown here:

IS THIS TRUE? (Y=YES, N=NO, W=WHY, T=TRACE)

Selecting 'T' for trace presents each rule in the chain of reasoning
with IS TRUE, IS FALSE, or IS NOT KNOWN following each statement, based
on the user's responses and the program's deductions. After each
traced rule is presented, the user is asked if he wants to continue the
trace. Responding -'YES' presents the next rule.in. the current
reasoning chain. A 'NO' response to . the trace query will switch
axecution back to the current question immediately. When all rules
have been presented, the original question is repeated. This trace
feature is also present at the end of a session, once a hypothesis has
been verified. oo

Several of the additions to EXPERT-2 were debugging,K tools.
Extensive use was made of FORTH words that listed important parameters,
for instance: LISTHYP lists the rejected hypotheses, DISPLAY lists thse
KNOWNTRUE and KNOWNFALSE stacks, and LISTIF and LISTTHEN will detect if
a rule has more than one IF or THEN statement. - This last situation is
undesirable since the inference engine will see the second IF as a
THEN, creating confusion in further ‘testing.

Another debuggirig tool that found extensive use was HORERULES It
allows the compilation of additional rules without forgetting WALL and
starting over. It switches in the RULES vocabulary and removes the
last set -of zeros .from :RULESTK. A DONE must complete the additional
rules to return the context vocabulary to.FORTH. . In order to add rules
to the .presently loaded rule-base, the screens with additional rules
are LOADed, preceeded by MORERULES and . -succeeded . by DONE. For
additions to lengthy ruls-bases, this feature is a real time-saver.

ADDITIONAL OPERATORS - v
In the Kknowledge encoding process; there may be more than one

method of arriving at the same corclusion. -This situation results when

two or more rules have different antecedents but the same consequent.

Proceedings of the 1986 Rochester Forth Conference ' 195

while the order in which rules are listed does not affect the execution
of the program (since the OR between rules with ldentical consequents
1s implied in the program), the logic may be difficult to follow if
rules which have the same consequent. are not grouped,togéther in the
rule-base. ' o

For this reason the OR opﬂrator was added. It is used to gather
all the antecedent combinatlons tognthor into one rule. The logic of
the single rule approach is easier to follow when 'WHY' is invoked
during the user session, because all possible antecedents are presented
in one rule. : f ‘

For similar reasons, ORIF and ORIFNOT operators were also added.
The operation is parallel to that of the OR, but ORIF and ORIFNOT only
work between two antecedent strings, whereas OR works between two sets
of antecedents. ‘ ‘

' Another operator addition was ANDTHENNOT. It is used to provide a
negative conssquent, and is used only after a THEN. If two consequents
are mutually exclusive, then choosing one eliminates the other one.
Thus, if a rule which includes an ANDTHENNOT is triggered, the string
preceeded by the ANDTHENNOT is put on the KNOWNFALSE stack. This
eliminates from further testing any rule or hypothesis which uses that
string as a positive context antecedent. ‘

MULTIPLE RULE-BASES

The operator ADDRULES was c¢created to facilitate the compilation of
rules only as they are required during a consultation. For example, in
the classic ANIMALS game, some initial rules would decide if the animal
was. mammal, reptile, or bird. If it was deduced that the animal was a
bird, the BIRD rules would then be compiled into. memory from disk.
Thus, these rules would occupy momory only if they are needed. They
can be called from a rule with.a RUN operator, such as ANDTHENRUN
ADDRULES, where ADDRULES would load the appropriate screens from disk.

The purpose for this methodology is twofold. First, it is useful
_for small machines where the available memory restricts the number of
rules that may be compiled at one time. Secondly, it provides a
modular approach for creating large rule-bases. h

EXPLOITATION OF THE EXPERT-2 ENVIRONMENT , ,

To minimize the search time involvad with large rule-bases, a
combination of menus and variables,was‘lmpl°m°nt=d to flag only certain
hypotheses for testing. This technique provides a coarse filter for
establishing initially valid hypotheses. Consequently, the number of
rules that must be considered is reduced.] o

: Before the rules are compiled, a variable 1is defined and
initialized for <each hypothesis 1in the rule-base. The wuser is
presented with a menu or set of menus that classify the hypotheses into
broad groups. Based .on the user's selection from this mesnu system,
each variable is updated to represent the suitability (either true or
false) of. its corresponding hypothesis for that selection.

To uses the contents of this variable in the rula-base, each rule
containing a hypothesis would also contain an IFRUN antecedent. This
operator would execute a FORTH word to fetch the valus from its
corresponding variable. If the value is a true flag, testing proceeds
to, the next antecedent in the hypothesis rule. "If the value is 'a false
flag, that hypothesis is rejected, and testing proceeds to the next

196 The Journal of Forth Application and Research Volume 4 Number 2

hypothesis in the rule-base.

Another significant development in the EXPERT-2 environment was
the use of default structures. In the decision trees of rules, once
selection has proceeded down one branch, it is often desirable to force
a selection from that branch. In the ANIMALS program, 1if 1t has
already been deduced that the animal is a bird and a suitable bird
cannot be found, the inference engine should be restrained from trying
to prove that the animal is a cow. This situation arises since testing
of hypotheses proce eds anuontially as they occur on the HYPSTACK.

Several methods were tried to effect a default in certain branches
of the rule-base. Essentially, the structure was to provide a way of
choosing the first hypothesis in the branch after all other hypotheses
in the branch were exhausted. This would force a coneclusion from that
branch even if all hypotheses in the branch were exhausted. .

One solution was to add: another hypothesis to the HYPSTACK
immediately following the hypotheses for a particular branch. This
hypothesis would have the same character string as the first hypoth°sis
in the branch, however the character string of the last hypothesis
would be separated from the THENHYP operator by two spaces Instead of

one. A string with two spaces -between two words is regarded as
entirely different from the same string with only one space between the
same two words. This exploitation of the syntax raquiromnnts in

EXPERT-2 makes it possible to have two hypotheses that look virtually

“the sams to the user, but each serves a different purpose. The first
hypothesis is used in the usual way, and the second hypothnsis is used
as the default for the end of the branch.

If desired, the user can be informed that the verifed hypothnsis
is a default by using an ANDTHENRUN operator to invoke an explanation.
This makes it easier for the user to follow the’ logic of the decision

. in the program.

Another default structure was to control testing in the branch by
a rule that would verify the first hypothasis if its antecedents were
true or if the hypotheses for the other choices in the branch could not
be proven. For example, if hypotheses A, B, and C composed one branch
of rules and A was to be the default, a rule for A would only be
satisfied if the antecedents for A were true or if B and C could not be
proven. By placing this rule higher in the rule-base than the rules
for B and C, testing of B and C ‘would result from a rule for A and not
" from the position of B and C on the HYPSTACK. 1If B or C is proven as a

result of the rule for A, then there is no need for the default.

CONCLUSIONS

_ EXPERT-2 has been in wuse in- the Department of Mechanical
Engineering for the past two years. Some of the research projects that
are under development include the selection of wrought stainless
steels, a mechanical shaft d°31gn program, self-diagnosis of a
hydraulic pump, hydraulic circult design, stress analysis, and a ‘diving
coach expert system.

It has been our experience that som°‘vnry difficult problnms can
be solved with an expert system on a small computer. FORTH is ideally
suited for this task, however proper tools are needed. EXPERT-2
provides a basis for creating these tools. To date,'th° limitations
“ imposed by using a binary reasoning mechanism remain as the biggest
drawback to using EXPERT-2 for problem domains with inexact solutions.

