
Proceedings of the 1986 Rochester Forth Conference 193

SOME EXPERIENCES WITH EXPERT~2

C.M. Sargent, L.G. Watson, R.M. Westman
Department of Mechani~al Engineering

Uni versity .of Saskatchewan
Saskatoon, Saskatchewan, Canada S7N OWO

ABSTRACT
The use of FORTH to implement knowledge-based (expert) systems is

seldom endorsed by the Artificial Intell igence communi ty. However,
FORTH's speed, extensibility, portabllity, and rapid-prototyping
environment make it ideally sui ted for this task, especially on
microcomputer-based systems. One example of using FORTH as a basis for
expert system development is a very useful tool ki t called EXPERT-2
(Park, Mountain ViewPr,ess).

Although EXPERT-2 is intended to bea learning aid only, it is
much more, because the full FORTH language is ac~essi bl e through the
RUN-type operators. Also, since the source' code 1'5 included,
programmers can tailor the tool ki t to a specific appl ication, or add
features that are not presently available. Thus, EXPERT-2 provides the
basis for an extremely powerful, flexible expert system tool ki t in
FORTH.

Our experience with EXPERT-2 is described on two levels:
i) modifications to the tool ki t source code 1 tself, and
2)exploi tation of the syntactical and structural constraints within
the program environment. Among the useful modifications are the
addi tions of tracing and debugging facilities, a simple forward
reasoning scheme, additional operators, and the ability to chain
several rule-bases together in one consultation.

INTRODUCTION
This paper presupposes familiarity with, or at least access to

EXPERT-2. EXPERT-2 is a fifth-generation computer language whi~h
facllitatés the creation of knowledge-based computer programs. It was
meant to be an introduction to expert systems. in FORTH. However,
because EXPERT-2 is written in FORTH and allows ac~ess to the
underiying FORTH system, it provides a stepping stone to more elaborate
and sophisticated expert systems in FORTH.

Since the source code is included in the documentation
accompanying EXPERT-2, virtually any desired feature can be
implemented. We have made various addi tions to EXPERT-2 over the past
2 years that have proved to be extremely useful, some of which are
descri bed below .

These addi tional features are presented to demonstrate some of the
tools which make development of FORTH-based expert systems practi~al.
Other features that might also be useful but are not yet implemented
are: approximate reasoning methods, data-base interaction, and real-
time data acquisition and control fa~ilities.

FORWARD REASONING
As a consequer.t-'reasoning system, EXPERT-2 chooses a goal

(hypothesis) and works backwards through its rules trying ~o, prove it.
If a proof cannot be found, execution moves to the next hypothesis. In



194 The Journal of Forth Application and Research Volume 4 Number 2

contrast, an antecedent (förward) reasoning system starts with facts
and tries to establish a conclusion. Ideally, both methods would be
employed in one inference engine.

A simple forward-reasoning scheme was dev,?loped through the
addition of SELECT and THENN. SELECT offers the opportunity to begin
wi th some known facts. When SELECT is executed, all THENN strings are
presented wi th the question:

IS THIS TRUE? (Y:YES, N~NO, RETURNs NOT KNOWN)

Returning 'YES' or 'NO' stores the string on the KNOWNTRUE or
KNOWNFALSE stack, respectively. After all THENN strings have been
presented, execution passes to DIAGNOSE;t (DIAGNOSE wi thout UNLEARN) for
normal EXPERT-2 testing of hypotheses. THENN is merely used to
distinguish strings for use wi th SELECT. During DIAGN'OSE, THENN
behaves justiike THEN.

This method allows the user to volunteer known information at the
beginning of a session. As a result, irrelevant questions are
minimized and hypothesis testing can proceed more efficiently.

TRACE/DEBUGGING F ACILIT lES
A TRACE facility was added to provide the user with the ability to

follow the reasoning leading to the current question or conclusion in a

consultation. The format for questions was modified to include the
trace option as shown here:

IS THIS TRUE? (Y..YES, N=NO, W=WHY, T=TRACE)
Selecting 'T' for trace presents each rule in the chain of reasoning
with IS TRUE, IS FALSE, or IS NOT KNOWN following each statement, based
on the user's responses and the program's deductions. Arter each
traced rule is presented ,the user is asked if he wants to continue the
trace. Responding' YES' presents the next rule in the current
reasoning chain. A' NO' response to the tra.ce query will swi tch
execution back to the current question immediately. When all rules
have been presented, the original question is repeated. This trace
feature is also pres~nt at the end of a session, once a hypothesis has
been ver if i ed.

Several of the additions to EXPERT-2 were debugging tools.
Extensive use was made of FORTH words that listed important parameters,
for instance: LISTHYP lists the rejected hypotheses, DISPLAY lists the
KNOWNTRUE and KNOWNFALSE stacks, andLISTIF and LISTTHEN will detect if
a rule has more than one IF or THEN statement. This last si tuation is
undesirable since the inference engine will see the second IF as a
THEN, creating confusion in further testing.

Another debugging tool that found extensive use was HORERULÈS. It
allows the compilation of addi tional rules wi tho\lt forgetting WALL and
starting over. It switches in the RULES vocabulary and removes the
last set of zeros from RULESTK. A DONE must complete the additional
rules to return the context vocabulary to. FORTH. In order to add rules
to the presently loaded rule-base, the screens wi th addi tiona.l rules
are LOADed, preceeded by HORERULES and succeeded by DONE. For
additions to lengthy rule-bases, this, feature is a real time-saver.

ADDITIONAL OPERATORS
In the knowledge encoding process, there may be more than one

method of arriving at the same coi:clusion.This situation results when
two or more rules have different antecedents but the same consequent.



Proceedings of the 1986 Rochester Forth Conference 195

While t.he order in which rules are listed does not affe.ct the execution
of the program (since the OR between rules with identical consequents
is implied in the program), the logic may be difficult to follow if
rules which have the same consequent are not grouped together in the
rule-base.

For this reason the OR operator was added. It is used to gather
all the ant,ecedent combinations together into one rule. The logic of
the single rule approach is eaSier, to follow when 'WHY' is invoked
during the us,r session, because all possible antecedents are presented
in one rule.

For similar reasons, ORIFand ORIFNOT operators were also added.
The operation is parallel to that of the OR, but ORIF andORIFNOT only
work between two antecedent strings, whereas OR works between, two sets

of antecedents.
Another operator addi .lion was ANDTHENNOT. It is used to provide a

negati ve consequent, and is used only after a THEN. If two consequents
are mutually exclusive, then choosing one eliminates the other one.
Thus, if a rule which includes an ,ANDTijENNOT is triggered, the st.ring
preceeded by the ANDTHENNOT is put on the KNOWNFALSEstack. This
eliminates from further testing any rule or hypothesis which uses that
string as a posi ti ve context antecedent.

MULTIPLE RULE-BASES
The operator ADDRULES was created to facilitate the compilation of

rules only as they are required during a consultation. For example, in
the ciàssic ANIMALS game, some initial rules would decide if the animal
was mammal, reptile, or bird. If it was deduced that the animal was a
bird, the BIRD rules would then be compiled into memory from disk.
Thus, these rules would occupy memory only if they are needed. They
can be called from. a rule with a RUN operator, such as ANDTHENRUN
ADDRULES, where AÒDRULES .would load the appropriate screens fromdisk~

The purpose for this methodology is twofold. First, it is useful
for small machines where the availabl.e memory restricts the number. of
rules that may be compiled at one time. Secondly, it provides a
modularapproach for preating large rul~-bases.

EXPLOITATION OF THE EXPERT-2 ENVIRONMENT
To minimize the search time involved wi th large rule-bases, a

combination of menus and variables was implemented to flag only certain

hypotheses for testing. This technique provides a coarse filter for
establishing initially valid hypotheses. Consequently, the number of
rules that must be considered is reduced.

Before the rules are compiled, a variable is defined and
ini tialized for each hypothesis in the rule-base. The user is
presented with a menu or set of menus that classify .the hypotheses into
broad groups. Based on the user's selection from this, menu system,
each variable is updated to represent the suitability (either true or
false) .of its corresponding hypothesis for that selection.

To use the contents of this variable in, the rule-base,each rule
containing a hypothesis would also contain an IFRUNantecedent. This
operator would execute a FORTH word to fetch the value from its
corresponding variable. If the value is a true flag, testing proceeds
to. the next antecedent in the hypothesis rule.. . If the value is a false
flag, that hypothesis is rej ected, and testing proceeds to the next



The Journal of Forth Application and Research Volume 4 Number 2196

hypothesis in the rule-base.
Another significant development in the EXPERT-2 environment was

the use of default structures. In the decision tree of rules, once
selection has proceeded down one branch, it is often desirable to force
a selection from that branch. In the ANIMALS program, if it has
already been deduced that the animal Is a bird and a suitable bird
cannot be found, the inference engine should be restrained, from trying
to prove that the animal is a cow. This situationarises sinc~testing
of hypotheses proceeds sequ-ent i ally as they occur on the HYPSTACK.

Several methods were tried to effect a default in certain branches
of the rule-base. Essentially, ,the structure was to provide a way of
choosing the first hypothesis in the branch after all other hypotheses
in the branch were exhausted. This would force a conclusion from that
branch even if all hypotheses in the branch were exhausted. .

One solution was to add another hypothesis to the HYPSTACK
immeàiately following the hypotheses, for a particular branch. This
hypothesis would have the same character string as the first hypothesis
in' the branch, however the, character, string of the last hypothesis
would be separated from the THENHYP operator by two spaces instead of
one. A string wi th two spaces between two words is regarded as
entirely different from the same string wi th only one space between the
same two words. This exploi tatlonof the syntax requirements in
EXPERT~2 makes it possible to have two hypotheses that look virtually
the same to the user, but each serves a different purpose. The first
hypoth'!sis is used in the usual way, and the second hypothesis is used
as the defaul t for the end of the branch.

If desired, the user can be informed that the verlfed hypothesis
is a default by using an ANDTHENRUN operator to invoke an explanation.
This makes it easier for the user to follow the logic of the decision
in the program. . .

Another d'!faul t structure was to control, testing in the branch by
a rule that would verify the first hypothesis if its antecedents were
true or if the hypoth'!ses for thè other choices in the branch could not

be prõVen. For example, if hypotheses A, S, and C composed one branch
of rules and A was to b'! the default, a rule for A would only be
satisfi'!d if the anteced'!nts for A were true or if Band C could not be
proven. By placing this rule higher in the rule-base than the, rules
for Sand C, testing of B andC would result from a rule for A and not
froi th'! position of B andCon the HYPSTACK. If B or C is proven as a
resul t of the rule for A, then there is no need for the default.

COICLUSIONS
EXPERT-2 has b'!en in use in the Department of Mechanical

Engineering for the past two y'!ars. Some of the research projects that
are under development include the selection of wrought stainless
steels, a mechanical shaft design program, self-diagnosis of a
hydraulic pump, hydraulic circuit design, stress analysis, and a diving
coach expert sys tem. .

It has been our experi ence that some very difficult probl ems can

be solved wi th an expert system dn a ~mall comput~r. FORTH is ideally
sui ted for this task, however proper tools are needed. EXPERT-2
provides a bâsis for creating the,se tools. To date, the limitations
imposed by using a ,binary reasoning mechanism remaL1 as the biggest

drawback to using EXPERT-2 for problem domains with inexact solutions.


