
Proceedings of the 1986 Rochester Forth Conference 199

Object Oriented Programming in Fifth
Cliff Click and Paul Snow

P.O. Box 10162

College Station, Texas 77840

May 17, 1986

Ab"tract

Object orientated programming is fundamentally different from traditional languages.
Instead of passing data structures to functions, the programmer paSses messages (func-
tion names) to objects (data structures). The objects determine what function actually
gets executed. Our system wasmodeled after SmallTalk and 

is implemented in a Fifth,
a Forth based programming environment.

Introduction
Object oriented programmng is a state of nnnd. It's nature is very different from

traditional languages. Instead of setting up data structures and passing them.to functions,

the programmer defines objects and their behavior, and passes the object messages. Unlike
C an object's behavior is bound to the object. An object cannot be made to "behave" in

ways it was not "meant" to.
An object is an entity with size, contents and behavior. A description of it's contents

and some of its methods (possible behaviors) come from the class the object belongs to.
Each method is associated to a particular message, and describes what an object does in
response to a particular meSsage. When the programmer sends a message to an object, the
associated method is executed. It is the object's responsibility to understand and interpret
the message. If the message is not one the object's class understand, the object's super
class (the class that is the parent of the object's class) messages are checked. Inheritance
continues up a tree structure until the message is understood, or the root is reached.

We defined the basic elements of our system in terms of Fifth data structures. Some

the data structures we designed are objects, classes, and methods. We then 
discuss some

of the routines needed to get this system off the ground.
We modeled our design after Small Talk. Small Talk is complete implementation of an

object orientated environment. Unfortunately, it only runs on nnnicomputers. SmallTalk
versions running on nncro computers have problems with processing power. Our version
takes a few short cuts in the interest of spee.

To implement this system, we used our programming environment, Fifth. Fifth has

a number of features essential to the object orientated approach that make it a better
starting point than a standard Forth system. Fifth has tree structured scoping, memory

management, and a large memory modeL.

Objects
An object is a complete entity. It can be 

considered to be a collection of related in-
formation. This information may be data, code, 

or other objects. It has attributes like



200 The Journal of Forth Application and Research Volume 4 Number 2

size, contents and inheritance of behavior. IT a change to an object is desired, the object
is requested to make the change. Or in other words, an object changes itself; it is never
changed by another object. Objects are referenced by a single value, an object pointer.

An object has a class. The dass describes the layout of fields within the object and the
messages the object understands.

An object has a reference count. This is a count of the number of times an object
is referenced (has a pointer to it) in the system. When this count falls to zero no more
references to the object exist, and the object can be deletedj the programmer does not have
to explicitly free objects (e.g. the C function free 0 ).

Messages and Methods
To change an object or to make it exhibit ,some .behavior, the programmer sends the

object a message. Every message an object understands has a corresponding method. Tne
method is the code the message invokes. The object interprets the message and returns
a result (an object) based on the method and any parameters. Contrast this to more
traditional languages where data structures are passed to functions. In object oriented
programming, the object deternunes what function wil interpret the message. In traditional
languages the programmer picks the functions; and it is his responsibility to insure the data
structn.resmatch the functipn's expected inputs and outputs.

A couple of examples would be in oraer at this point. The following expression sends a
+ to 3. with a parameter of 5. (Notice that even simple integers are objects and are passed
meS8~ges.)

3 + 6

In this expression the message + and the parameter 5 are passed to the integer object 3.
Allintegers understand the messag~ + . With the parameter 5, the object 8 (an integer) is
returned.

Integers understand 0Ile kind of addition, floating point another, and strings yet another.
The next example ilustrates how a string nught interpret the message + .

'3' + ~6'

In this code the message + and the parameter '5' are passed to the string object '3'. The
object '35' (a string) is returned.

The message + had two very c;ifferent behaviors, depending on the object that received
the message. This is a powerful tool, as it lets the same piece of code work on different
objects.

Classes and Method Inheritance
Every object belongs to a class. A class holds the description of an object (the organi-

zation of data. within an object) and the messages the object understands.
Classes have an inheritance tree (i.e. classes have sub-classes which have sub-classes

which have.. .). The parent of a clas is called it's super class. Objects that belong to a
class use that class's messages and methods. The objects also inherent the messages and
methods of their classes' super class. This inheritanc~ continues up to the root object,
Object. This allows type independent code.

For example, all objects of clas Integer understand the messages + and * as add and
multiply. All Real objects understand these mesages too. Integers and Reals are both



Proceedings of the 1986 Rochester Forth Conference 201

subclasses of the class Numbers. The class Numbers understand the message square to
mean: number * number. This passes the message * and the parameter number to the
object number. The object interprets the message *. The same code squares both real
numbers and integers; it is type independent.

All classes understand the message new. Sending this message to a class returns.a new
instance of this class.

Data Structures
To implement SmallTalk in Fifth, we first designed the basic data structures that make

up the system. These are objects, classes, method tables, and methods.
An object in our object orientated language is a standard Fifth module with some fields

predefined. The first 4 bytes hold the object's class. The next 2 bytes hold the object's
reference count (the reference count is used in the memory management scheme).

A class is an object that also has fields to describe instances (objects that belong to the
class). The fields are:

. SuperClass - This classes' parent class.

. Text - The text object which describes this class.

. Method Table - The object which holds the table of methods understood by this
class.

. Instance Variable Names - A list of names describing the fields found iuan instance
of this class.

. Class Variable Names - A list of names describing variables shared by all instances
of this class.

A method table is an object which has a list of names and method objects.
A method is an object which has some code. The method's code pulls the parameters

and the receiver (the object which received the message that invoked this method) off the
stack and places a return object back on the stack.

Some needed functions

A convenient representation of names ànd messages is needed. All messages in the
system exist in a tá.ble of messages (names). During execution, a message is represented by
a 4 byte pointer into this table.

When a message is sent to an object, the proper method must be found. First the
object's class is found. Then the class's method table is scanned for a match with the
messa.ge. IT a match is found, the method corresponding with the message is executed. If
there is not a match, the class's SuperClas field is fetched. This class is searched as before.
This is repeated until the SuperClass field is null - which occurs in the root object Object.
A 'Message not understood' error occurs if the message is not found.

A store routine that understands the reference count is needed. When a new value
is stored in an object it overwrites the existing value. The overwritten object's reference

count is lowered, and the stored object's reference count is incremented. If an object's count
falls to zero, it is deleted. Fifth's memory management simplifies the implementation of
reference counting immensely.



202 The Journal of Forth Application and Research Volume 4 Number 2

A "compiler" that understands the language synta?t is also needed. The compiler con-
verts a class description to a data area with fields defined appropriately for the class. The
compiler then needs to set up the method t¡ible, and the methods. Within the methods the
compiler needs to generate code.

The Data Stack

A key part of this system is how parameters and objects are passed to methods, and
how the methods return results. Unlike SmallTalk, all objects and parameters are passed
on the same stack.

Before invoking a method all parameters needed by the method are placed on the stack.
Then the object receiving the message is placed on the st¡ick. After, the message is looked
up and a method found, the method is executed.

The method reserves storage on the return stack for temporary variables. Then it
ex!lcutes whatever code the compiler placed in the method. Before the method exits, all
temporary storage, the invoking object, and parameters are removed from the stack. The
result object is placed on the return stack, then the method returns.

This simple Forth-like method of passing parameters reduces spme of SmallTalk's over-

head. In addition, reference counting is not done with objects on the stack. This is possible
because a stack object is both created and destroyed during the execution of the method.
The net number of references is, zero. The only "gotcha" to this short cut is if the last
reference to an object is destroyed while the object exists on the stack.

Conclusion

To simplify SmallTalk's parameter passing, all parameters are passed on the data stack.
A number of complex procedures are needed to build this system, including procedures for

compilation, reference counting, method lookups, and name tokenizing.
A number of basic data structures need to be defined. These data structures define

the basic design of the system. Some defined data structures are objects, classes, method
tables, and methods.

Objects within this system have a class. The object's class defines the fields the object
has and the methods the object understands. The class also defines a hierarchy of classes.
The object uses messages and methods from any class in this hierarchy.

To make an object exhibit behavior it is sent a message. The message is found in the
method tables of the object's clas and it's super classes.

Objects themselves have size, contents, a class, and a reference count. The reference
count defines the number of times the object is referenced in the system. When this count
falls to zero the object is deleted.

.A object oriented programmng environment has advantages over traditional languages
and environments in ease of use and understand. .A object orientated programng envi-
ronment is not beyond the capabilities of a good Forth implementation.


