
Proceedings of the 198~ Rochester Forth Conference 207

Fifth: A Forth Based Programming Environment
Cliff Click and Paul Snow

p.a. Box 10162

College Station, Texas 77840

May 17, 1986

Abstract

Forth is an excellent base for a complete programming environment. Fifth is a version
of Forth with memory management, scoping, a large memory model, and a highly
visual programmer interface. Fifth allows editing on two levels, the module level and
the program leveL. Modules are easily modified without changing their position in the
dictionar. The dictionar can be easily rearanged using the dictionary editor.

Introduction
We began experimenting with a programming environment in December of 1984. Our

goal was (and is) the unobtainable, the "perfect" programming environment. Our inter-
est came from a simple observation: the programming environment often makes a bigger
difference in productivity than the language. (Why else would anyone use BASIC?) We
wanted the following characteristics in our environment:

. Fast compilation. We found that we often forgot what we were doing (and why!)

while waiting for compilations to complete.

. Modular code. Complex functions should be easily hidden away within routines which
can subsequently be used as "black boxes" .

. Effcient code. Programs produced in the "perfect" environment should be competi-

tive in speed.

. Hidden compiles. With a fast compiler, there is no need to bother the programmer
with details like invoking the compiler.

Forth was used as the system language even though neither of us had any significant Forth
programming experience. Why? In contrast to languages like Cor Pascal, Forth is simple
to implement and modify; this let us concentrate on environment issues. (Had we used C
as a base, any change could cause side effects through out the compiler; we would have
spent all our time on the compiler rather than the environment.)



The Journal of Fort Application and Research. Volume 4 Number 2208

As we looked into Forth, we found it was lacking a few features that we felt were
essential to the environment we wanted to build. These include:

. A large memory modeL.

. Scoping.

. Memory management.

. A visual programming interface.

. Source level tracing and breakpoints.

The large memory model is a need recognized by many venders of 32-bit Forth systems.
Scoping is needed to reduce name collsions. Convenient memory management gives pro-
grams easy access to dynamic memory; this is a feature needed in many AI applications.
Fifth's programming interface also relies heavily on dynamic memory. This interface is
visual, allowing the programmer to inspect and change the dictionary. It gives the pro-
grammer a better "feel" for the state.of the system. This interface is enhanced by Fifth's
capability of selectively, tracing modules at the source leveL.

Scoping

We had one major goal for the scoping rules in Fifth: to help the programmer build a
more accurate, functional "model" of a program. Forth makes use of linear scopingj words
in a Forth system are. defined using previous words. Where as this kind of scoping is an
improvement on global scoping, we wanted more flexibilityin building program "models"
within Fifth.

The IBM PC version of Fifth uses scoping rules similar to PascaL. Every modulel
"owns" a subdictionary. Within a subdictionary, modules may only use the previous mod-
ules. A search for a particular module ends at the first match (just like Forth). If the

search is not satisfied in the subdictionary, a search is made starting with the owner of
the subdictionary, and of the modules visible to the owner. This search continues until the
last module, the root module, is reached. (The root module is the module that "owns" the
dictionary.) If the module is not found, the module is undefined.

Fifth's scoping rules greatly improve the program "modeL" Modules are made more
independent by "hiding" supporting modules in subdictionaries. A module for all ap-
pearancesmight seem to perform some complex function, but in reality, the function is
performed by a set of modules, neatly hidden from view. This encourages small sets of
code without cluttering the dictionary with words that are of little or no interest to most of
the program. Faster compilation is a pleasant side effect of scoping since scoping shortens
the search path.

i At this point we should justify the use of the term "module" in the place of "word." A Fifth module
includes not only its own code, but also a subdictionary containing (possibly) other modules and their code
and subdictionaries. A module (and its subdictionary) may be saved to (and loaded from) disk separately.
Modules in Fiflh make it easy to build and support libraries of useful routines which can be easily merged
or blended in with other programs.



Proceedings of the 1986 Rochester Fort Cgnference 209

Fifth'8 Dictionary

Screens are a great idea; programs should not be written in large, linear files. But
dealing with numbered screens can be painful too., Fifth gives each module its oW,n "screen,"
which Fifth calls the module's text. A module's text contains only the source code for that
particular module. The text for a module is not restricted to a particular 

number of lines,

and is compressed to reduce memory requirements. But the biggest departure from screens
is in where Fifth keeps the text for a module; itis kept in the dictionary with the execution
code for the module. This means that a module owns its own source code as well as its
execution code in the dictionary. Furthermore, the dictionary is not the current state of a
program; it is the program.

Memory management becomes necessary for a Fifth system because modules may grow

or shrink in size as they are modified. Fifth keeps modules in in a heap rather than a stack,
and module references are indirect so the system can move them. Fifth lets the programmer
manipulate modules in the dictionary while limiting side effects to other modules in the
dictionary.

Despite all the differences between the dictionaries of Fifth and Forth, there is little
difference in the philosophy. A module's behavioris stil similar to a word in Forth, 

and

Fifth encourages the programmer to build his programs from small, easily tested modules.
Fifth simply extends the Forth philosophy by simplifying the interface. This interface is
the subject of the next section.

Fifth'8 Dictionary Editor

The dictionary editor is the key to Fifth's programming environment. It 
is the pro-

gram that allows the programmer to freely inspect and modify individual modules and/or
their position in the dictionary. The programmer can concentrate on a module, debugging
it where it is in the program, with changes coming into effect immediately and automat~
ically. Or the programmer can concentrate on the organization of the program, moving
related modules to logical positions, deleting unneeded modules, or adding new modules.
In Fifth the dictionary takes an active part in defining the program, directly expressing

the relationships between modules.
A programming environment should have some method of maintaining libraries of useful

functions. In Fifth, libraries of routines are maintained using the dictionary editor. It

enables the programmer to save out a module (and its subdictionary) independent of the
rest of the dictionary. Conversely, modules may be loaded back into the dictionary at any
point. In this way the dictionary editor supports easy maintenance of libraries of routines
which in turn increases reusability of code.

Automatic Compiler

Compilation is an integral part of Forth, and is done when a screen is loaded or code is
typed. In Fifth, the text for each module is loaded into the dictionary without compiling it.

In addition to the text, each module is given a program stub. Executing a module executes
this program stub which in turn invokes the compiler on the module. (This program stub
is given to all modules "marked" as uncompiled.) If the compilation is successful, the
generated code replaces the program stub, and is executed. The first execution of a module
invokes the compiler first, then later execution of the module executes the module's code
directly. The programmer never has to invoke the compiler.



210 The Journal of Forth Application and Research Volume 4 Number 2

Fifth uses a number of strategies to reduce the compilation time of a program. One
strategy is analogous to lazy evaluation, where compilations are delayed until a module is
actually executed (lazy compilation?). Another is the observation that compiles normally
follow editing; Fifth employs an incremental compilation scheme where the compiler is
called automatically upon leaving the editor. This compilation is normally restricted to
the modified module; modifications are reflected almost instantly, even in large programs.
There are operations that cause Fifth to mark a number of modules as uncompiled, causing
noticeable compile times. These include inserting, deleting, or moving a module.

The programmer is not restricted to Fifth's automatic compilation; the programmer
can force compiles. This can be done from the dictionary editor, or from within a program.
A module can actually force the compilation of another module. Fifth modules can use
conditional compilation to increase execution speed, and recompile a module if conditions
change.

Summary

Fifth encourages the isolation of a module from the rest of the program by placing
supporting modules in subdictionaries. The programmer can easily inspect and change
the relationships between modules using the dictionary editor. This improves the main-
tenance and flexibility of a program. The scoping rules and dictionary editor team up to
eliminate the need for vocabularies and special schemes for handling libraries of routines.
Fifth's automatic compilation of modules greatly reduces compile times, and reduces the

programmer's burden of maintaining the state of the program.

An Implementation of Fifth
We have developed a version of Fifth that runs on the IBM PC. It uses 32b arithmetic,

a large memory model, floating point, graphics, source level tracing, and MS-DOS files.
The text editor, dictionary editor, and primitives are memory resident. "Online" help is
available for all primitives. This version is a Freeware program.

We are also have an Amiga version which includes improvements in the flexibility of
Fifth. A generic version written in C is in the works to get Fifth up and running on any
system with a good C compiler (e.g. UNIX).


