
Proceedings of the 1986 Rochester Forth Conference 211

POSTSCRIPT™

Paul Snow, Cliff Click, and Norman Naugle
p.a. Box 10162

College Station, Texas 77840

July 9, 1986

Abstract

POSTSCRlT is a page description language developed and implemented by Adobe.
Adobe appears to have implemented POSTSCRlPT inG, but we thought Forth would

be better suited for the job. We explored the issue by developing X-SCRlPT in a Forth-
like programming environment called Fifth. We soon learned much of POSTSCRlPT
is designed to fit in nicely with common C functions. Much of Forth's flexibility and
speed is hampered by POSTSCRlPT's inflexible design.

Introduction
POSTSCRlPT1 is page formatting language, a standard that has been proposed by Adobe

systems, Inc. It uses a post fix notation very similar to Forth. POSTSCRIPT can be easily
generated by other programs, or by programmers, and can produce stunning graphics and
text. POSTSCRlPT's fonts are of literally any size or slant. Many fonts are outline fonts,
and can be used to produce stunning effects when manipulated as graphics.

The motivation behind POSTSCRlPT is to take advantage of rasteroutput devices like
laser printers. These printers far more versatile than line printers, but their capabilities are
neglected by outdated printer communication conventions. POSTSCRlPT is one scheme for

accessing these capabilities.
'We were four months into developing Fifth, a Forth-based programming environ-

ment, when Norman Naugle approached us with the idea of implementing X-SCRIPT, a
POSTSCRlPT look-alike. We were to implement X-SCRIPT in Fifth on a PC class machine.
The output devices for X-SCRlPT include various laser printers and graphics screens. We
have the major pieces together and working, and hope to be 100% finished by the end of
the summer.

POSTSCRlPT'S Specifications

X-SCRlPT follows POSTSCRlPT's definition as given in the POSTSCRIPT manual put out
by Adobe. The main challenge in implementing X-SCRlPT is that of developing a effcient
system. POSTSCRlPT is not a particularly fast language. Originally we felt that tight
Forth code and spot optimization would solve the speed problem. After doing some design

and study, we came to the conclusion that the speed problem is not in the implementation
of POSTSCRlPT. It is in the specifications. The POSTSCRIPT specifications clearly state:

. All routines do type checking.

lpostScript is a trademark of Adobe Systems, Inc.



212 The Journal of Forth Application and Research Volume 4 Number 2

. Many routines perform type conversions, if necessary.

. Many routines are overloaded.

. All functions are looked up at run time (Dynamic name binding).

X-SCRIPT uses a tagged stack to enable type checking and conversion. This tag allows
X-SCRIPT to identify the type of any element in the system. Every X-SCRIPT element
on the stack is made up of two Fifth elernents.The extra Fifth element contains type

information. There are 14 basic types in X-SCRIPT, with some types having special fields.
(For example, strings and arrays have a length field.)

All primitives check operand types to determine if type conversions are necessary. If
the primitive is overloaded2 the check is necessary to decide what to do.

X-SCRIPT's dynamic name binding is the biggest slow down in the system. Procedures

are lists of procedure names which are dynamically looked up at execution time. The
process of looking up the name to find the procedure is called name binding. Forth does
compile time name binding. (Procedures are a list of execution addresses.) In POSTSCRIPT
name binding occurs at execution time. The results of the name binding is determined
by something X-SCRIPT calls the dictionary stack. The dictionary stack specifies which
dictionaries (an X-SCRIPT dictionary is very similar to a vocabulary in Forth) should be
searched and in what order. If two definitions of procedure exist in different dictionaries on
the stack, the definition in the dictionary highest in the dictionary stack is used. Changing
the order of the dictionaries on the dictionary stack can alter dynamically the behavior of
any or all procedures.

Unlike Forth, X..SCRIPT supports no "extensibility." Names are governed by rules
typical of C, and certain characters are delimiters in X-SCRIPT's rigid syntax. This gives
X-SCRIPT a familiar feel if one's background is in C, but limits Forth's advantages as a
implementation language.

Fifth and X-SCRIPT

A "standard" Forth system has several drawbacks as a starting point for an implemen-
tation of X-SCRIPT. Forth needs:

. Floating point.

. Graphics.

. Memory management.

. Large memory modeL.

Fifth has a large memory model, floating point numbers, simple graphics and a heap

manager. Other capabilities of Fifth that turned out to be useful included a tree structured
dictionary, dynamic compilation, and mutual visibility of modules. The tree structured
dictionary is used to "hide" the complex inner workings of some of the modules. A module's
name canbe interpreted in the context within the dictionary; this reduces name collisions.

The dynamic compilation ability allows the program to change output devices by re-
compiling a set of device dependent modules. This avoids the run time overhead of choosing
20verloading is where the same operator (or routine) can take parameters of various types. For example

in C, the + symbol can mean integer addition or floating point addition, depending on the type of the
expressions involved.



Proceedings of the 1986 Rochester Forth Conference 213

the output device by replacing it with a compile time decision. The decision can be easily

changed by recompiling the device dependent modules.
The mutual visibility of modules. is an ability graIlted by the tree structure. A module

can "see" all its children, and all its children can "see" it. Recursive algorithms (and
definitions) become easier to write.

Hash Tables

Dynamic name binding is powerful, but slow. We were able to increase the speed of
dynamic name binding by using a self optimizing hash table. The main dictionary in X-
SCRIPT, the system dictionary, has over 200entri~8 and is 95% full, making it a very dense
hash table. Because the system dictionary table is so dense, almost all lookupsín the table
have a collsion. At the point of the collision we begin a linear search for the hash key.
Without any optimization, several key compares are done for each lookup. Howeverwhen
we find the key, we swap the key with the previous hash table entry. This moves the hit key
closer to it's hash position, but moves another key further away. The long term effect of
this behavior is that commonly used entries migrate toward their hash points. Uncommon
entries are pushed about the table, but since they aren't commonly used no one cares.

Summary
POSTSCRIPT is designed to take advantage of the new high resolution printing devices,

like laser printers. POSTSCRIPT is a flexible and convenieIlt way to make outstanding page
layouts. But the specifications from Adobe contain design decisions that limit its speed.
The biggest speed problem is POSTSCRIPT's dynamic name binding. To speed up name
binding, X-SCRIPT organizes dictionaries as self optimizing hash tables.

X-SCRIPT demonstrated the need for attention in certain areas of Forth. Forth needs
a large memory model, floating point arithmetic, graphics, and memory management in
order to implement systems like X-SCRIPT. It is our opinion that Forth needs some form
of easy-to-use scoping. We certainly. got a lot of mileage out of the tree structured hierarchy
inFifth. We hope some work is going in to extending the Forth standard; there is nothing
we know of in the Forth philosophy that precludes the addition of those features Forth
lacks.

On the bright side, X-SCRIPT has shown that Forth can be readily applied to large sys-
tems software. Forth's immediate test and debug reduced development time and increased

the reliability of X-SCRlPT. And .when necessary features were lacking, we found Forth
easy to modify. This is perhaps Forth's biggest advantage over "traditional" languages;

Forth ìs flexibility.

Yet To Go. . .

,. X~SCRIPT is in a workable form, and is nearing the alpha test stage. X-SCRIPT is
competitive with POSTSCRIPT in speed, and with some planned 

enhancements not yet
installed it could be considerably faster. X-SCRIPT currently outputs to the TI PC screen
(720x300), the IBM PC screen (320x200, H&W or calor), the QMS 800 laser printer, the
Apple LaserWriter, and the JLASER card by TallTree.

X-SCRIPT currently lacks outline fonts (we use Hershey fonts), font bitmapping and
caching, thick lines, and clipping.


