
214 The Journal of Forth Application and Research Volume 4 Number 2

Comical:
A Forth-based Programming Language

for Optimized Array Processor Programming

John E. Lecky
University of Vermom

Department of Electrical Engineering and Computer Science
Votey Building

Burlington. VT 05401

Abstract
A new programmig language for directing highly paralel hardware systems such as. array
processors has been developed. This language is caled COncurrent MICroèode Assembly
Language, or ComicaL. A ,Comical assembler for a commercial array processor has been

written in Forth. This combination alows array processor programs to be quickly developed

and tested in ,the interactive Forth envionment. Comical alows, the software designer to' take
full advantage of the paralel processing paths of the array processor, maximizing execution

speed. At the same time, programming in Comical Isno more diffcult than conventional
assembly language programmig, and Comical statements are descriptive and readable.

Introduction
Comical, the new language introduced in this paper, grew out of a development effort

involving the use of array processors (APs) for solving engineering problems. The term "array

processor," as used here, refers to a system of computing hardware that has been optimized for
analyzinglarge arrays of data. An array processor offers considerable computational advantages

in any discipline requiring the generation or analysis of large volumes of data, such as signal pro-
cessing, image processing, statistical analysis and graphics work. The array processor's abilty to
cope elegantly with vast quantities of data arises from a carefully designed mixture of several pro-

cessing elements which operate independently and simultaneously. The control and orchestration
of these individual elements is generally effected through microprogr8;mming, a term which
refers to the fact that each array processor instruction is made up of several "mini-instructions,"

each providing a command for one of the individual processing elements. This compound instruc-
tion is commonly referred to as a microinstruction, or microcode.

An understanding of the array processor programming problem requires an understanding
of array processor hardware. The set of processing elements typically included in an array pro-
cessor is, therefore, discussed below.

Array Processor Hardware
One key AP element is the sequencer. The sequencer generates addresses for microcode

memory, which is kept distinct from data memory. This technique follows the Modified Harvard

Approach of maintaining separate program and data information buses. The sequencer selects
the instruction that the AP wil execute next while the AP is executing the current instruction.
In this way, program flow control overhead is eliminated. Typical sequencers contain a micropro-

gram counter (PC) which points to the next instruction. This PC can simply be incremented

when executing sequential instructions, or can be more intelligently controlled by the sequencer to
initiate jumps, calls, and loops. Sequencers usually have their own internal hardware stack to
eliminate the time overhead normally associated with such functions. A counter internal to the
sequencer can be used for controllng do-loop constructs. The sequencer wil generally be in con-
tact with the ALU statu;; tegÍbter, to allow conditional branching, like if-then-else, begin-until, or
while-repeat constructs.

Another key AP element is the Arithmetic Processor (AM). General-purpose AMs
wil usually have a large set of internal registers, an extensive arithmetic logic unit, and



Proceedings of the 1986 Rochester Forth Conference 215

condition-testing logic to generate status signals. The AM wil be instructed with both the
operation that it is to perform and a specific condition for which it is to check the result. The

result of this status test, which might be of the form not zero, negative, or carry, for example,
wil be used by the sequencer to make conditional branching or callng decisions.

Since many AMs do not provide multiplication hardware, a separate multiplier or
multiplier/accumulator is often added. Even when the AM can multiply, it is often advanta-
geous to have the capabilty to perform a multiplication and some other ALU instruction simul-
taneously. Hardware multipliers generally have two input registers traditionally called X and Y,
and produce their result in a third register. The microinstruction wil control the flow of data to
and from these registers. Since a multiplier always requires two operands, data memory is some-
times partitioned into two pieces with two separate data buses. In this way, the multiplier can be
loaded with two operands simultaneously. This architecture is especially useful in signal and
image processing.

Data memory, regardless of partitioning for the multiplier, will usually be addressed by one
or more Memory Address Registers, or MAs. These are intellgent address generators that
may be loaded with immediate values, or instructed to automatically increment or decrement.
Effcient utilzation of the MARs is crucial to the maximization of array processor effciency.

All array processors have several different buses over which data is transferred. This
arrangement allows for simultaneous data transfers ot unrelated data between unrelated devices,
or the simultaneous routing of a single piece of data to more than one device. To enable such
operations, there must be Bus Multiplexers that select different sources to drive different buses.
By careful control of the multiplexers, two unrelated array processor operations may often be

combined to execute in a single cycle.

With these building blocks in mind, we may examine some array processor micro instruction
design considerations.

The Microinstruction
The easiest way to design an instruction set for an AP is to simply string together each of

the sets of bits required to instruct each element. Microinstruction designs following this format
tend to be rather cumbersome, however, and are at the very least 48 bits wide.

In an effort to reduce the amount of required program memory and the width of the
instruction bus, designers usually include some special bits in the microinstruction. These bits are
not directly associated with a single instruction input on a single processing element, but rather

are multiplexed to two or more elements.

The multiplexed bits can only be interpreted by examining the settings of some other bits in
the microinstruction. They may be referred to, therefore, as contextual bits. Contextual bits
are included in the instruction sets of most microprocessors, and so it comes as no surprise that

they are found in array processors as well. Without contextual bits, microinstructions would

grow to be unmanageably wide.

It wil sometimes be physically impossible for the array processor to perform a particular
operation because of some timing, busing, or other hardware constraints. Often these physical
limitations may be exploited by the designer in defining the contextual bits. Other times, how-

ever, the designer will have no choice but to impose some unnatural constraints. Faced with a
51-bit microinstruction, for example, a designer wil be tempted to somehow squeeze the 51-bits

into a 48-bit space, eliminating innumerable tri-state buffers and latches. This squeezing can be

accomplished only by throwing away some of the generality of the array processor design. The
loss of generality may be judged unimportant when compared with the reduction in hardware
complexity.

Unnatural constraints make some otherwise logical parallel operations impossible. They
usually create some kind of interaction between seemingly unrelated elements. A typical example



216 The Journal of Forth Application and Research Volume 4 Number 2



Proceedings of the 1986 RochesterForth Conference 217

would be some form of testrictionon a particular AM instruction during AP cycles in which the

sequencer is branching to a subroutine. Constraints such as these are diffcult for the program-
mer to remember, and grossly complicate high-level language design accordingly.

A New Programming Language

Traditional array processor p'rogumming languages fall into two categories: meta-

assemblers, which interpret cumbers'ome and complex syntaxes, and vectorizing compilers,
which can produce horrendously ineffcient machine code. Meta assemblers usually offer reason-
ably independent control of the array processor, however, while vectorizing compilers allow pro-

grams to be written in a quite readable form. A new COncurrent MICrocode Assembly

Language, Comical, offers both of these attractive features.

Comical is based on the principle that each processing element should be instructed indepen-
dently by the programmer. Each element has its own complete instruction set. An AP instruc-
tion is .constructed from a list of these individual sub-instructions; if an element is unneededdur-
ing a certain AP cycle, however, it may be left out. The sub-instructions may be specified in any
order, improving readabilty.

Any interdependence between elements due to hardware limitations or contextual bits may
be monitored inside the Comical assembler. This removes the burden of remembering unnatural

constraints from the programmer or from a higher-level compiler designed to generate CO,mical
statements. The contextual bit problem degenerates into merely keeping a record of whether two

sub-instructions attempt to set' a given microinstruction bit to conflicting values.

Comical statements are thus highly readable, but stil maintain a one-to-one corresponden.ce

with array processor operations. ,Such one-to-one correspondence is critical to the success of code
optimization.

To concisely ilustrate Comical's primary features, a simple AP operation is programmed
below. This operation could be part of a larger program. The AP is capable of performing the
entire operation in one cycle. In English, the operation may be described as follows:

Fetch a data word from memory and store it into both of the multiplier registers, preparing to
compute a square. Have the AM subtract the ,word from its accumulator, storing the result
back into the accumulator. Finaly, set the MA equal to the same data. If the result of the
last instruction executed by the AM was negative, repeat the operation agai.

Below is a high-level vectorizing compiler version of the routine. In this language, the opera-
tion consumes four AP cycles.

;-,

get data froo memory and store into
both rmltipl ier registers

subtract data froo the accmnlator
set the mar equal to the data
branch. back to 'again' if negative

again xy =m

A - A-m
a=m
br (n)again

Below, the saqie operation is programmed using a meta~assembler. Because of the syntax con-

straints on the assembler, .the operation stil requires three machine cycles.' Note the no-ops

(NOOPs) that must be passed to the Arithmetic Processor, since the. AM only performs one
operation. Also, thesequencer is only passed one instruction (H#37).

AGAIN: NOOP
TONR
NOOP

, ,MX, 000
, ,TODA, SUBR,NR,MR, 000

H#37 , ,MR,AGAIN

XY=M
A = A-M
a = M, BR(N)AGAIN

Now, the operation is programmed in ComicaL. The instruction is the sole AP command in an
AP routine called "example." The routine now requires just one AP cycle, as indicated by the'



218 The Journal of Forth Application and Reseàrch Volume 4 Number 2

single semicolon signifying the end of a microinstruction. This example demonstrates the full
power of a Comical-based concurrent programming environment.

: apb exam 1 e
: again mant -/idb -/xy

i db -/Ob
acc d acc

again n ? jrn

1 di r

subr

place memory contents on, internal data bus
latch into both multiplier regs

connect data to outbus and load into mar

ac c d - ac c !

jum if negat i ve to again
japb

A Comical Assembler in Forth
With a Forth-based system containing an array processor, it is possible to write Forth code,

host assembly-language code, and array processor code interchangeably on the same screen. In
this environment, Comical can be written, assembled, debugged and integrated into complete sys-
tems especially quickly. A fifty-line Comical routine assembles and is ready to execute in about
t~o seconds on an 8086-based Forth system. A similar program written in meta-assembler would

take at least three minutes to a.ssemble alone on similar hardware. High-level code would take

correspondingly longer. The development timéadvantages of Comical are derived from the
extensible Forth dictionary, which allows an interpreting assembler to be written.

The arguments necessary for each member of the individual instruction sets written for each
processing element are simple constants available on the stack when the instruction is encoun-
tered. The instruction itself is a Forth word that immediately generates the necessary microcode.

The appropriate number of arguments are converted into a single, unique number bya hashing
routine. This number is then used as an argument into individual "switch 11 tables to determine
the necessary microcode. Any ilegal combinations are thus detected immediately and can be
reported precisely. The Forth-based Comical assembler is therefore not only fast and completely
general, but provides an error-handling facilty which displays exactly where the error is and

describes its nature. This feature rivalß the error-handling found in conventional assemblers.

A small bit of Forth trickery allows forward references to statement labels. Thus, it is pos-

sible to jump forward to statements that have not even been assembled yet. The branch a.ddresses
are automatically filled in when the desired label is eventually encountered.

Closing
In summary, the Comical programming philosophy offers great advantages over conven-

tional array processor programming techniques. When combined with a Forth-based system, a
truly interactive AP programming environment is created. The author is presently using such a
system to develop solutions to a variety of image processing problems, as well as some computa-
tionally diffcult VLSI CAD optimization problems. With programming turn-around times cut
from several minutes to less than a second, progress is both predictable and encouraging.

As the price of commercially-available array processors dips toward the thousand-dollar

mark, with board-level products available even for PCs, the range of applications' for which APs
wil be feasible wil steadily expand. The primary development features of Forth are the elimina-
tion of the program loading concept, and the distribution of the compilation and assembly tasks,

to the point of making them essentially transparent. These features, recognized for their utility
by many designers already, wil become increasingly valuable as computational hardware becomes
more complex. With massively parallel hardware systems, distributed assembly may be the only
viable option.

Forth is one of the few languages that demonstrates a capabilty for the effective implemen-

tation of arbitrary assemblers of enormous complexity. And with custom array processor chips
appearing in the marketplace already, such assemblers wil become ever more commonplace.


