
Proceedings of the 1986 Rochester Fort Conference 223

A SIMPLE AUTHORING SYSTEM
FOR COMPUTER-ASSISTED INSTRUCTION

B. Gregory Louis
President

Dynamicro Consulting Limited
494. Mi 11 wood Road

Toronto. Ontario. Canada M4S 1K5

The FORTH outer. interpreter provides a convenient infrastructure on
which to build support routines for writing computer-assisted
instructional material (CAI). We have implemented a system that runs
courseware by LOADing FORTH screens on which the course author has
prepared the material to be presented. The system supports both
uncondi tional and condi tional branching (necessary to allow the
courseware to adapt i tse lf to the student i s progress based on test
results) . There are few tools to master; course writers ,who know FORTH
can expect to be ready to use the system productively within half an
hour of ini tial contact.

INTRODUCTION

An ongoing problem with "distance education" - prqvision of educational
courses to people unable to reach an insti tution of higher learning - is
that many students have difficulty pursuipg the, course systematically
because of the lack of personal direction and feedback. The inclusion
of computer-assisted instruction (CAI), material in such courses can go
far to reduce or eliminate this difficulty. The computer substitutes in
part for an instructor by providing interactive instruction and testing;
in a well-written CAIprogram, material to be presented may be selected
based on student performance. The student is additionally placed in
contact with a human instructor at regular intervals to .ensure that
progress continues and any student problems are appropriately dealt
with.

The production of good CAI material is difficult and costly. There is
an analogy between this activity and the production of "expert systems".
inasmuch as it is rare for. experts in the field of stúdy to be, as well,
competent in course des ign and fami liar wi th the pecul iar requirements
of the CAI medium. Much effort - in the author's view, misguided - has
gone into attempts to produce CAI-writing tools that are easy for the
non-programmer to manipulate. This paper wi 11 present another approach:
a simple toolset intended for use by a FORTH-oriented "knowledge
engineer" engaged in production of CAI courseware.

224 The Journal of Forth Application and Research Volume 4 Number 2

METHODOLOGY AN DESIGN

The use of FORTH as the environment for CAI authorship greatly
facilitates the design, because most of the required facilities for CAI
wri ting are already inherent in the FORTH system. The FORTH block-based
disk I/O provides a natural CAI "text frame" of suitable size, and the
frame text can be emplaced with the aid of a full-screen FORTH editor
such as is now commonly supplied by most FORTH vendors. The fact that
the screen is interpreted, rather than simply displayed, by the FORTH
system allows the provision of flow-control and user-interaction tools
that the course author can access "in line" during the course-writing
process. There is thus no separation between the text and the CAI
"program" that drives the text display, which gives a very natural
"feel" to the working environment; further, the author has access to the
full capabil i ties of the FORTH outer interpreter at any point in the
course.

Specific requirements of the CAI environment seen by the student include
the following:

1. Simple and secure student interaction. In the design presented
here, only keys that give responses valid in context are accepted
by the system; the rest of the keyboard appears "dead".
2. F low control. Condi tional execution, binary and multiway
branching are all needed to permit the author to write courseware
that tailors itself to the student's demonstrated ability and
progress. An execution-tracing mechanism "smart" enough to back up
over such branches is needed to satisfy student requests for
repetition. The student must be able to interrupt the session at
any point and resume at the point of interruption with backtraclng
capabili ty intact.
3. Information about the student and student progress may need to
be saved for uSe throughout the course. Mass-s torage access is
required for this and the backtracing facility.
4. An optional tutorial on the use of the student's CAI
environment itself' is part of the base package. It is undesirable
for the student 'to begin study of the course material while still
unfamiliar with the use of the medium.

It is a tribute to the inherent power of FORTH that these capabilities
are all implemented in six screens, with a seventh "load screen" to pull
the system together and implement any portability changes. The design
details may be studied by reference to the glossary and code that
follow.

DISCUSSION

The system has been used to implement a CAI-based distance-education
course on the subject of the C programming language. The simpl ici ty of
design proved valuable: The course author had many other
responsibil i ties and the production of the C course was spread over
eleven months with lengthy interruptions; yet the resumption of course-
writing was never delayed by the need to relearn a complex set of tools.
The need for one refinement was identified: the branching words should
be made relative, rather than absolute, to aid in screen relocation.

Proceedings of the 1986 Rochester Forth Conference 225

GLOSSARY

Display words
TITLE (---) ?LOAD - must be LOADing

Clears the display screen and displays, centred on the second
display-screen 1 ine, text from the input stream following the word
TITLE till the end of the input line. The display cursor is set to
the left column of the third display-screen line.DSP' (---) ?LOAD
Beginning on thedi splay line beneath the current cursor position,
text from the input stream is copied until a line ending with the
character 'has been displayed (the ' ~s suppressed), or till the
end of the input screen.

Flow-control words#IF (f ---) ?LOAD
If the value of f is nonzero, no branch takes place. If f is zero,
input wQrds are read and discarded up to and including the first
occurrence of the word #F I. May not be nested.#IFN (f ---) ?LOAD
Negative of #IF ;no branch if f is zero, skip through #FI else.#IFDEF (---) ?LOAD
Reads a word from the input stream. If the word can be found in
the FORTH dictionary, no branch takes place; otherwise input words
are read and discarded up to and including the first occurrence of
the word #FI. May not be nested with other #IFs or #IFDEFs.#IFNDEF (---) ?LOAD
Negative of #IFDEF; branches if the word is found.LINK (blk# ---) ?LOAD
Uncondi tional branch to new input screen. Continues LOADing at the
start of disk block number "blk#". Does not nest LOADs so there is
no return to the branch point.

Tracing words
TRC (Variable) (An array of 128 block-numbers with an initial index)

Used as a "hollow-bottomed" stack, i. e. the 129th push causes the
first (bottom) item on the stack to be discarded.

;:TRC (blk# ---) Pushes "blk#" onto the TRC stack.
TRC) (--- blk#) Pops a block number off the TRC stack. If the stack

is empty, the number in system variable BLK is used.FORWARD (blk# ---) ?LOAD
Pushes the contents of system variable BLK onto the TRC stack and
LINKs to block number "blk#".BACK (--- blk#) ?LOAD
Pops a block number off the TRC stack and LINKs to it.ADVANCE (---) ?LOAD
Pushes the contents of BLK onto the TRC stack and executes --).;:ADVANCE (---) ?LOAD
Takes the contents of BLK. subtracts 1, pushea the result onto the
TRC stack, and executes --). Used when the current input screen is
a continuation of a display that started on the previous one.

226 The Journal of Forth Application and Research Volume 4 Number 2

Start/Resume words
MENU-BLK (Constant) Block number of the main menu display.
INSTR-BLK (Constant) Starting block number of a short tutorial on how

to use the CAI system for study.
SAVBLK (Constant) Block number of the start of the CAI data-storage

area. TRC is saved here between sessions.
SAVET (---) Saves TRC at SAVBLK, signs off and exits from FORTH.
RESUME (---) Restores TRC from SAVBLK. Pops TRC and LOADs the block

the number of which is popped, then exi ts from FORTH.
SETSAV (blk# ---) Initializes SAVBLK iS TRC space with a single entry,

block number "blk#".
MENU (---) Clears out the TRC and LOADs the menu screen at MENU-BLK,

then exi ts from FORTH.
LEARN (---) If the SAVBLK copy of TRC is empty, executes MENU; else

displays "Resume where you left off (Y/N)? ", gets a keypress, and
executes RESUME if it's an upper- or lowercase Y; else executes
MENU.

STARTUP (---) Displays a signon message, followed by "Would you like
instructions on the use of this system? Press the Y key for' yes'
or the N key for i no' :" The program then loops till either a Y or
an N (either case) is keyed in, displays the key. and if it was Y
saves INSTR-BLK in SETSAV iS TRC space and RESUMEs; otherwise
execu tes LEARN.

User-înteractîon words
?ESC (--- n) A shell for KEY that traps the ESG character and exits

via SAVET is Esc is pressed.
PAUSE (n_) Displays "Press RETURN to continue. UP-ARROW to review"

and loops till one or other is pressed. If it's UP-ARROW, BACK is
executed.?LINK (nln2 n3 ... ni i ---) ?LOAD
Allows the user to enter a number between 1 and i where i is in the
range (2,10). The values of ni are popped from the parameter stack
and the one corresponding to the user's choice is fed to LINK.

EOS (---) A shell for PAUSE, defined as CR CR PAUSE CR ;

SAMPLE SCREEN
Screen #15

o TITLE MENUS
1 DSP' Sometimes I'LL ask you to choose from a number of
2 options, like answering a multiple-choice question. When
3 that happens you i 11 have to enter a number (one of the keys
4 on the top row of the keyboard) corresponding to the option
5 you want to select . After you press the number key, you
6 can ei ther confirm your selection by pressing RETURN or you
7 can change it by pressing the BACKSPACE key.
8
9 Here i s an example:

10
11
12
13
14 Try option 2 first, then option 1:'
15 BLK ~ ?TRC 16 13 2 ?LINK

1

2
go on
go back

