
Proceedings of the 1986 Rochester Forth Conference 245

A Mor~ Thorough Syntax Checker for FORTH
R. D. Dixon

David Hemmendinger
Department of Computer Science

Wright State University
Day ton, Ohio 45435

ABSTRACT

A sample grammar for FORTH is developed using ideas from
categorial grammars which. are used in natural language
processing. This grammar is in the spirit of FORTH compilers
but in addition a simulation of certain runtime activities is
conducted to attempt a verification of correctness of
parameters,

INTRODUCTION

Syntax diagrams for FORTH were presented at the 1982
Rochester FORTH Conference by K. Moerman (1). Syntax diagrams
and BNF grammars are useful because they give a short
specification of what syntax is allowable in the language,
Many compilers are derived directly from the BNF grammar.

Any purely syntactical specification of a programming
language will accept or generate some strings or. programs
which are not meaningful. Normally, the semantics of the
language limits what is a valid program just as syntax does,
FORTH, because it uses a parameter stack to pass arguments,
has a very loose syntax. Arguments may be generated a very
long way, syntactically, from .their use. Thus, the standard
FORTH compiler has no way at compile-time to know if the
proper arguments for a function are available when it is
called. Even if we assume that integer is the only data type,
FORTH compilers still cannot determine the number of input
and output arguments necessary for the proper operation of a
colon definition.

A second deficiency with a BNF specification for FORTH is
that compiler implementations derived from BNF grammars
usually contain the specification of the language syntax in
their structure or in a processed table. A FORTH compiler has
most of its syntactic information distributed in the
dictionary. It is this distributed nature of the compiler
that permits the extensibility of the FORTH language.

categorial grammars (2) are a much older method of syntax
specification than the phrase structure grammars (3) from
which BNFs are derived. In categorial grammars each word has
one or more categories to which it belongs. The category may
be primitive (indivisible) or complex, Complex categories
relate the word to the categories of adj acent words, Just as
with phrase structure grammars, different category schemes
yield different classes of languages. A simple category
scheme leads to the class of context-free languages, the
class into which most programming languages fall (4).

We propose a category scheme and a pars er here that is

246 The Journal of Forth Application and Research Volume 4 Number 2

similar to
categories
bottom-up
generates

the technique used in FORTH compilers. The
may be used to generate either a top-down or a
parse. The combination rule described here

a top-down pushdown automaton pars er .

SYNTACTIC CATEGORIES

A primitive category is a name starting with a lower case
letter. Names starting with upper case letters are PROLOG
type variables which stand for any category. A complex
category is an expression of the form X/Y where X and Y are
categories. If necessary, parentheses are used to remove
ambiguity. Thus a, a/b, and (a/b)/c are categories.

A dictionary of the categories of some FORTH words might
be stated as follows with each category being given as an
attribute of the word:

Word (sym)
: ((s/sc)/sym)
dup (X/X)
else (t/tl)

; (sc)
rot (X/X)
then(t)

+ (X/X)i ((X/X) /sym)
then (tl)

drop (X/X)
if ((X/X) It)

Int (X/X)

The Word (sym) means every word has as its first categorysym which stands for "symol". Int (X/X) means every integer
has category X/X. sstands for "sentence", sc for "semicolon"
and t and tl for. "then" categories.

The compilation starts with the category s on a stack,
processes words from left to right and uses the following
combination rule:

The current word considers its categories in their given
order, It compares its leftmost symol wi th the topmost
symol on the stack. If the symols match or can be made to
do so by instantiating a variable then that symol is deleted
from the stack and the remaining symols from this category
are placed in order on the stack. Otherwise that category
fails. If all the categories for a word fail, the word fails.
Backtracking will generate all possible parses.

Consider the example:

definition
ca tegory
stacko s

1
2
3
4
5

s/sc/sym
dog
sym

dup
X/X

+X/X sc
sc,sym

sc
sc (X=sc)

sc (X=sc)

The parse succeeds if the stack is empty and the input
string is consumed,

Proceedings of the 1986 Rochester Forth Conference 247

The if-else- then structure parsed as follows:
definition boy if + else drop then
category s/sc/sym sym X/X/t X/X t/tl X/X tl sc
stacko s1 sc, sym2 sc3 sc, t4 sc, t5 sc, tl6 sc, tl7 sc

8

Notice that category tfor "then" fails in this sentence.

SYNTACTIC AND SEMATIC CATEGORIES

In order to go beyond this context free scheme
the categories with a description of the run time
is the semantic action of the word. Let n be a
represents an integer. The new category of + is

+(X/x, (n,n)=~(n)).
Here the stack pictures before and after follow the comment
conventions used by many FORTH programmers, The following
list gives the augmented categories fo~ some FORTH words.
Word (sym, ()=~())
Wordl (tOl/tOi, () =~ ()))
: (s/sc/sym, () =~ ())
+ (X/X, (n, n) =~ (n))
dup (X/X, (n) =~ (n,n))
, (tOl/tOI/sym, (J =~ ())
, (X/X, (j=~(n))
if (tOI/tOI/tOI, () =~ ())
if(tll/tll/tll, ()=~())
if(X/X/too, (n)=~())
if (X/X/tii, (n)=~())
else ((tOI, tal) / (tOI, tOI)) , () =~ ())
else((tii,tll)/(tii,tll)), ()=~())
else(tOO/tol, ()=~())
else (tll/tIO, () =~ ())
else(tlO/err, ()=~())
then (too, () =~ ())
then(tOI, ()=~())
then(tIO, ()=~())
then(tll, ()=~())

we augument
stack, that
name that

Wordl (tll/tll, () =~ ())
; (sc, () =~ ())

drop (X/X, (n)=~())
rot (X/X, (n, n , n) =~ (n, n, n))
, (tll/tli/sym, () =~ ())
Int(X/X, ()=~(n))

These categories need further explanation. In the first
three lines we indicate some general statements about many
words . First all words used as symols have no semantic
action. Wordl is used here to indicate all words except
if, else, then, The two assertions concerning Wordl mean that
all semantic actions are suspended when tOi or tll is on top

