

250 The Journal of Fort Application and Research Volume 4 Number 2

recompilation of all modules using a sub-module.
. The execution kernel should be small and only give the basic functions. Higher level

function (such as traditional block file manageiiertt) should not be placed in the kerneL.

Further, the kernel should be symmetric and minimze the number of operations needed to
manipulate different data objects on the stack. The goals for the design is summarzed as
following:

· Module code should be relocatable
· Implementation detas (such as sub-defintions withn a module) may be hidden
. The execution kernel should be symmetric and minimize the number of functions
· The execution time for calls between modules should be mimal
· The cost of threadig and management of module should be small

INSPIRTION

In search for a method for module management, a surey of how it is solved in other
programming languages gives some valuable insights into the problem domain and some of
the common solutions. Languages such as MODULA-2 (Wirh 82, 86) support module
management but not in an interactive maner. MODULE-2 is an interesting example as the
language is small in comparsons to Ada (Pyle 81) but provides all the mechanisms for
Programmng in the Large. Other languages that give inspiration for how to deal with code
modules are SIMULA (Dahl et aL. 67) and SMALLTALK (Goldberg et al 83). Both of
these are object oriented and solves to the module problem by encapsulating function
definitions in small units (objects), and reducing the visibilty of the implementation of the
object functions. Especially SMALL TALK is interesting in relation to FORTH since they
both are interactive, and use interpretation and compilation modes.

CONTUTIONS

A programmg system prototype contrbuting to these goals has been implemented and
is currently running on an Apple Macintosh. The current version, which is called MacTILE
(the Macintosh Threaded Interpretive Language Environment) supports the usage of
modules and fully relocatable module and kernel code. The kernel is minimzed to a total of
220 functions and supports a number of data sizes (32-, 16-,8- and bit operations) quick
type conversion (such as number to text) and functions for symbolic manipulation such as
association list used for implementing overloading (Pyle 81) and object oriented
programming (Goldberg et aL. 83, Dahl et aL. 67). Tne total size is about 4K bytes of
machine code instrctions and contains no theaded code. It is fully relocatable and may be
ported to any computer system using the same microprocessor.

The syntax for a module definition has been adapted from MODULA-2.

MODULE TheModuleName

FROM ModuleToImportFrom
IMPORT WordFromThisModule
IMPORT AnOtherWord
(Internal definitions

INITMODULE

(Initial code for the module
ENDMODULE

When compiled, the module becomes a separate object code segment which is saved on
fie. The module may now be executed. The FROM defines a module from which

Proceedings of the 1986 Rochester Forth Conference 251

definitions may be IMPORTed. The IMPORTed definitions are placed into the vocabular
of the curent module.

The Module Compiler is alSo. capable of detecting if a definition is IMPORTable or not.
This is defined by the programmer by marking a definition as EXPORTable in the same
fashion as IMMEDIATE. Using this mechanism definitions and sub-definitions may be
hidden thus supporting one of the objectives of Programming in the Large. In addition to
the attrbute EXPORT four o.ther modes are defined; NORMAL which is the normal
attribute of a definition, EXECUTION being that the definition may only be used in execute
(interpretation) mode only , COMPILATION for definitions that.are only to be used when
compiling and last the traditional IMDIATE mode.

An example, the Prme Benchmark using an external module for output management:

MODULE Prime

FROM InOut
IMPORT WriteString
IMPORT WriteCard
IMPORT Writeln

8192 CONSTANT size
VARIABLE count
CREATE flags size 8/ ALLOT

Primes (---)
" 10 Iterations~ WriteString WriteLn
10 0 DO
count OFF
flags size 8/ true FILL
size 0 DO

I flags BB (a bit fetch operation)
IF I 2* 3+ size OVER I+

OVER OVER).
IF DO

false I flags B! (a bit store operation)
DUP

+LOOP
ELSE

DROP DROP
THEN

DROP
1 count +!

THEN
LOOP

LOOP
count B 6 WriteCard" Primes" WriteString WriteLn

INITMODULE
Primes

ENDMODULE

The first reference to the external module InOut wil force the module to be loaded into
memory and initiated. The cost of executing a function in the external module is minimized,
so that after the first call the cost of callng an imported function is an indirect
jump-equivalent to a NEXT operation. The low cost is achieved by caching entry
addresses at runtime. This strategy gives some problems when a module forced to be

252 The Journal of Forth Applicationand Research Volume 4 Number 2

unloaded from memory, since cache addresses are no longer valid and must therefore be
removed. The kernel support the loading and unloading of modules thus giving the

programming full. con trol of the utilization of memory. Words imported are placed in the
vocabular of the curent module but may be renamed locally;

FROM InOut
IMPORT WriteStringRENAM Type (FORTH Standard)

The renaming facilty gives the abilty to resolve local name conflcts and does not effect
the vocabular of the imported module. To reduce the size of the object bode vocabulares
are stored separately on disk and on.ly used at'compile-time. The module InOut may be
viewed as having the following outline:

MODULE InOut
(Internal definitions in InOut)
WriteString (string --);.......
WriteCard (number\positions --)
WriteLn (---);

INITMODULE

(Initialization code for the module)
ENDMODULE

EXPORT
EXPORT
EXPORT

A side effect of relocatable and non-overlayed modules is that modules may be
down-loaded into bare computer systems that use the same kernel and processor. The
ability to compile and run code on a development system, to down-load sub-parts of the
code into a target system and interactively and incrementally develop, and test the code on
the target machie without taget compilation has be an extension to the initial goals.

ACKNOWLEDGMENTS

I would like to thank my wife, Eva, for being so understanding and all personnel at the
Deparent of Computer and Information Science at Linköping University for their help in
this work. I would especially like to thank Ralph Rönnquist for his fertile suggestions and
our fritful discussions on the design and implementation of Mac TIE.

REFERENCES

(Boehm 81) B. W. Boehm, Software Engineering economics,Prentice-Hall, Englewood
Cliffs, N. J. , 1981.

(Brodie 81) L. Brodie, Starting FORTH, Prentice-Hall, Englewood Cliffs, N. J. 1981.
(Brooks 75) F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, Reading,

MA, 1975.
(Dahl et al. 67) 0; J. Dahl et aI., SIMULA 67 Common Base Language, Norsk

Regnesentral, Oslo, Norway.
(Kooge 82) P. M. Kooge, "An Architecture Trail to Threaded-Code Systems",

COMPUTER, March 82, pp. 22-32.
(Ghezzi etal. 82) C. Ghezzi and M. Jazayeri, Programming Language Concepts, John

Wiley & Sons, USA, 1982.
(Goldberg et al. 83) A. Goldberg and D. Robson, Smalltalk-80: the language and its

implementation, Addison-Wesley,USA, 1983.
(Pyle 81) 1. C. Pyle, The Adaprogramming language, Prentice-Hall, USA, 1981.
(Wirth 82) N. Wirth, Programming in Modula-2, Sperger-Verlag, N. Y., 1982.
(Wirth 86) N. Wirth, Algorithms & Data Structures, Prentice-Hall, London, 1986.

