
Proceedings of the 1986 Rochester Forth Conference 253

AUTOMATIC WORD GLOSSARY GENERATION
By: Norman E. Smith, COP

Science Appl ications International Corp.
800 Oak Ri dge Turnpike

Oak Ridge, Tennessee 37831

I seem to be the only Forth programmer that thinks Forth is
a good general purpose 1 anguage. The computer shop I work in
primarily uses Fortran-77 and a little C. Needless to say I have
had a hard time getting Forth accepted. I did develop one small
communications program on an IBM-PC in Forth. That experience
taught me several things about trying to use Forth in a non-Forth
envi ronment. Management must be convinced thatthe system will
be maintainable. The best way to do that is to properly document
the system.

Another problem management seems to have with Forth is its
reputation for being a 'write-only' language. Any language can be

write-only, it's just easier to develop write-only code in Forth.
I . have seen pl enty of write-onl y Fortran code, but some of the
worst has been C. Let's take a look at a code segment in both
Forth and C and see if Forth is really the write-only language.

Forth-
DO-SOMETHING OVER + 1 + SWAP DO I C~ 32 = IF I LEAVE
THEN LOOP ¡

C-
do-someth i ng (x, y)
int *x,y¡
(i nt i, z ¡

fore i =0 ¡ (((z=*x+i) 1=32) &&C i (y)) ¡ 1++) return (1+*x) ¡ 1
Both versions of 'do-something' perform the same function, and
both are write-only code. Worse code can easily be written in
either 1 anguagel Both code segments are passed the starti ng
address and maximum length of a null terminated string and return
the address of the end of the stri ng.

How do you take Forth out of the write-only realm? Proper
documentation is the only cure I know ofl Program documentation
is the programmer's responsibi 1 ity, more so with Forth than with
other 1 anguages I I have seen a lot wri tten about Forth cod i ng
style. As far as I am concerned, Forth is a low level language.
Forth code should be commented as if it were assembler. That is
almost every line should have a comment. This means that only one
Forth statement shoul d be written per 1 i nel Don't forget proper
indentation. Finally, include the text that would go in the word
glossary in the screen with the word. It always seems to take
longer to write glossary entries after the fact. Besides, if you
can't write a couple of sentences describing a word, then you
don't know enough to code itl

The suggesti ons menti oned above that contri bute toward good

documentation seem to take less time during coding. They also

The Journal of Forth Application and Research Volume 4 Number 2254

help insure that you think the application through. Putting
together a Program Mainte~ance Manual will be a lot easier if
large portions are already written as a by-product. of coding.

After completing the communications system, I found that
generating the word glossary by hand took almost as long as
writi ng the code. I had al ready written a Forth program to 1 ist
the first line of each word definition along with its screen
number. This word proved an invaluable tool during both
devel op~ent and testi ng. It turned out that I al ready had most of
the other pieces to automatically generate word glossaries
already written. A little additional code and the next glossary
would be easy to generate. My automatic word glossary generator
is really semi-automatic, but who's compl ai ni ng.

All of this talk of program documentation leads up to an
appl ication program that will make generating good Forth program
documentation easier. My automatic word .glossary generator does
this. The word glossary is one of the most important sections of
a Program Ma i ntenance Manual for any Forth system. If you foll ow
my cod i ng sty 1 e suggestions, you will have done about 80% of the
work necessa ry to generate the word gl ossa rYe

Before I discuss the automatic word glossary generator, I
want to mention another common documentation mechanism that is
widely used i nthe Forth community, shadow screens. I do not care
for them. They do have their place. Shadow screens can be a big
help for after the fact documentation, but I find them almost
useless for documentation as you code. There are two forms of
shadow screens that I know of. The first and most popul ari s to
spl it the screen fi 1 e in hal f, with the fi rst hal f being code and

the 1 ast half bei ng the shadows for documentati on. The second
shadow screen method is to use every other screen as the shadow.
I 1 i ke the second method better because the task of keepi ng the
code and its shadow in synch is easi er if you must insert
additional screens in the middle of a section of code. This
assumes you actually keep the shadows up as you code. Several of
the publ ic doma i n Forths make extensive use of shadow screens as
their primary form of documentation. None has what acceptable
shadow screen support. It may be easy to switch between the code
and its shadow, but they make no provision for displaying both at
the same time. The automatic word glossary generator method gets
around the problems that are inherent with shadow screens and
lets me see the code as I write its word glossary entry.

The automatic word glossary generator exists today primarily
because I used portions of other code in a program tool box
approach to build large portions of the final program. Otherwise,
I probably woul d have never gotten around to actually writi ng the
program. The tool box approach to software development has long
been used in the Unix/C worl d with much success. Personal
experience leads me to believe heavily in the validity of the
software tool box. Forth happens to be a very good envi ronment for
developing tool boxes. I have built up a collection of words I
carry from Forth to Forth and program to program over the years.

Proceedings of the 1986 Rochester Forth Conference 255

The primary reasons that Forth is so good for constructi ng
program tool boxes is that programs are constructed as relatively
simple building blocks, and the interface between words is easy
to defi ne and test. Once a word is tested, it can be depended
upon in other words.

The design of the automatic word glossary generator is
relatively simple. It consists of three phases and has one input
fi 1 e, one work fi 1 e, and one output fi 1 e. Fi gure 1 is the data
flow diagram for the automatic word glossary generator.

WORD GLOSSARY

FORTH SOURCE TEMPORARY SCREEN FILE

AUTOMATIC WORD GLOSSARY GENERATOR DATA FLOW DIAGRAM
FIGURE 1

The automatic word glossary is divided into three phases and
uses three files as shown in Figure 1. The input Forth screen
file is passed to extract the word definitions. This first phase,
EXTRACT: LINES, examines each line looking for a ':' in column
1. The entire line, along with the screen number is written to
the temporary screen file each time a ':' is found. One
simplifying assumption was made in the word definition search;
onl y col umn 1 is checked for the ':'. Thi s is the accepted
convention; besides I was writing the program for myself and I
always follow this convention.

The second phase, SORT: LINES, sorts the records in the
temporary screen file. A simple bubble sort is used. Sorting
speed is acceptabl e because the records are fixed 1 ength of 64
characters. So, there are 16 records to each physical screen.
This large number of logical records helps cut down I/O time a
great deal. The first fifteen characters are used as the sort
key. The length of the sort key is a parameter and can easily be
changed. I have found 15 characters adequate. The simplicity of a
bubble sort and di rect access nature of screen fil es allow the
file to be sorted completely within itself.

The final phase, MERGE COMMENTS, reads the temporary screen
fil e, and uses the screen number stored in the record as an index
into the original screen source file. The ':' line from the

256 The Journal of Forth Application and Research Volume 4 Number 2

temporary file is written .to the word glossary file. The source
screen is searched for a ';S' starting in column 1. If a ';S' is
found, the rest of the screen is copied to the word glossary
file. This procedure continues until all records in the temporary
file have been processed.

The final output is the beginnings of a word glossary with
most of ~he hard stuff done. All of the words are in sort order.
The words you took time to describe during coding have their
glossary entry already done. The text file will require at least
some editing even if you documented every word, because no
attempt is made to separate descriptions in the case that there
are multiple words and descriptions per screen. This means that
lines that do not apply will have to be deleted, but it is a lot
easier to del ete a few 1 i nes than to have to write them.

I took the program tool box approach to the overall
development of the automatic word glossary generator. Much of the
code for the fi nal program al ready exi sted, either stand alone or
as part of some larger program. Building program was a matter of
merging all of the parts, deleting unused code, and adding some
new code to ti e all the pi eces together. Code already ex i sted for
the following: 1) listing ':' lines within a group of screens, 2)
sorting records in a screen file, 3) logical files within a
screen file, and 4) an abbreviated string package.

Several support words were necessary to buil d the source
program. First, I needed to convert several screen files into
normal ASCII text files so they could be manipulated by operating
systems util ities. I wrote UNLOAD to perform this function. It
turns out that the space compression because of the el iminated
whitespace was so significant that I now keep all of my source
code UNLOADed when I am not working on it. After the existing
source code was all ULNOADed, I appended the fil es together and
started mOdifying the source with my favorite text editor,
MicroEMACS. There was no built in utility tQ load text files into
screen files so I wrote FLOAD. The method I followed of
UNLOADing, editing the text file, and FLOADing the source made
thewhol e process of combi ni ngporti ons of multiple screen files
much easier than if I had tried to work completely within Forth
screen files. It is difficult to do a lot of cut and pasting with
most Forth editors, but is very simpl e with MicroEMACS.

There are a couple of enhancements that might be desirable
and coul d be made with very 1 ittl e troubl e. The 1 i st of ':' 1 i nes
could be written to a text file both before and after being
sorted, and formatting commands for your favorite text formatter
would be useful. Was the effort worth it? Yest After using the
automatic word glossary generator, I was amazed at how easy itis
to. produce quality Forth program documentation. I wonder why the
major Forth vendors donJt include documentation aids of this
type. Documentation can go a long way toward helping management
accept Forth as a vi abl e general purpose programmi ng 1 anguage.

