
Proceedings of the 1986 RochesterForth Conference 133

TOWARD THE DEVELOPMENT OF A REAL-TIME EXPERT SYSTEM

Jack Park
Box 326
Brownsville, CA 95919

Paper to be presented to the 1986 Rochester Forth Conference

Abstract

Application of the Forth environment to applied artificial
intel 1 igence projects has led to the development of a concurrent
processor, real-time expert system. Steps toward the development of
the EXPERT-5 concurrent system have incl uded EXPERT-2, EXPERT-4, and
early versions of the EXPERT-5 technology running on a personal
computer. The concurrent EXPERT-5 consists of two EXPERT-5 shel 1 s
runni ng on separate M68ØØØ-based co-processors mapped into the memory
structure of a third EXPERT-5 based blackboard controller running
under MS-DOS on a pc. A "parser-thinker" paradigm is being explored
with this architecture.

Introduction
It is reasonable to consider the universe of artificial

intelligence (AI) activities as consisting of two disjoint efforts:
those fundamental ly research oriented, and those fundamentally
applications oriented. This classification lets us distinguish
certain tool-design approaches discussed in the fol lowingparagraphs.

Fundamentally, we take the view that at the implementation level
research èfforts wi 1 1 requi re powerful dynamic memory management
schemes (incl uding heap managers, 1 ist processors, garbage col lection,
etc) whi le appl ications may be ported to (or implemented in) a variety
of highly simpl ified memory structures (such as arrays). Akin to the
implementation issue, the notion of a closed universe is appropriate
to the applied AI project, while the research project may entail an
open universe. That is, the applied project may start with a pre-
enumerated uni verse (knowledge base) and not be expected to extend
that universe, while the research effort may similarly start with a
pre-enumerated uni verse, but may extend or otherwise structurally
alter that universe.

The pre-enumerated universe notion is the substrate on which we
have built and tested a variety of experimental inference engines.
These include EXPERT-2 (PARK84a), EXPERT-4 (PARK85a), and EXPERT-5
(PARK85b) (1). In the discussion following, we trace some of the
development effort underlying these programs, we discuss some
observationsmade along the way, and we conclude with a look at the
future of this effort.

In the present context, an expert system is defined as a program
which behaves as a domain (human) expert would when given a set of
input stateŠ-and a knowledge of the desired output response. Our view
necessitates a further classification of systems: those oriented
toward consultation, and those oriented toward process control. Both
consultation and process control entail heuristic classification
(CLANCEY85), the underlying task of the system.

o

134 The Journal of Forth Application and Research Volume 4 Number 2

EXPERT- 2

Gi ven the background moti vat ion to develop a real-time expert
system, EXPERT-2 was written (originally) in FIG-Forth on an Apple 11
computer. That program used as a design model the backward-chaining
inference engine described in (WINSTON8ii. The objecti ve of the
project was to explore the issues of applying Forth to an AI project.

The primary algorithm implemented in the EXPERT-2 inference
engine is:

1 select a goal to prove from a pre-enumerated 1 ist of
goals

2 try to verify the goal
o see if the goal is already known

o if known, exit with truth

o collect some rules from a pre-enumerated list of
rules - rules which contain the goal as a
consequent

o taking the rules - one at a time - find a proof
o exi t on first rule proven
o take each aritecedent field of the rule and treat

it as a new (sub) goal - try to verify

o if an antecedent field (subgoal) does hot
have anyrules to support it, ask the user if
the antecedent is true.

From thisoutl ine, we see that the EXPERT-2 system simply takes
the next goal in line and tries to verify its truth by verifying the
truth of rules which support it. Ultimately, verifying truth entails
asking the user the truth of underlying antecedent attributes.

As an example, the familiar penguin rule (shortened here) is:
IF animal is a bird
AND animal swims
THEN an ima 1 i i a pengui n

If we consider this the only rulè in the entire knowledge base, then,
from the expert procedure outlined above, a goal to prove an animal is
a penguin results in the program asking the user if the animal is a
bird and if the animal swims. A "true" answer to both of these
questions yields the final pronouncement that the animal isa penguin.
All, of course, based on the closed-world assumption that this lone
rule defines a penguin, and only a penguin.

We can generalize the expert algorithm by substitution of quering
a database of wor Id states for merely asking the user. The query

Proceedings of the 1986 Rochester Fort Conference 135

procedure might include asking th~ user if a given attribute is known
"askable." In a real-time process control ler, one expects the largest
share of attributes that must be checked wi 1 1 be sensed data acquired
by a data col lection (hardware) system and made avai lable to the
inference engine as an array of numerical information.

By generalizing the query portion of the inference routine
EXPERT-2 is a candidate real-time shell. Exploration of its use as a
consultant in weather prediction is discussed in (PARK84bJ, and as a
consul tant in neurological research in (TRELEASE86J. Exploration of
its use as a "smart" node in an array processor is discussed in
(PARK86al. That projectappl ied EXPERT-2 to the game ofLi feas an
exercise in designing a systol ic array, one potentially capable of
deal ing with real-time weather prediction. In the Life project, the
entire query procedure is redirected to use the array data supplied by
the game, just as would a real-time process monitor with predictive
capabi 1i ties.

A fundamental issue in any real-time process is that the monitor
or controller must behave in real-time. This notion leads one to
consider the benchmark performance of the expert system. We return to
benchmark performance later, but for now, it suffices to note that
EXPERT-2 is a particularly slow inference engine.

An analysis of inference engine speed (as measured in logical
inferences per second - lips) leads one to look at two issues:

o underlying hardware speed

o inference algorithm speed

Underlying hardware speed is an issue of two parts:

o cpu and memory speed

o language mappi ng onto the cpu

Gi ven any cpu and memory such that hardware speed is fixed (often
~y fiat), mapping of the language on which the domain effort is based
1S a primary issue. In all cases, the highest run-time speeds wi 11 be
achieved with careful use of the language that uses the least number
of clock cycles of the cpu. The "assembler" language of the cpu is
the typical choice in this respect.

A secondary issue is one of project development cost. Here, a
real-world focus brings about a fundamental comprimise between run-
time speed, and overall project cost. Unti 1 the recent introduction
of language-specific cpus (e.g. a circuit which executes a high-level
language as its native "assembler" language), 'important run-timè speed
advantages were nearly, always traded for the convenience of project
development in a high-level language. For the real-time control ler
case~ unt i 1 now, the secondary issue of project cost has dominated
deci sions which affect the primary issue - getting the inferences done
in time.

Given an underlying hardware system, and a high-level language,
inference speed is now an issue of two parts:

136 The Journal of Fort Application and Research Volume 4 Number 2

o the basicin£erence algorithm

o the search algori thm

The basic inference algorithm for the backward-chaining (goal driven)
EXPERT-2 was described above as: select a goal to prove, then try to
prove it. The search algorithm of EXPERT-2, source code for which is
in (PARK84al, details a simplistic (e.g. slow) pattern-matcher
oriented to an array of ordered rules.

In the EXPERT-2 search process, the objective is to collect all
rules which have as a consequent field the same symbol ic referencËI-
(e.g. absolute memory address) as the current goal. For example, if
the current goal is the address of the concept "penguin" then the
search routine wi ii find al 1 rules which have that same address in one
of their consequent (e.g. THEN penguin) fields. A reference to each
rule found wi 1 1 be pushed onto the Forth parameter stack. For a
knowledge base of a hundred rules, search is reasonably quick, and the
program is able to operate at a few hundred logical inferences per
second. As the knowledge base expands, search time will increase. A
candidate for inference engine design change is rule search.

EXPERT-4

For historical purposes, EXPERT-4 grew out of EXPERT-3, which was
simply EXPERT-2 with an associative memory structure ~ a lattice
structure of rules and pointers.

The EXPERT-4 inference engine further implemented some
fundamental changes to the way a user creates a knowledge base.
,Whereas EXPERT-2 adhered strictly to the notion of easily-readable
rules (see for example the penguin rule above) where entire query
strings were imbedded directly in each rule clause, EXPERT-4
introduced the predefinition of symbols and their associated query
string. Thus, the rule for a penguin would be declared as fol lows:

(declarations)
S: penguin
S: bird
S: swims

(rule)
IF bird
AND swims
THEN penguin

" animal is a penguin"
" animal is a bird"
" animal swims"

A sI i ght amount of readabi 1 i ty has been traded for an enormous
improvement in effort required to create a knowledge base.

r

An associative memory structure is 'one which offers a response to
a request based on the data contained, rather than the address. In
EXPERT-2, search took the "next" address in the rule space and asked
"what's in here?" In EXPERT-4's rule space, search takes the symbolic
pointer (e.g. an absolute memory address of the goal concept) as
something quite different from just another address in rule space.
The symbolic pointer is the address of the beginning of a list of all
occurances of the symbol. Search no longer needs to take an address

Proceedings ofthe 1986 Rochester Forth Conference 137

and look there for a match; each address is a match known ~ priori.

An interesting observation here is that EXPERT-4 does its
searching at compile time rather than run time. In fact, this is an
attractive notion that should be appl ied wherever possible. Appl ied
to the EXPERT~4 shell, it results in a doubling of inference speed for
systems with knowledge bases under a hundred rules. EXPERT-4's
performance with large knowledge bases has not been characterized, but
the program is the substrate for an acute pediatrics program of more
than iØØØ rules, and its longest search time appears less than two
seconds.

Ais a consultant, a 2-second search time for a thousand rules is
quite reasonable. As a real-time process manager, however, one looks,
again, for areas of improvement. This time, we turn from search to
the underlying inference algorithm.

EXPERT-5

EXPERT-5 is best described as a production system (DAVIS77) which
is message-passing, object-centered and uses a blackboard 1HAYES-
ROTH85) as its working memory.

EXPERT-5 is a different inference engine altogether from EXPERTs
-2 and -4. Here, the fundamental change is totha inference
structure. Instead of an interpreter (the inference engine) looking
for something to prove and trying to prove it, each object in the
uni verse described by the knowledge base is its own inference engine.

The change in fundamental thinking came from our own reasoning
behind using Forth (say, instead of Lisp) as a substrate environment.
The premise is that thecloser one is to the native cpu language, the
faster will be the system. Forth offers an 'environment which doesi ts
searching at compile time sò that its run-time .interpreter is smal 1
and typical ly quite efficient. In retrospect, Forth offers a model
for some aspects of inference engine design. But, we failed in our
original designs to notice another regularity in Forth that would
greatly improve the performance of our inference engines. This
regulari ty was pointed out by Dana Redington in (REDINGTON84).

Forth's own "next" is quite capable of functioning as the host
inference engine. Thus, two properties of the Forth environment make
it suitable as an inference engine. Forth's use of compile-time
searching to build data structures needs only to be exploited such
that the data structures buil t wi th "find" and "create" are useful for
inference processi ng. Further, those structures need on ly capture the
behaviors necessary to perform: inferences such that each structure, a
first-class entity (an object ~apableof behaving according to a
message it receives) in the expert system's pre-enumerated universe,
is capable of behaving as its own inference engine using "next." Thus
was created EXPERT-5.

The EXPERT-5 "inference engine" no longer is a body of Forth code
built to find a goal ",and prove it. Instead, the program is just an
extension of the Forth compiler for creating memory structures which
are capable of behaving as individual inference engines. For example,
in the EXPERT-4 rule for a penguin, a body of Forth code reads the

138 The Journal of Fort Application and Research Volume 4 Number 2

symbòl for penguin as a goal and searches for the truth for the
penguin (that truth is either already known or needs to be found by
use of supporting rules). Thus, penguin is not a self-executing
entity in EXPERT-4. In EXPERT~5, however, penguin would be an object
with behaviors defined by a body of Forth code known as "methods."
When passed a message such as "truth", the object pengui n wi 1 L us,e its
truth-finding methods to determine it's own truth. Fundamentally, the
response will be the same (e.g. some powerful regularities exist
across all reasoning methods), but the object's approach wi 1 1 not rely
on an external interpreter; any rules which support penguin inferences
are, ultimately, self-executing - they are small bodies of Forth code
written to execute the necessary reasoning chains. A fundamental
difference between EXPERT-4 and EXPERT-5 is that the programmer, in
EXPERT-5 is responsible for the entire reasoning process (e.g.
bui ldingthe proper knowledge structure, invoking the proper messages,
using the blackboard correctly, etc.) The programmer in EXPERT-4 need
only concentrate on the semantic correctness of the rules, and their
ordering; the external inference engine applies a predefined procedure
to the knowledge base.

Using the game of Life as a benchmark, whereas EXPERT-2 times at
approximately 2ØØ 1 ips, EXPERT-5 (writte~ on l6-bit F83 o~ a stock PC
class personal computer) runs nearly 2,7ØØ lips, an important
improvement. Timi ng the same EXPERT-5 on a l6-bi t MVP microcoded
coprocessor (KOOPMAN86J running a 2BØ nanosecond clock returned 4l,6ØØ
1 ipso Thus, there are important improvements to be found in looking
closely at the tools one can exploit from the host environment.

These improvements come at some cost. We have found large
knowledge bases built ~n the present level of EXPERT-5 to be difficult
to build and to maintain. This isa the same tradeoff one makes when
one leaves a "readable" environment (say, English sentences as
computer instructions) and employs a constrained language (like
Forth). The situation is made even more difficult by a more subtle
change in program design from EXPERT-4 to EXPERT-5 (at its present
level). Whereas EXPERT-4 includes a 'rule compiler thatbui ldsthe
lattice memory structurene.cessary for search, no such rule compiler
has yet been developed for EXPERT-5; the task of visualizing the
structure of any tree or graph in an EXPERT-5 knowledge ba,se fal Is
solely on the knowledge engineer. Brighter prospects for EXPERT-5's
future wi 1 1 incl ude the development of a more-powerful user interface
to the system.

Interesting arguments run both sides of the symbolic vs.
procedural approaches to software specification (DOYLE85J, and it may
be that an optimum lies somewhere within speci fic, and carefully
crafted combinations of both (SUTHERLAND86J. We have assumed a design
approach that enables both symbol ic inferences and numeric (or
procedural) computation to coexist without interference; in EXPERT-5,
~l knowledge base entries are ultimately executable Forth code. A
program may reason about that code, or it may execute it. Thus, as
wi th Lisp, EXPERT-5 permi ts programs to reason about themsel ves.
Programs as data may not be an important paradigm in the realm of
real-time process controllers, but the capability to go beyond will be
important in the discovery (scientific theory formation (LEMAT83J.
(LANGLEY83J) arena.

Proceedings of the 1986 Rochester Forth ConferenGe 139

The penguin example is inadequate to expose the design of an
EXPERT-5 knowledge base, so we include in the appendix a small program
that performs a simple robot control exercise (a monkey game). The
test program is a fUnctional copy of the program included in
(BROWNSTON85), an OPS5 programming manuaL. The monkey's goal is to
hold the banannas. It's behaviors include moving from where it is
initially at to where the banannas are. If the location of the
banannaaisinitlally some position in the room and suspended from the
ceilingt then the monkey "knows" to move the ladder to that location
and climb it to get the,banannas. The monkey is only allowed to hold
one physical object at a time; if in its initial posession is a
blanket, it must drop the blanket before holding, say, the ladder. An
initial "bug" in the implementation included here arose when the
monkey, standing at the, top of the ladder, discovered it must drop the
ladder before holding the banannas. It took considerable effort to
"teach" the monkey a more appropriate beha v ior. Menti on of the OPS 5
environment 'queues further observations and these wi 11 be briefly
ment i onedbe low.

The example program is a rule-based knowledge base used to
control the behavior of a robot- a monkey in this case - the
underlying goal of which ii to cause the robot to acquire a physical
object - a bananna. Rules in the EXPERT-5 implementation have the
same names as those in the reference. The reference offers english
tranlations and OPS5 versions of each rule - the ~xample program here
is nearly a one~to-one match with its OPS5 counterpart. The
exceptions lie in two areas: EXPERT-5 permits collecting concepts
(e.g. rules) into lists which may be structurally organized as trees,
tangled hierarchies, or other forms of graphs, OPS5 does not (on the
surface) support this. Further, and more sbbtle~ OPS5 relies on a
process called conflict resolution (FORGY79) (3) to select the rule to
fir~; EXPERT-5 relies on partial and total ordering of rules - the
first rule to fire in a given line of reasoning wins. A further
difference, not illustrated in the example program, is the ability, in
EXPERT-5 to apply both the data-dri~en and goal~driven approaches to
the ihference process. OPS5 is fundamentally a data-driven inference
engine; the primary algorithm of the data-driven (forward chaining)
system is: take some data item and see where it leads. Recall that
the goal-driven algorithm is: take some goal and find the data to
prove it.

The example program ill ustrates many of the EXPERT-5 features
(2) :

o allocation of a wotkingmemory to serve as a Blackbbard

o rules

o prlmi ti ve behaviors

o messages

o li sts
Noti 1 lustrated in this program is the use of frames (MINSKY75) as a
paradigm for knowledge representation., Recent versions of EXPERT-5
have made frames first-clasa objects; they are~ easi ly implemented as

140 The Journal of Forth Application and Research Volume 4 Number 2

l~sts and behaviors.

Given that all entities (n an EXPERT-5 program are capable of
behaving as their own inference engine, they are all generally
executable Forth code. On inspection, the test program reveals
several self-executing entities:

o GOAL-SATISFIED - a common Forth colon-defined procedure
which supports the user-defined blackboard. The procedure grabs a
variety of entities from the blackboard and saves them on a goal-stack
for later recall. This is a self-garbage-collectionmechanism;
popping a stack performs an analago-us function to releasing 1 ist cells
to a heap.

o ON-FLOOR - a rule which conditionally fires the primitive
ide-effect:. POST something to the blackboard. Note that rules read
ike Forth colon definitions. (which they ultimately are), and '--)'

stands for "implies~ and reads like Forth's IF. Entities are either
POSTed to the blackboard or RECALLed from it. The blackboard, in this
program, is a three-dimensional array: an enti ty is accessed by the
level (multilevels support e.g. past, current, and future events), the
name, and a value. This example rule reads:

IF the current goal is to be on the jloor
AND the monkey is not on the floor
THEN put the monkey on the floor and tell somebody about it.

Thus, this rule captures a conditional behavior of the monkey.

o PHYSOBJ ~ a disjunctive 1 ist. EXPERT-5 permi tstwo types of
lists (type refers to their inference behavior)- disjuncti veand
conjunctive. If not used as inference engines, a list can behave
either as a database cras an agenda. This example list has arity=l
and a lone parameter placeholder (unused in this implementation). A
disjuncti ve. 1 ist, when passed .the message "TRUTH" .wi 1 1 behave just
like the rule: '

IF a OR b OR c THEN true ELSE fa 1 se.

For the conjuncti ve list, substitute AND for each instance of OR.
Lists are collected in a heap (DRESS861. The example PHYSOBJ list is
used as a database.

o STARTUP - a Forth defini tion the purpose of which is to
initialize the blackboard with startup data and present an initial
(perhaps the on ly) goa 1.

o RUN - the classic Forth word designed to set the program off
on its mission (as defined by STARTUP). The inference process starts
wi th the message TRUTH passed to the object RULES. RULES is a
disjunctive list behaving as a conditional agenda (exit on the first
agenda item found true). This agenda captures all the knowledge
contained in the knowledge base; the ultimate organization is a tree,
the major nodes of which are the rules: ?ON, ?HOLDS, and ?AT, and a
couple of minor nodes: CONGRATS, and SORRY - the meanings of which are
intuitively obvious. This partial ordering of rules was. experimentally
found to raise the rule speed of this knowledge base from firing 85

Proceedings of the 1986 Rochester Forth Conference 141

rules per second without parital ordering to firing IØ3 rules per
second with partial ordering (note that rules per second is a
different type of performance 'figure from lips).

The example program illustrates both the implementation aspects
of EXPERT-5 and its user program, and a useful, if simplistic,
application of the environment. Interesting prospects for this
environment would include the implementation of an experimental
environment like KL-ONE (BRACHMAN84).

Current Status
EXPERT-5 has been ported to a concurrent processor system

comprised of two M68ØØØ coprocessors (HALLOCK851 each with one
megabyte of memory (benchmarking EXPERT-5 at about 9ØØØ 1 ips in a 32-
bi t dtc Forth environment (BRADLEY861). Each of the two coprocessors
runs a full implementation of EXPERT-5 along with a Qualitative
Process Theory she 1 1 (FORBUS851. . One processor wi 1 1 run a "parser"
and the other will run a "thinker." In a temporal reasoning
environment (ALLEN851, these two processors will be capable of
monitoring and controlling real-time processes. A third EXPERT-5
serves as a "smart" blackboard monitor~ running under 16-bitF83 in
the host PC environment. The two M68ØØØ-based EXPERT-5 systems pass
messages through the bl ackboard system, and communicate wi th the
outside world (acquiring data, control ling objects, communicating with
fi les or operators) through the same blackboard system. For the
process environment, this division of tasks (reading the environment,
responding to the environment) represents a logical task split,
potential ly doubl ing the throughput of a real-time process controller.
Looking Ahead

We already know what EXPERT-6 looks like. This variant of
EXPERT-5 uses a list handler similar to (TRACY851 for building and
maintaining its memory structure and is oriented strictly toward
research in discovery systems.

Notes

(1) We claim revolutionary breakthroughs in naming conventions for
computer programs.

(2) This recal Is some useful .observations on where "features" really
come from.

(3) An interesting insight into conflict resolution in Forth, as well
as further discussion on Forth in AI along with a Forth-based
inference engine implementation, is found in (MATHEUS861.

References

(ALLEN851 AlIen, James F. and Henry A. Kautz; A Model of Naive
Temporal Reasoning; in Hobbs, Jerry R. and Robert C. Moore,
eds; FORMAL THEORIES OF THE COMMONSENSE WORLD; 1985, Ablex
Publishing Corp.

(BRACHMAN841 Brachman, R.J. and J.G. Schmolze; An Overview of the

142 The Journal of Fort Application and Research Volume 4 Number 2

KL-ONE Knowledge Representation Sýstem; Cognitive Science 9
no. 2 April-June, 1984

(BRADLEY86j Brad1ey, Mi tch; Forth system user's manual

(BROWNSTONE85j Brownston, Lee, Robert Farrell, Elaine Kant, and
Nancy Martin; ProgrammiQ. Exper! Systems inOPS5; 1985,
Addison-Wesley

(CLANCEY85j Clancey, William J.; Heuristic Classification; in
Artificial Intelligence 27 (1985), pp 289-35Ø

(DAVIS77j Davis, Randall, Bruce Buchanan, and Edward Shortliffe;
Production Rules as a Representation for a Knowledge-based
Consultation Program; Artificial Intelligence 8 (1977) pp
15-45

(DOYLE85j Doyle, Jon; Expert Systems and the "Myth" of Symbol ic
Reasoning; IEEE Tranøactions on Software Engineering, vol
SE-l1, no 11, November 1985 pp 1386-139Ø

(DRESS86j DreØs, W.B.; A Forth Implementation of the lieap Data
Structure for Memory Management; 1986 JFAR, in press

(FORBUS85J F,orbus, Kenneth D.; Qualitative Process Theory; in
Bobrow, Daniel G., ed;QUALITATIVE REASONING ABOUT PHYSICAL
SYSTEMS; 1985, MI T Press

(FORGY79J Forgy, C.L.; On the Efficient implementation of
Production Systems; PhD thesis, Department of Computer
Science, Carnegie-Mellon Uni versi ty, February 1979

(HALLOCK85j Hallock Systems Company; PRO-68 owners manual, 1985

(HAYES-ROTH85J Hayes-Roth, B.; A Blackboard Architecture for
Control; Artificial Intelligence 26 (1985) pp 251-321

(KOOPMAN86j Koopman, Phi 1, Jr., and Glen Haydon; User's Manual -
MVP-FORTH CPU BOARD; 1986, Mountain View' Press.

(LANGLEY83j Langley, Pat, Gary L. Bradshaw, and Herbert A. Simon;
Rediscovering Chemistry with the BACON System; in Michalski,
R.S., J.G. Carbonell, and T.M. Mitchel eds; Machine Learning
.: ~Q ~.;!.!!.!.£.!~.! .!Q!~.!l.!S.~Q'£~ ~EE!'Q~'£!!; 1983, T i 0 g aPubl i shi ng Company

(LENAT83J Lenat, Douglas B.; The Role of Heuristics in Learning
by Discovery: Three Case Studies; in Machine Learning .: An
Artificial Intelligence Approach

(MATHEUS86j Matheus, Christopher J.; The Internals of FORPS - A
Forth-based Production System; 1986 JFAR, in press

(MINSKY75j Minsky, Marvin; A Framework for Representing
Knowledge; in winston, P. ed; The PsycholQ3 of Computer
Vision; 1975, McGraw-Hill

Proceedings of the 1986 Rochester Forth Conference 143

(PARK84a) Park, Jack; Forth Expert System; 1984, Mountain View
Press

(PARK84b) Park, Jack; Expert Systems and the Weather; Dr. Dobb's
Journal, April 1984, pp 24-31

(PARK85a) Park, Jack; EXPERT-4 User's Manual; unpublished
manuscript

(PARK85b) Park, Jack; EXPERT-5 User's Manual; unpublished
manuscr i pt

(PARK86a) Park, Jack; A Cellular Automaton in EXPERT-2; Dr.
Dobb's Journal, April 1986, pp 42-44

(REDINGTON84) Redington, D.; Outline of a Forth Oriented Real-
Time Expert System for Sleep Staging: a Fortes
Polysomnographer.; 1984 FORML Proceedings, Forth Interest
Group.

(S UT HER L AND 8 6) S u the r 1 and, J 0 h n W.; Ass e s sin g the A r ti f i ci a 1
Intelligence Contribution to Decision Technology; IEEE
Transactions on Systems, Man, and Cyberqetics, vol SMC-16,
no 1, January/February 1986 pp 3-20 J

(TRACY85) Tracy, Marten; Forth List Handler; disk available from
Forth Interest Group.

(TRELEASE86) Trelease, Robert; JFAR in press

(WINSTON8l) WINSTON, P.H." and B.K.P. HORN; LISP; 1981 Addison-
Wesley.

Append i x

/1

144 The Journal of Fort Application and Research Volume 4 Number 2

Scr l ø B:MONKEY.BLK
Ø'MONKEY GAME WRITTEN FOR EXPERT-5 (Ref: OPS-5 book)
1 VERSION MONKEYl.BLK
2 USES FILTER RULES
3 ON EXPERT-5.2 (16-bit F83 on a stock PC)
4 RUNS -135 RULES IN -1.8 SEC = 75 RULES/SEC
5 without diagnostic depth. - 85 rules/sec
6 ON EXPERT-5. 2 WITH IMPROVED MESSAGE MEMORY
7 RUNS 1.3 SEC = lØ3 RULES/SEC - times include screen printing
8 MONKEY4.BLK runs on EXPERT-5.6 with a heap manager and
9 default (single) blackboard leveL.

lØ
11 Presently cannot handle the case of blanket on banannas on floor
12
13
14
i 5

Scr
ø
1

2

3
4
5
6
7
8
9

1 ø
11
12
13
14
15

It 1

\ MONKEY4
B: MONKEY. BLK
latest version LOAD SCREEN

WALL ¡ \ something to "forget"
ESINIT \ initialize EXPERT-5
RELEASE-HEAP \ clear the heap

2 32 THRU \ load monkey program

CR . (Monkey ready - type RUN)

Scr ll 2
, ø EXIT

1
2
3
4
5
6
7
8
9

lØ
11
12
i 3
14
15

B: MONKEY. BLK

Proceedings of the 1986 Rochester Forth Conference 145

Scr
ø
1

2
3
4
5
I)

7
8
9

10
11
12
13
14
15

3

\ MONKEY
B: MONKEY. BLK

working memory (blackboard) design

1 (level) 8 (cells) 4 (entries) WM (allot space)
NEWCELL
WM-CELL GOAL NEWENTRY

WM-ENTRY TYPE
WM-ENTRY STATUS
WM-ENTRY NAME
WM-ENTRY TO

WM-CELL MONKEY NEWENTRY
WM-ENTRY AT
WM-ENTRY ON
WM-ENTRY HOLDS

WM-CELL COUCH
WM-ENTRY WEIGHT

WM-CELL LADDER

Scr
ø
1

2
3
4
5
6
7
8
9

1Ø
11
12
13
14
15

4
\ MONKEY

B :MONKEY. BLK
wm (blackboard) design

WM-CELL
WM-CELL
WM-CELL
WM-CELL

BLANKET
BANANNAS
FLOOR
CEILING

1 1 OR: PHYSOBJ
COUCH LADDER BLANKET BANANNAS Li

GOAL-SATISFIED GS) GOAL TO POST GS) GOAL NAME POST
GS) GOAL TYPE POST

NEWGOAL GOAL TYPE RECALL)GS GOAL NAME RECALL)GS
GOAL TO RECALL)GS i

Scr
ø
1
2
3
4
5
6
7
8
9

lØ
11
12
13
14
15

5 B: MONKEY. BLK
\ MONKEYS rules ON cluster

R: ON-FLOOR
GOAL NAME RECALL (' J FLOOR = (goal)
MONKEY ON RECALL (' J FLOOR () AND (state)

--) CR ." 1 monkey jumps on floor "
(i 1 FLOOR MONKEY ON POST
GOAL-SATISFIED TRUE Ri

146 The Journal of Forth Application and Research Volume 4 Number 2

Scr # 5 B:MONKEY.BLK
ø \ MONKEY rules ON
1

2 R: ON-FLOOR-SATISFIED
3 GOAL NAME RECALL (' i FLOOR = (goal)
4 MONKEY ON RECALL (i J FLOOR = AND (state
5 --) CR ." 2 monkey already on floor"
6 GOAL-SATISFIED TRUE Ri
7
8
9

1 ø
11
12
13
14
15

Scr # 7 B:MONKEY.BLK
ø \ MONKEY rules ON
1
2 R: ON-PHYSOBJ
3 GOAL NAME RECALL ?NIL NOT
4 GOAL NAME RECALL (i J PHYSOBJ MEMBER (goal) AND
5 GOAL NAME RECALL)OBJECT
6 AT RECALL (xy)
7 MONKEY AT RECALL (xy) (same location ?) AND
8 MONKEY ON RECALL GOAL NAME RECALL ~, AND
9 MONKEY HOLDS RECALL GOAL NAME RECALL
lØ)OBJECT ON RECALL () AND
11 --) CR ." 3 monkey climbs on "
12 GOAL NAME RECALL SHOW
13 GOAL NAME RECALL MONKEY ON POST
14 GOAL-SATISFIED TRUE Ri
15

Scr # 8 B :MONKEY .BLK
ø \ MONKEY rules ON
1
2 R: ON-PHYSOBJ-HOLDS
3 GOAL NAME RECALL ?NIL NOT
4 GOAL NAME RECALL (' J PHYSOBJ MEMBER goal) AND
5 GOAL NAME RECALL
6)OBJECT AT RECALL (xy)
7 MONKEY AT RECALL = (same location?) AND
8 MONKEY HOLDS RECALL ?NIL NOT AND (state
9 --) CR ." 4 need to drop the "
1 ø MONKEY HOLDS RECALL SHOW
11 NEWGOAL (' J HOLDS GOAL TYPE POST
12 r' J NIL GOAL NAME POST TRUE Ri
13
14
15

Proceedings of the 1986 Rochester Fort Conference 147

Scr l 9 B:MONKEY.BLK
ø \ MONKEY rules ON
1
2 R: ON-PHYSOBJ-AT-MONKEY
3 GOAL NAME RECALL ?NIL NOT
4 --OAL NAME RECALL (') PHYSOBJ MEMBER (goal) AND
5 GOAL NAME RECALL
6)OBJECT ON RECALL (i) FLOOR = AND
7 GOAL NAME RECALL
8)OBJECT AT RECALL MONKEY AT RECALL () AND
9 --) CR . n 5 need to move " NEWGOAL
1Ø GOAL NAME RECALL
11)OBJECT AT RECALL GOAL TO POST
12 (i) AT GOAL TYPE POST
13 (') MONKEY G8AL NAME POST TRUE R;
14
15

Scr # 1Ø B:MONKEY.BLK
ø \ MONKEY rules ON
1

2 R: ON-PHYSOBJ-SATISFIED
3 GOAL NAME RECALL ?N I L NOT
4 GOAL NAME RECALL (i) PHYSOBJ MEMBER (goal) AND
5 MONKEY ON RECALL GOAL NAME RECALL AND
6 --) CR ." 6 monkey already on "
7 MONKEY ON RECALL SHOW
8 GOAL-SATISFIED TRUE R;
9

1Ø
11
12
13
14
15

Scr # 11 B:MONKEY.BLK
ø \ MONKEY rules HOLDS
1
2 R: HOLDS-NIL
3 GOAL NAME RECALL ?N I L (goa 1)
4 MONKEY HOLDS RECALL ?NIL NOT AND (state)
5 --) CR ." 7 monkey drops the "
6 MONKEY HOLDS RECALL SHOW
7 (') NIL MONKEY HOLDS POST GOAL-SATISFIED TRUE R;
8
9

1Ø
11
12
13
14
15

The Journal of Forth Application and Research Volume 4 Number 2148

Scr i 12 B:MONKEY.BLK
ø \ MONKEY rules HOLDS
1
2 R: HOLDS-NIL-SATISFIED
3 GOAL NAME RECALL ?NIL (goal)
4 MONKEY HOLDS RECALL ?NIL AND (state)
5 --) CR ." 8 monkey holds nothing " GOAL-SATISFIED TRUE R;
6
7
8
9

lØ
11
12
13
14
15

Scr i 13 B:MONKEY.BLK
ø \ MONKEY rules HOLDS
1
2 R: HOLDS-OBJ-CEILING
3 GOAL NAME RECALL ?NIL NOT
4 GOAL NAME RECALL (') PHYSOBJ MEMBER (goal) AND
5 GOAL NAME RECALL
6)OBJECT ON RECALL (') CEILING = AND
7 GOAL NAME RECALL
8)OBJECT AT RECALL (xy)
9 LADDER AT RECALL = (same location?) AND
lØ MONKEY ON RECALL (' J LADDER = AND
11 (') PHYSOBJ (') ON GOAL NAME RECALL ANY NOT AND
12 --) CR ." 9 monkey grabs the " GOAL NAME RECALL SHOW
13 (') NIL GOAL NAME RECALL)OBJECT ON POST
14 GOAL NAME RECALL MONKEY HOLDS POST
15 GOAL-SATISFIED TRUE R;

Scr l 14 B:MONKEY.BLK
ø \ MONKEY rules HOLDS
1
2 R: HOLDS-OBJ-CEIL-ON
3 GOAL NAME RECALL ?NIL NOT
4 GOAL NAME RECALL (' J PHYSOBJ MEMBER (goal) AND
5 GOAL NAME RECALL
6)OBJECT ON RECALL (' J CEILING = AND
7 GOAL NAME RECALL
8)OBJECT AT RECALL LADDER AT RECALL = AND
9 MONKEY ON RECALL (') LADDER () AND (state
lØ --) CR ." lØ need to get on ladder "
11 NEWGOAL (' J ON GOAL TYPE POST
12 r' J LADDER GOAL NAME POST TRUE R;
13
14
15

Proceedings of the 1986 Rochester Forth Conference 149

Se r # 15 B: MONKEY. BLK
ø \ MONKEY rules HOLDS
1
2 R: HOLDS-OBJ-CEIL-AT-OBJ
3 GOAL NAME RECALL ?NIL NOT
4 GOAL NAME RECALL (i J PHYSOBJ MEMBER AND
5 GOAL NAME RECALL
6)OBJECT ON RECALL (' J CEILING = AND
7 GOAL NAME RECALL
8)OBJECT AT LADDER AT RECALL () AND
9 --) CR ." 11 need to move ladder"
lØ NEWGOAL GOAL NAME RECALL
11)OBJECT AT RECALL GOAL TO POST
12 (' J AT GOAL TYPE POST
13 ('J LADDER GOAL NAME POST TRUE Ri
14
15

Se r # 16 B: MONKEY. BLK
ø \ MONKEY rules HOLDS
1
2 R: HOLDS-OBJ-NOTCEIL
3 GOAL NAME RECALL ?NIL NOT
4 GOAL NAME RECALL (' J PHYSOBJ MEMBER AND
5 GOAL NAME RECALL
6)OBJECT ON RECALL (') CEILING () AND
7 GOAL NAME RECALL
8)OBJECT AT RECALL MONKEY AT RECALL AND
9 MONKEY ON RECALL (i J FLOOR = AND
lØ MONKEY HOLDS RECALL ?NIL AND
11 (i 1 PHYSOBJ (i J ON GOAL NAME RECALL ANY NOT AND
12 --) CR ." 12 monkey grabs the" GOAL NAME RECALL SHOW
13 GOAL NAME RECALL MONKEY HOLDS POST
14 (i 1 NIL GOAL NAME RECALL)OBJECT ON POST
15 GOAL-SATISFIED TRUE Ri

Ser # 17 B:MONKEY.BLK
ø \ MONKEY rules HOLDS
1
2 R: HOLDS-OBJ-NOTCEIL-ON
3 GOAL NAME RECALL ?NIL NOT
4 GOAL NAME RECALL (' J PHYSOBJ MEMBER AND
5 GOAL NAME RECALL
6)OBJECT ON RECALL (i J CEILING () AND
7 GOAL NAME RECALL
8)OBJECT AT RECALL MONKEY AT RECALL () AND
9 MONKEY ON RECALL (i 1 FLOOR () AND
lØ --) CR ." 13 need to get on floor "
11 NEWGOAL r i 1 ON GOAL TYPE POST
12 (i 1 FLOOR GOAL NAME POST TRUE Ri
13
14
15

The Journal of Forth. Application and Research Volume 4 Number 2150

Scr # 18 B:MONKEY.BLK
o \ MONKEY rules HOLDS
1
2 R: HOLDS-OBJ-NOTCEIL-AT-MONKEY
3 GOAL NAME RECALL ?NIL NOT
4 GOAL NAME RECALL (' J PHYSOBJ MEMBER AND
5 GOAL NAME RECALL
6)OBJECT ON RECALL (' J CEILING () AND
7 GOAL NAME RECALL
8)OBJECT AT RECALL MONKEY AT RECALL 0 AND
9 --) CR ." 14 need to go to " GOAL NAME RECALL SHOW
10 NEWGOAL GOAL NAME RECALL
11)OBJ ECT AT RECALL GOAL TO POST
12 ('J AT GOAL TYPE POST
13 (') NIL GOAL NAME POST TRUE Ri
14
15

Scr # 19 B:MONKEY.BLK
o \ MONKEY rules HOLDS
1

2 R: HOLDS-OBJ-HOLDS
3 GOAL NAME RECALL ?NIL NOT
4 GOAL NAME RECALL (i J PHYSOBJ MEMBER AND
5 GOAL NAME RECALL
6)OBJECT AT RECALL MONKEY AT RECALL = AND
7 MONKEY HOLDS RECALL ?NIL NOT AND
8 MONKEY HOLDS CURLEVEL GOAL NAME RECALL () AND
9 --) CR ." 15 need to hold nothing"

10 NEWGOAL (') NIL GOAL NAME POST
1 i (') HOLDS GOAL ~YPEPOST TRUE Ri
12
13
14
15

Scr # 20 B:MONKEY.BLK
ø \ MONKEY rules HOLDS
1
2 R: HOLDS-OBJ-SATISFIED
3 GOAL NAME RECALL ?NIL NOT
4 GOAL NAME RECALL (') PHYSOBJ MEMBER AND
5 MONKEY HOLDS RECALL GOAL NAME RECALL = AND
6 --) CR ." 16 monkey al ready holds the "
7 MONKEY HOLDS RECALL SHOW GOAL-SATISFIED TRUE Ri
8
9

10
11
12
13
14
15

Proceedings of the 1986 Rochester Forth Conference 151

Scr # 21 B:MONKEY.BLK
ø \ MONKEY rules AT
1
2 R: AT-OBJECT
3 GOAL NAME RECALL ?NIL NOT
4 GOAL NAME RECALL (' 1 PHYSOBJ MEMBER AND
5 GOAL NAME RECALL
6)OBJECT AT RECALL GOAL TO RECALL () AND
7 MONKEY HOLDS RECALL GOAL NAME RECALL = AND
8 --) CR ." 17 monkey moves the "
9 GOAL NAME RECALL SHOW
1Ø GOAL TO RECALL DUP MONKEY AT POST
11 MONKEY HOLDS RECALL)OBJECT AT POST
12 GOAL-SATISFIED TRUE Ri
13
14
15

Scr l 22 B:MONKEY.BLK
ø \ MONKEY rules AT
1
2 R: AT-OBJ-ON-FLOOR
3 GOAL NAME RECALL ?NIL NOT
4 GOAL NAME RECALL (' JPHYSOBJ MEMBER AND
5 GOAL NAME RECALL
6)OBJECT AT RECALL GOAL TO RECALL () AND
7 MONKEY ON RECALL (i J FLOOR () AND
8 MONKEY HOLDS RECALL GOAL NAME RECALL = AND
9 --) CR ." ia need to get on floor "
1Ø NEWGOAL (i J ON GOAL TYPE POST
11 (i J FLOOR GOAL NAME POST TRUE Ri
12
13
14
15

Scr # 23 B:MONKEY.BLK
ø \ MONKEY rules AT
1
2 R: AT-OBJ-HOLDS
3 GOAL NAME RECALL ?NIL NOT
4 GOAL NAME RECALL (i J PHYSOBJ MEMBER AND
5 GOAL NAME RECALL
6)OBJECT AT RECALL GOAL TO RECALL () AND
7 MONKEY HOLDS RECALL GOAL NAME RECALL () AND
8 --) CR ." 19 need to hold the "
9 GOAL NAME RECALL SHOW
1Ø NEWGOAL (' J HOLDS GOAL TYPE POST
11 \ no need to define goal name - it's the same
12 TRUE Ri
13
14
15

152 The Journal of Forth Application and Research Volume 4 Number 2

Scr l 24 B:MONKEY.BLK '
ø \ MONKEY rules AT

R: AT-OBJ-SATISFIED
3 GOAL NAME RECALL ?NIL NOT
4 GOAL NAME RECALL (i J PHYSOBJ MEMBER AND
5 GOAL NAME RECALL
6)OBJECT AT RECALL GOAL TO RECALL = AND
7 --) CR GOAL NAME RECALL SHOW
8 ." 2Ø al ready at location "
9 GOAL-SATISFIED TRUE R;

lØ
11
12
13
14
15

Scr l 25 B:MONKEY.BLK
ø \ MONKEY rules AT
1
2 R: AT-MONKEY
3 GOAL NAME RECALL ?NIL
4 MONKEY AT RECALL GOAL TO RECALL () AND
5 --) CR ." 21 monkey walks to location"
6 GOAL TO RECALL MONKEY AT POST
7 GOAL-SATISF lED TRUE R;
8
9

lØ
11
12
13
14
15

Scr . 26 B:MONKEY.BLK
ø \ MONKEY rules AT
1
2 R: AT-MONKEY-OBJ
3 GOAL NAME RECALL (i J MONKEY =
4 GOAL TO RECALL MONKEY AT RECALL () AND
5 MONKEY HOLDS RECALL (' J PHYSOBJ MEMBER AND
6 --) CR ." 22 monkey walks, carrying"
7 MONKEY HOLDS RECALL SHOW
8 GOAL TO RECALL DUP MONKEY AT POST
9 MONKEY HOLDS RECALL)OBJECT AT POST
lØ GOAL-SATISFIED TRUE R;
11
12
13
14
15

Proceedings of the 1986 Rochester Forth Conference 153

Scr I 27 B:MONKEYoBLK
ø \ MONKEY rules AT
1
2 R: AT-MONKEY-ON
3 GOAL NAME RECALL (i) MONKEY =
4 GOAL TO RECALL MONKEY AT RECALL () AND
5 MONKEY ON RECALL (i) FLOOR () AND
6 --) CR 0" 23 jump to floor"
7 NEWGOAL (i) ON GOAL TYPE POST
8 (i) FLOOR GOAL NAME POST TRUE R ¡
9

lØ
11
12
13
14
15

Scr
ø
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

I 28 B: MONKEY 0 BLK
\ MONKEY rules AT

R: AT-MONKEY-SATIS~IID
GOAL NAME RECALL (') MONKEY =
GOAL TO RECALL MONKEY AT RECALL = AND
--) CR 0" 24 monkey already at location "
GOAL-SATISFIED TRUE R¡

Scr
o
1
2
3
4
5
6
7
8
9

lØ
11
12
13
14
15

I 29 B: MONK~Y. BLK
\ MONKEY rules DONE

var iable DONE \ a flag set by CONGRATS or SORRY to end run

R: CONGRATS
GOAL TYPE RECALL ?NIL
--) CR 0" congratulations" CR TRUE DONE

R: SORRY
GOAL TYPE RECALL ?NIL NOT
--) CR 0" sorry n CR TRUE DONE TRUE R ¡

TRUE R ¡

154 The Journal of Forth Application and Research Volume 4 Number 2

30
\ MONKEY

Scr
o
1
2 1
3
4
5
6
7 1
8
9

10
11
12
13
14
15

B: MONKEY. BLK
RULELIST

1 OR: fON)
ON-FLOOR ON-FLOOR-SATISFIED ON-PHYSOBJ
ON-PHYSOBJ-HOLDS ON-PHYSOBJ-AT-MONKEY
ON-PHYSOBJ-SATISFIED L¡

1 OR: (HOLDS) HOLDS-NIL HOLDS-NIL-SATISFIED
HOLDS-OBJ-CEIL-ON HOLDS-OBJ-CE I L-AT-OBJ
HOLDS-OBJ -NOTCE IL HOLDS-OBJ-NOTCE I L-ON
HOLDS-OBJ -NOTC E I L-AT-MONKEY HOLDS-OBJ -HOLDS
HOLDS-OBJ-SATISFIED L;

HOLDS-OBJ -CEI LING

1 1 OR: (AT) AT-OBJECT AT-OBJ-ON-FLOOR AT-OBJ-HOLDS
AT-OBJ -SAT ISF I EO AT-MONKEY AT-MONKEY-OBJ
AT-MONKEY-ON AT-MONKEY-SATISFIED L¡

Scr # 31 B:MONKEY.BLK
ø \ MONKEY controls
1 STARTUP (i i NIL GOAL TYPE POST NEWGOAL
2 (') HOLDS GOAL TYPE POST (i) NIL BLANKET ON POST
3 (i) BANANNAS GOAL NAME POST \ 11 BLANKET AT POST
4 (') CEILING BANANNAS ON POST 11 BANANNAS AT POST
5 (') COUCH MONKEY ON POST \ 43 MONKEY AT POST
6 \ (') FLOOR MONKEY ON POST 23 MONKEY AT POST
7 (i) FLOOR COUCH ON POST 43 COUCH AT POST
8 (i) FLOOR LADDER ON POST 41 LADDER AT POST
9 (i) BLANKET MONKEY HOLDS POST ¡

1 ø R: ?ON GOAL TYPE RECALL (') ON
11 --) (ON) R¡
12 R: ?HOLDS GOAL TYPE RECALL (') HOLDS =
13 --) (HOLDS) R;
14 R: ?AT GOAL TYPE RECALL (') AT
15 --) (AT) R¡

Scr l 32 B :MONKEY .BLK
ø \ MONKEY control
1
2 1 1 OR: RULES CONGRATS ?ON ?HOLDS ?AT SORRY L¡
3
4 RUN (D~~K) ESINIT
5 STARTUP FALSE DONE ! ø,)LEVEL
6 ." Starting goal is · GOAL TYPE RECALL SHOW CR
7 BEGIN \ the main loop
8 (') RULES TRUTH DROP \ RULES ~eta the message TRUTH9 DONE ~ \ drop truth returned by RULES10 UNTIL ¡ \ and check variable DONE

11
12
13
14
15

